
Analytics Accelerator Library for Amazon S3
and Iceberg
Authors: michstub@amazon.co.uk/fbbasik@amazon.co.uk/ahmarsu@amazon.co.uk
Iceberg Mail Thread: https://lists.apache.org/thread/bo1bqzxnd22sosb4r2cw513nbrvyvwk1
AAL Github: https://github.com/awslabs/analytics-accelerator-s3

Motivation
The purpose of this document is to get community feedback on the Analytics Accelerator Library
for S3 being the default stream for S3 in Iceberg going forward. To facilitate this we are providing
information on the project's goals and details.

Analytics Accelerator Library (AAL) is an open source library for your client applications that
accelerates data access to Amazon S3, lowering processing times and compute costs for data
intensive workloads. It does this by providing an implementation of the best practices for accessing
data in S3. Currently the integration code is merged in both Hadoop S3A and Iceberg S3FileIO but
is behind a feature flag that is defaulted to Off. We would like to propose that AAL is the default
Stream for Iceberg.

Our testing shows that it accelerates workloads, and customers such as Voodoo.io report 10%
improvement with S3FileIO, so we want users to benefit from this by default. By implementing best
practices for S3 in one centralized location, Iceberg will continue to benefit as we make further
improvements. Making this the default data path for Iceberg will enable future optimizations to build
upon the higher performance baseline we have established.

More technical details will be part of a follow-up document based on the outcome of this proposal.

Goals
●​ Increase read performance for sequential and parquet reader like access patterns.
●​ Lower processing times and compute costs for data analytics workloads.
●​ Implement S3 best practices for performance.

Non-Goals
●​ Write Performance - The library currently only concerns itself with reading data.
●​ Non-AWS implementations of the S3 API - This library has been tested and is compatible

with MinIO, but our focus for performance best practices has been for AWS S3.

https://github.com/stubz151
https://github.com/fuatbasik
https://github.com/ahmarsuhail
https://lists.apache.org/thread/b1xhqjo7gjok9l4p8yb5jowc8y5y0dob
https://github.com/awslabs/analytics-accelerator-s3
http://voodoo.io

What problems does AAL currently solve
Open Range requests - Currently when S3FileIO opens a stream it makes the following Get
Request:

GetObjectRequest.Builder requestBuilder =​
 GetObjectRequest.builder()​
 .bucket(location.bucket())​
 .key(location.key())​
 .range(String.format("bytes=%s-", pos));

This leads to over-reading because there is no end to the range and S3 will fetch unnecessary
data. AAL instead only does closed range requests. Because of this on a 3TB dataset, for a
workload derived from TPC-DS we observed AAL retrieve 53.8% less bytes from S3.

Read Vectored - Currently S3FileIO makes sequential blocking reads to S3. So if the engine
knows that it needs 5 ranges it requests them sequentially, i.e. starting read for range 2 waits for
range 1 to finish and range 3 waits for range 2. Without Vectored-IO, parquet-mr makes sequential
read(buf[], offset, len) calls as follows:

1. range [80050-160096], length=80,046​
2. range [1092787-1093618], length=831 //start when 1st request is done​
3. range [1093823-1094031], length=208 //start when 2nd request is done​
4. range [1096018-1096087], length=69 //start when 3rd request is done​
5. range [1096222-1096360], length=138 //start when 4th request is done

With Read vectored Parquet-mr instead passes a list of ranges and buffers to the Stream:

readVectored(List<? extends FileRange> ranges, IntFunction<ByteBuffer> allocate)

This is useful as it allows us to initiate the requests to S3 and start populating the buffer
simultaneously.

1. range [80050-160096], length=80,046​
2. range [1092787-1093618], length=831 //start at same time as 1​
3. range [1093823-1094031], length=208 //start at same time as 1​
4. range [1096018-1096087], length=69 //start at same time as 1​
5. range [1096222-1096360], length=138 //start at same time as 1

Github Issue: https://github.com/apache/iceberg/issues/13254

Footer Pre-Caching - AAL optimizes Parquet file reading by implementing footer pre-caching.
When AAL detects a file with a ".par" or ".parquet" extension, it identifies it as a Parquet file and
proactively prefetches and caches the file's footer. This caching mechanism prevents multiple
requests to S3 for the footer data. For S3FileIO the current implementation makes 2 requests for
the footer: one for the last 8 bytes which gives the start position of the footer, and the second for

https://github.com/apache/iceberg/issues/13254

the footer. AAL makes a single request for the last ~32KB/1MB of the file, depending on the file
size, which cuts out those two small GETs.

