Obijective

This document proposes describes a proposal to support unbounded limit in direct runner
via SQL shell, and lists approaches to enable unbounded limit with tradeoffs.

Background

The SQL shell users may want to run a “SELECT col_a FROM pubsub_table LIMIT 10" to
sample data from pubsub. However, unbounded limit is not supported yet. As SQL Shell
runs pipelines in global window plus default trigger, queries that are against unbounded data
will never return.

Design Detail

Here are some highlights of the design:

1.

Users are allowed to run unbounded limit in direct runner. So far, attempts to run
queries in non direct runner will be failed with an exception, so running unbounded
limit in other runners is not a concern.

When an unbounded limit query runs through SQL shell, a daemon thread is
spawned by BeamEnumerableConverter to monitor a shared variable, which saves a
enum showing whether the converter has collected enough values to return. That
shared variable is co-owned by a DoFn, the “collector”, which is applied to
PCollection returned by RelNode tree. So the workflow is, the “collector” DoFn
collects values from ReNode tree and saves values into a buffer. If the size of that
buffer is greater than the limit count, the “collector” will notify the daemon thread to
terminate the pipeline by modifying that shared variable. Note that this should only
work in direct runner because threads can access the same memory address(shared
variable) within the same JVM. Finally, the daemon thread terminates the beam
pipeline.

BeamSortRel has also to be modified to separate Sort and LIMIT logic. Currently Sort
and LIMIT are combined together in BeamSortRel by a Top transform. However, in
Beam, group by is not allowed on unbounded input data in global window. In order to
make unbounded limit work, a DoFn is created to implement LIMIT only functionality
in BeamSortRel.

B jdb: beamis
SELECT pubsub_tapic,pavicad. id, pwhsub_topic.paylead,name from pubsub_topic limit 1;
B: jdbribeam:= SELECT pubsch_topic.payload. id, pubsub_topic.payload.nane from pubseh_topic limit 1;

Jun 15, 2018 4:15:21 PM org. apache. bean. sdk. io.gop. pubsub. Pubsublinbowndedfource createRendonfubscr ipt Lon
WARNING: Cregted subscription projectsigodgle,coms clouddfe/subscript Lonsfruwang-test_beanm_2B52E99976343652243

i i
ic | mame |

13

| JASON
| i

T ormw eelacted (57 63T corpnncl

(SQL shell terminates unbound limit query once enough values are collected.)

Problems and Potential solutions

There is a problem that, dedicated logic is needed to allow BeamEnumerableConverter
being aware of unbounded limit. There are three ways to achieve it:

a. Check Structure of RelNode Tree
The following are plans generated when running limit queries with and without GROUP BY:

(With GROUP BY:)
BeamSortRel(fetch=[10])
BeamAggregationRel(group=[{0}])
BeamProjectRel(f_int=[$0])
BeamlOSourceRel(table=[[beam, PCOLLECTION]])

(Without GROUP BY:)
BeamSortRel(fetch=[10])
BeamProjectRel(f_int=[$0])
BeamlOSourceRel(table=[[beam, PCOLLECTION]])

So each time, BeamEnumerableConverter could check the structure of RelNode tree. Once
it finds structures are as the same as above, the converter will execute unbounded limit code
path.

Update:
Beam will optimize physical plan and change the order of ProjectRel and SortRel. Therefore,
It is not enough to only check SortRel as the root. Three combinations of check are needed:
1. SortRel only
2. Project + Sort
3. Project + Aggregate + Sort

Update 2:

GROUP BY does not work on pubsub table with column type “ROW <id INTEGER,name
VARCHAR>)". Calcite parser will fail on query like “SELECT pubsub_topic.payload.id from
pubsub_topic group by pubsub_topic.payload.id” without giving clearly reason. Therefore,
right now only LIMIT without grouping by can be supported.

Update 3:
BeamProjectRel has been replaced by BeamCalRel.

Pros:
Users do not need extra steps to run unbounded limit queries.

Cons:

1. If only check if SortRel is at the root of the tree, and if users input a SELECT * query,
type mismatching or type cannot casting exception will be thrown out, which will be
very confusing to users.

2. If we want to throw more meaningful message, dedicated logical is required in
BeamEnumerableConverter to check tree structures. BeamSortRel,
BeamAggregationRel and BeamProjectRel also require modifications to support the
check.

b. Pipeline Options
(https://docs.google.com/document/d/1UTsSBuruJRfGNYOS9eXbQI6NauCD4WNSAPgA_YO0
zjdk/edit?usp=sharing)

As SQL shell supports setting pipeline option manually, we can utilize it and allow user set
an option argument to enable unbounded limit. Once BeamEnumerableConverter sees the
option argument is on, it will go through unbound limit code path without checking RelNode
tree structure.

Pros:
Avoid checking plans to reduce tree structure checking logic. Relnode implementations
wouldn't require too much change.

Cons:
1. Users need to take extra steps to run unbound limit.
2. Once the option is on, the convert will try to run unbound limit logic without checking
the tree path(aka. input query). So users will take the risk to run a non unbounded
limit query with unpredictable result after setting the option argument.

c. Calcite trait indicating "known finite size"

Whenever a collection has a known finite size due to LIMIT, set this trait. Then
BeamEnumerableConverter checks the trait and will cancel the pipeline when that many
rows are received.

Pros:
Works even when the LIMIT is buried deep inside the plan.

Cons:

1. A much more extensive change than the other approaches.

2. Beam SQL could not support unbounded limit deeply inside the plan (e.g. nested
query with a LIMIT deeply inside) because LIMIT converts unbounded data to
bounded data in global window but Beam model does not have a good story about
this kind of conversion.

https://docs.google.com/document/d/1UTsSBuruJRfGnVOS9eXbQI6NauCD4WnSAPgA_Y0zjdk/edit?usp=sharing
https://docs.google.com/document/d/1UTsSBuruJRfGnVOS9eXbQI6NauCD4WnSAPgA_Y0zjdk/edit?usp=sharing

	Objective
	Background
	Design Detail
	Problems and Potential solutions

