Data Representation: Signed Integers

"Data" in	a con	nputer	is just		 		
We have as	_						
			→ this "data?"	, <u> </u>		. →	
It depends	s on _				 		
e.g					 		
Computers	encod	le all	sorts of data	ı:			
→							
		→					
	→ _						
		→					
→							
	→ _						
	_						
	→ _						
	_				 		
	→ _				 		

Integers	
Unsigned	
These are interpreted as	numbers
n =, Range:	
# distinct values:	
Sign Magnitude	
The MSB is the: 0 =	1 =
Other bits are treated as a	
If we have 4-bit sign magnitude notation, How many distinct values can we represent?	
n =, Range:	
# distinct values:	
What is the binary representation of -64 in 8-bit sign magnitude notation?	What does 0xFF represent in 8-bit signed magnitude notation?
Two's Complement (2SC)	
Two's complement is how modern computers st	core integers.

The MSB is the ______ : θ = _____ 1 = ____

any format for educational, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Positive #s are encoded the same as						
with						
There are 3 steps to encode a negative # in 2SC notation:						
(1)						
(2)	(3)					
n =, Range:						
<pre># distinct values:</pre>						
What is -7_10 in 4-bit two's complement?	What is 7_10 in 4-bit two's complement?					
(1)	(1)					
(2)	(2)					
(3)	(3)					
To find the additive inverse of a 2SC #:						
(1)	(2)					
What is -5_10 in 4-bit two's complement?	What is 5_10 in 4-bit two's complement?					
What decimal number does 0b0100 represent? (4-bit 2SC)	What decimal number does 0b1100 represent? (4-bit 2SC)					

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

What decimal number does 0b1111 represent? (4-bit 2SC)	What number does 0b11111111 represent? (8-bit 2SC)
What number does 0b1110 represent? (4-bit 2SC)	What number does 0b11111110 represent? (8-bit 2SC)
What number does 0b1000 represent? (4-bit 2SC)	What number does 0b10000000 represent? (8-bit 2SC)

How to convert 2SC to decimal?

Just like before except...

Convert the following binary number to decimal: 0b101

Assuming this number is 3-bit 2SC:

Assuming this number is unsigned:

Convert the following 5-bit 2SC binary number to decimal: 0b10111

Convert the following 8-bit 2SC binary number to decimal: 0x81

4-Bit Number Line

	1
-8	+8 (Can we represent this number?)
	,
-7	+7
-6	+6
-5	+5
-4	+4
-3	+3
-2	+2
-1	+1
	1
-0 (Can we represent this number?)	0

8-Bit Number Line

o Bre Hamber Eine	
-8	+8 (Can we represent this number?)
-7	+7
-6	+6
-5	+5
-4	+4
-3	+3
-2	+2
-1	+1
-1	11
-0 (Can we represent this number?)	0
o (can be represente that hamber ty	

2SC	Δd	di	ti	on	١
250	Au	uı	U.	OI.	Į

Just like unsigned, except: _ Perform the following computation using 6-bit 2SC notation 10 + 3 Express the result in hex: Perform the following computation using 6-bit 2SC notation -10 + 3 ----Express the result in hex: Perform the following computation using 6-bit 2SC notation -1 + 1 Express the result in hex: Perform the following computation using 6-bit 2SC notation -10 + -3 Express the result in hex:

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

2SC Subtraction Convert to an addition problem, e.g. _____ Perform the following computation using 5-bit 2SC notation Biased / Excess Notation Biased notation is like unsigned, where 0 is ______ on the number line. Example Unsigned |----|----|----|----|----|----| 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Excess 8 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 The MSB is the ______ 1 = _____ 1 = _____ n = ______, Range: _____ # distinct values: ______

The bias is often _____ To convert from biased notation to unbiased, ______ To convert from unbiased notation to biased, ______

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for educational, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Examples

Express 2_10 in 3-bit bias 4 notation.	Express -2_10 in 3-bit bias 4 notation.
Convert from 3-bit bias 4 notation to signed decimal notation: 0b001	Convert from 3-bit bias 4 notation to signed decimal notation: 0b100
What is the range for 8-bit bias 127 notation?	Convert from 8-bit bias 127 notation to signed decimal notation: 0b00001100
Express 6_10 in 8-bit bias 127 notation.	Express -12_10 in 8-bit bias 127 notation.

Sign Extension

Adder Example

In a	a computer,	computations	on two numb	ers must have	the	
Sign	n Magnitude					
1 -						
3 -						

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Examples

Sign extend 0101 to 8 bits	Sign extend 0x1E from 5 to 8 bits

Two's Complement

Examples

Sign extend 0xB from 4 to 8 bits	Sign extend 0x1E from 5 to 8 bits
Sign extend 0x0B from 6 to 8 bits	Sign extend 0x1E from 6 to 8 bits
Sign extend 26_8 from 5 to 8 bits	Sign extend 26_8 from 6 to 8 bits
Sign extend 0x29 from 8 to 12 bits	Sign extend 0x29 from 6 to 8 bits