

B.Sc. (Hons.) Physics (Semester -1st)
BASIC MATHEMATICS-I
Subject Code: BMATH5102
Paper ID: 19131503

Time: 03 Hours

Maximum Marks: 60

Instruction for candidates:

1. Section A is compulsory. It consists of 10 parts of two marks each.
2. Section B consist of 5 questions of 5 marks each. The student has to attempt any 4 questions out of it.
3. Section C consist of 3 questions of 10 marks each. The student has to attempt any 2 questions.

Section – A **(2 marks each)**

Q1. Attempt the following:

- a. Find the values of the constants a and b such that the function $f(x) = \begin{cases} x^2 & x < -1, \\ 7x & -1 \leq x < 1, \\ -x + a + 2b & x > 1 \end{cases}$ becomes continuous.
- b. Find the 30th derivative of $y(x) = \frac{-1}{(2x+3)^3}$.
- c. Check the differentiability of the function $f(x) = |x|$ at $x = 0$.
- d. Find the value of the limit $\lim_{x \rightarrow 0} \frac{\tan \tan x - x}{x^2 \sin \sin x}$.
- e. Verify the Rolle's theorem for the function $y = x^2 + 2$ in the interval $[-2, 2]$.
- f. Solve the integral $\int \frac{x^3}{\sin^2(x^4)} dx$.
- g. Find the integration of the function $\frac{1}{x^2 + 3x + 2}$.
- h. Solve the integral $\int_{-3}^3 |x - 1| dx$.
- i. Find the area enclosed by the circle $x^2 + y^2 = 25$ using the concept of integration.
- j. Derive the reduction formula for $\int x^n e^{ax} dx$.

Section – B **(5 marks each)**

Q2. Find the Maclaurins series for $f(x) = \cos \cos x$.

Q3. If $y = \left[\log \left(x + \sqrt{1 + x^2} \right) \right]^2$, Prove that $(1 + x^2)y_{n+2} + (2n + 1)xy_{n+1} + n^2y_n = 0$.

Q4. Solve the integral $\int \frac{1}{\sqrt{x^2 - 6x + 4}} dx$.

Q5. Find the area of the region bounded by the two parabolas $y = x^2$ and $x = y^2$.

Q6. Check the continuity and differentiability of the function $f(x) = \begin{cases} x^2 \sin \left(\frac{1}{x} \right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0 \end{cases}$ at $x = 0$.

Section – C**(10 marks each)**

Q7. (a) Find all the asymptotes of the curve $x^3 + 3x^2y - 4y^3 - x + y + 3 = 0$.

(b) Using Taylor's theorem with Lagrange's form of remainder, show that

$$\log \log(x + h) = \log x + \frac{h}{x} - \frac{h^2}{2x^2} + \dots + (-1)^{n-1} \frac{h^n}{n(x+\theta h)^n}.$$

Q8. (a) Solve the integral $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$.

(b) Evaluate the 100^{th} derivative of $\log(x^2 - 3x + 2)$.

Q9. (a) The circle $x^2 + y^2 = a^2$ is revolved about the $x - axis$. Find the volume of the sphere so formed.

(b) Derive the reduction formula for $\int \tan^n x dx$.