
Considerations of using Mach IPC in Chromium 
Author: rsesek@chromium.org | Date: 15 April 2015 

Several years ago, an experiment was developed to use Mach IPC to implement Chrome’s IPC subsystem. 
At the time, there were several issues due to lack of system APIs that would provide all the necessary 
requirements. 
 
Now that those issues have been resolved, there’s a renewed interest in using Mach IPC. The primary 
motivator for this is that shared memory on Mac is slow. Switching to use Mach VM shared memory 
would fix this, but transferring Mach VM regions to another process requires using Mach IPC. There are 
two proposals for out-of-band transfer of Mach VM regions. If Chrome IPC were based on Mach IPC, then 
transferring a VM region would be trivial. This document is not a formal design document, but it discusses 
some of the considerations of switching Chrome’s IPC layer to using Mach messaging. 

IPC Channel Implementation 
The base requirement is to create an IPC::Channel implementation backed by Mach messaging. Inherent 
in this would be providing duplex semantics over the simplex Mach channel, as Chrome IPC currently 
uses a duplex socketpair. This would be accomplished by having the HELLO IPC message sent by the 
client to the server also contain a send right to the client listening port. 
 
The existing IPC::ChannelReader implementation also assumes stream semantics, while Mach messaging 
is message/record-oriented. Small refactoring here would be necessary to separate the message 
buffering logic from initial message cracking/routing and dispatch. 
 
When operating in MODE_NAMED_SERVER, the Channel exports itself to the system for client connections 
(over a named socket or pipe). There are two possibilities for implementation: 

●​ Each named server gets an entry in the bootstrap namespace. This could simplify the Task Port 
Exchange but it would also add several entries to the bootstrap namespace, and each would need 
to ensure it only accepts messages from legitimate communicants. 

●​ One name would be registered in the bootstrap server, and it would demultiplex requests to the 
right IPC::Channel. This would require some sort of ChannelOrchestrator in the browser process. 

 
For performance reasons, an optimal channel would use inline message transfer for small messages 
(<4K) and out-of-line transfer for larger messages. Before doing this, though, IPC::Channel::Send should 
be instrumented to determine the distribution and thresholds of message sizes. The additional 
complexity may not be worth the performance tradeoff for the occasional large message. (In these cases, 
moving the large data OOL would potentially be a better solution). 
 
Finally, in order to pass FDs over Mach IPC, the fileport_makeport() system call will be used. This was only 
added in 10.6.4, so that would have to be the minimum supported Chrome version. 

Message Pump 
Most Chrome IPC occurs on the IO thread. This thread is backed by a libevent MessagePump. Libevent on 
OS X uses a kqueue to monitor FDs, but the public interface has no way to subscribe to Mach port events. 
In order to use use Mach messaging on the IO thread, the MessagePump must be changed. Possible 
options: 

https://dev.chromium.org/developers/design-documents/os-x-interprocess-communication
https://code.google.com/p/chromium/issues/detail?id=5308
https://code.google.com/p/chromium/issues/detail?id=476706
https://code.google.com/p/chromium/issues/detail?id=466437
https://docs.google.com/document/d/1_dD3M3ZErxeN8BHgV-m4thlIvmuSuf4n1LbWcKMiNsQ/edit#heading=h.nr2hgsqkx84p
https://docs.google.com/a/chromium.org/document/d/1L8wZtEDtQ2S6dLfNcZHopMgZVzq2z7OrUCedXitTAkU/edit#
https://code.google.com/p/chromium/codesearch#chromium/src/ipc/ipc_channel.h&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/ipc/ipc_channel_reader.h&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/ipc/ipc_channel.h&ct=xref_usages&l=65&gs=cpp:IPC::class-Channel::enum-Mode::MODE_NAMED_SERVER@chromium/../../ipc/ipc_channel.h%257Cdef&gsn=MODE_NAMED_SERVER
https://code.google.com/p/chromium/codesearch#chromium/src/base/message_loop/message_pump_libevent.h


Modify Libevent and Pump 
Libevent could be modified to support watching a Mach port (technically a port set) and reporting events 
on it. This would also need to be plumbed through the MessageLoopForIO interface to observe events on 
a port from within Chromium code. 

CFRunLoop-backed IO Pump 
CFRunLoop is capable of observing both FDs (as CFFileDescriptor) and Mach ports and activating 
callbacks for events on each. For iOS, there already exists MessagePumpIOSForIO to do this. This same 
code could be reused on OS X. 
 
One risk of doing this comes from any code that relies on implicit and specific behaviors of the libevent 
pump. In addition, the implementation of CFRunLoop is liable to change between OS X versions. 

Libdispatch IO Pump 
It may be possible to run the IO thread’s pump on Libdispatch. This could violate Chrome’s threading 
assumptions by having work run serially, but on variable OS threads (whichever worker thread is 
available). The advantage over using CFRunLoop would be that native OS primitives (FDs and ports) 
wouldn’t need to be wrapped in CF types that could have their own overhead and bugs. 

Mach Port Exchange 
With exception of the task special ports (which we shan’t replace, though it is possible to do a Port Swap 
Dance), Mach ports are not inherited across fork(). In order for two processes to communicate, they must 
exchange ports. Port exchange is typically done by having the parent process register itself with the 
bootstrap server, the child looks up the server, and sends it port over. The Mach server registered in the 
bootstrap namespace would need to protect itself from arbitrary clients by using a negotiated shared 
secret (something akin to the existing --channel-id that isn’t observable on the CLI). 
 
While this is not conceptually difficult, doing so within Chromium's layers is. Currently, the browser 
process needs to gather the task port of each child process to collect process metrics. This is done by the 
MachBrokerMac, and children send their task ports to the browser early in startup. The task port should 
not be used for communication, so another Mach port exchange must occur. 
 
One way to do this would be to provide a LaunchOptions setting to pass a series of ports to a child, just 
like the fds_to_remap. A class to orchestrate this exchange (via the above description) would need to 
exist, though how to expose this in //base is an open question. Singletons in base are generally 
discouraged, so a similar PortProvider/MachBroker interface and implementation split may be required. 
 
Another option to perform the exchange would be to use MODE_NAMED_SERVER and have the child 
connect to it as described in the first section. This would be a divergence from the existing POSIX 
implementation, which passes the IPC FD over fork(). 

https://code.google.com/p/chromium/codesearch#chromium/src/base/message_loop/message_loop.h&ct=xref_usages&gs=cpp:base::class-MessageLoopForIO@chromium/../../base/message_loop/message_loop.h%257Cdef&l=589&gsn=MessageLoopForIO
https://code.google.com/p/chromium/codesearch#chromium/src/base/message_loop/message_pump_io_ios.h
https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html
https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html
https://code.google.com/p/chromium/codesearch#chromium/src/base/process/process_metrics.h&q=portprovider&sq=package:chromium&type=cs&l=104
https://code.google.com/p/chromium/codesearch#chromium/src/content/browser/mach_broker_mac.h
https://code.google.com/p/chromium/codesearch#chromium/src/base/process/launch.h&sq=package:chromium

	Considerations of using Mach IPC in Chromium 
	IPC Channel Implementation 
	Message Pump 
	Modify Libevent and Pump 
	CFRunLoop-backed IO Pump 
	Libdispatch IO Pump 

	Mach Port Exchange 

