
Final Technical Report

Project Title: IndicView: Because language is no more a barrier (ILB)
Duration: 5 years (October, 2014 – September, 2019)
Sponsor: Google India Pvt. Ltd.
Principal Investigator: Dr. Pawan Goyal, CSE, IITKGP

Objectives

The primary aim of the project is to build an application that will be helpful in converting
snippets of text written in Indic scripts to other languages. The end product for this
project is a mobile app as well as a web application that will extract Hindi text from
images and convert it to English.

This project is made keeping in mind the difficulties faced by non-Hindi speakers in
understanding the text written in Hindi. It can be used to convert the manuscripts, news,
books, magazines or billboards written in Hindi into equivalent English.

This app can be extended to include all Indian languages with an option to choose the
source and target languages, and can help reduce the language gap among Indian
languages.

Deliverables

● A web application where a user can upload photos (Hindi Text) and see the
translated English text

● An android application where clicked photos (Hindi Text) will be translated and
shown

● Testing under different scenarios like lighting conditions and computing the
accuracies.

● Offline Functionality of the application
● The translated text should be of the same format as the source.



Workflow

Figure 1 shows the workflow of the proposed approach. We use the tesseract-ocr from
Google as our main component but pre-process the image before giving it as input to
Tesseract to improve the overall accuracy of the OCR. Once we obtain the OCR output,
we do a post-processing step for error correction using language modeling. This text is
then passed on to a Translation API and the translated text is shown to the user.

Figure 1: Workflow of the proposed approach

We now describe briefly various components used in our approach.

Pre-Processing of input image before passing it on to Tesseract

In this step, we tried out various pre-processing techniques that would be best suited for
Hindi language. We implemented thresholding methods such as otsu, sauvola,
multiscale sauvola, wolf, etc. Among these, the best results were obtained for sauvola
thresholding. We, therefore, implement the sauvola thresholding algorithm and
experimented with different kernel sizes. The kernel size for which performance is best
is 15. Since the principle use case of this app is via the images taken from a camera,



we also implemented the skew, inverse perspective transform, and deblurring that will
help the tesseract to better recognise the image.

During our experiments, we observed that tesseract gives better output if the image size
is smaller and the image contains only a few words and less noise. So, for every image,
we build bounding blobs for words and segment the image into a definite set of boxes
with single words inside them. The boxes are ordered according to rows and they are
passed one by one to tesseract. The output is put together to get the entire text as a
paragraph. This gives far better results as compared to tesseract for images taken on
phone as such images have a lot of noise.

Post-Processing of the Tesseract output

Once we obtain the output Hindi text from Tesseract, we run a post processing step to
correct the output. Specifically, we apply a prime based algorithm which finds the
nearest match to a word that is not there in the Hindi dictionary. On the top of this, we
have applied a Non-parametric Bayesian Language Model (Teh 2006) in order to
smoothen the final output. We did not use this in the android application due to time
constraints.

Translating final output to English

In this step, we use Microsoft translator to translate the Hindi text to English. We used
the API of the translator in both the android as well as web application. The android
application is therefore an online application as the translator API requires internet
connection.

Current Status

At present, we have both the web-application and the android application working.
Below we describe these briefly.

Android Application

The android application provides the user the ability to check the output after each
stage of computation. It has a very simple user interface. Users can click photos from

http://www.stats.ox.ac.uk/~teh/research/compling/acl2006.pdf
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjWwOuej4_KAhUBjo4KHXDLCnUQFggcMAA&url=https%3A%2F%2Fwww.microsoft.com%2Fen-us%2Ftranslator%2Ftranslatorapi.aspx&usg=AFQjCNH5oKeMY-kkYCbU5uHIRUVz8fOjUQ&sig2=Xnv8-nm-crP3CREaUAbJqg


their camera and adjust the window upon the desired hindi text that they want to
translate into English. The application uses a multi-threaded architecture for fast
computation of the translated text.

At present, it is not compatible with the 64-bit processors due to initialization problem.
We hope to add this in the near future. It might also be resolved due to future updates of
OpenCV Manager. The android application can be downloaded from here.

Web Application

The web Application packs the complete workflow in a single application. The user can
provide the image either from the device or via an url. We have built support for major
image formats such as PNG, JPEG etc., which are generated from cameras. The web
application can be accessed by visiting this link .

Evaluation Results

We evaluate the performance of our applications at various stages to establish that the
proposed enhancements improve the overall performance. To evaluate the quality of
OCR, we use levenshtein distance as our character-level accuracy checker. We also
report the word level accuracies. To evaluate the quality of final English translation, we
report the standard BLEU metric using ibleu.

Note that these evaluation require a ground truth data to compare against. We selected
74 images of Hindi text, each containing an average of 9.3 words. The input images
used for testing can be found here. We prepared the ground truth manually for these
images. For the final translation output, we used 25 images out of these 74, and
provided manual translation as ground truth.

For the web application, we are reporting the average character level and word level
accuracy of 74 images, each containing on an average 9.3 words and the BLEU score
is being reported for 25 images out of these. For android application we are reporting
the average BLEU Score of 25 images, each containing on an average 9.6 words.

Accuracy results as obtained on Web Application

https://drive.google.com/open?id=0B1kWxSvEubgJbGlBWTZILVNmcUE
http://7bdac81b.ngrok.io/rango/
https://github.com/desilinguist/ibleu
https://drive.google.com/open?id=0BznFgxc4wRRqYUxlbjdmcjJKY2M


Tables 1 and 2 report the character level and word level accuracies for the OCR output.
We see that in comparison to the basic tesseract, our pre-processing step improves the
performance by 13.7% and 14.9% respectively. We see that the post-processing step
does not improve the character level accuracy but given an improvement at the the
word-level.

Table 1: Character Level Accuracy for the OCR output

Method Tesseract Tesseract +
Pre-Processing

Tesseract +
Pre-Processing +
Post-Processing

Accuracy (in%) 57.40 65.28 (+13.7%) 56.54

Table 2: Word Level Accuracy for the OCR output

Method Tesseract Tesseract +
Pre-Processing

Tesseract +
Pre-Processing +
Post-Processing

Accuracy (in%) 47 54 (+14.9%) 54.40

Table 3 reports the BLEU scores for the final translation. Note that to put these values in
perspective, we also report the BLEU score, when the Ground Truth Hindi text is directly
given as input to the translation API. For our experiments, this serves as a good upper
bound on the translation quality. We see that if we directly input the output of Tesseract
to the translation API, BLEU score is only 1.7. On the other hand, our web application
gives a BLEU score of 3.14, an improvement of 84.7% over the basic model.

Table 3: BLEU Metric Scores for the final translation

Method Translation API with
Ground Truth Hindi
text

Tesseract +
Translation API

Final Web
Application

BLEU score 6.18 1.7 3.14 (+84.7%)

Accuracy Results on the Android Application



Tables 4 and 5 report the BLEU metric scores for the Android App with 2 different
Mobiles. Mobile 1 and Mobile 2 represent two different mobiles with different camera
apertures, and quality. Both mobiles had an 8MP camera, but Mobile 2 included
auto-focus feature. We test our app under two different lighting conditions. Lighting
condition 1 indicates the presence of enough light, either through ambient light (day
clicked pictures) or through flash. Lighting condition 2 represents that these conditions
were not satisfied.

We see that while the auto-focus feature of camera 2 resulted in slightly better accuracy
on the plain tesseract, our method is robust to the camera as well as lighting
differences. In general, the BLEU score obtained using our App is much better than that
obtained using the basic model.

Table 4: BLEU Metric Scores for the Android App, when tested for Mobile 1

Method Tesseract-
Lighting
Condition 1

Tesseract-
Lighting
Condition 2

Android Application
- Lighting Condition
1

Android Application -
Lighting condition 2

BLEU score 1.4 1.42 2.86 2.89

Table 5: BLEU Metric Scores for the Android App, when tested for Mobile 1

Method Tesseract-L
ighting
Condition 1

Tesseract-Lighti
ng Condition 2

Android Application
- Lighting condition
1

Android Application
- Lighting condition
2

BLEU score 1.5 1.51 2.88 2.90

Conclusions

As is clear from the accuracy results for the Web and android application, by using our
proposed enhancements, we were able to improve upon the scores from the
state-of-the-art tesseract library. The results, however, leave a lot of scope for further
improvements in the OCR quality. Note that the translation API can easily be replaced
by another such module and the target language can also be varied without much
changes to the proposed method.