Sequential prefetching - AAL detects sequential read access patterns for the same object and
then scales up its request sizes based on that. So instead of making multiple smaller requests it
will instead increase the size of the range at an exponential rate to try and speed up access.

If these optimizations seem like something you want to test with as of Iceberg 1.9.1 you can
manually enable AAL with the following config:

--conf "spark.sql.catalog.<CATALOG_NAME>.s3.analytics-accelerator.enabled=true"

Benchmarking
These are the numbers from our latest benchmarks with AAL 1.2.1, however we are planning on
one more release of the library (1.2.2) in the next month and the numbers are subject to
improvement, we will update this section once that is completed.

The Amazon S3 team executes benchmarks based on an industry standard benchmark derived
from TPC-DS at 3 TB scale using two configurations: a baseline using Iceberg 1.9.1 with AAL
disabled, and a treatment configuration using Iceberg 1.9.1 with AAL enabled. The total cost
calculation includes both S3 requests and EC2 compute costs. To ensure consistency, all
benchmark tests are executed within the same region simultaneously. Our data sets are based off
of a 3TB dataset, we have found that the shape of the dataset makes a big impact in performance
so we have reshaped the datasets with different file sizes and row groups.

Data Shape Baseline
Performance (s)

Treatment
Performance (s)

Percentage
Improvement

Total Cost
Improvement

128MB max file size
+ partitioned 2407.46833 2192.85167 9%

5%

128MB max file size
+ unpartitioned 1073.70333 1002.92

7% 5%

1GB max file size +
unpartitioned 1529.91833 1379.52

10%
7.31%

AAL avoids doing open ended range requests which helps avoid sending unnecessary bytes from
S3 to Compute. Based on data gathered from a single execution of our benchmarks we found that
while AAL makes 12.7% more Get Requests (2765905 to 3117803) it retrieves 53.8% less data
(15.8TB to 7.3TB of data).

See Appendix 4: Calculations if you want to verify these numbers with your workloads.

Considerations

Why a library and not just build this into S3FileIO directly?
We believe that we can build best practices into a central library while still being flexible and
abstract enough to target the wider community. Currently we are also doing work to integrate AAL
default ON into S3A and we might want to onboard even more connectors in the future.

What input do we need from the Community?

●​ Iceberg Community feedback on our open PR’s: Appendix 3: Open PRs with Iceberg.
●​ Iceberg Community testing/feedback with AAL and their workloads by enabling AAL.
●​ Iceberg Community feedback on next steps/action items for the AAL integration going

forward.

What is next for AAL?

●​ We are currently working on some performance improvements for AAL.
●​ We are working with the S3A community to be the default S3 Input Stream there as well.
●​ Benchmark and update public data with latest numbers once these improvements are in

place.
●​ Release version 1.2.2 of AAL.

Technical Details

Current AAL integration with S3FileIO
AAL extends the SeekableInputStream interface within Iceberg and provides a factory that can be
used to get an AAL stream instead of the default S3 Input Stream. Swapping between the two
streams and initializing an async client are the only changes needed on Iceberg’s side. There is a
factory that we introduced to help create the AAL stream and Async Clients. We still continue to
create the default Sync S3 Client because AAL only currently supports read operations, so for
operations that require mutations the sync client will still be used. The 2 diagrams below cover the
differences between AAL Off and AAL On.

 @Override​
 public SeekableInputStream newStream() {​
 if (s3FileIOProperties().isS3AnalyticsAcceleratorEnabled()) {​
 return AnalyticsAcceleratorUtil.newStream(this);​
 }​

https://github.com/apache/iceberg/blob/bcf9c69c098b54d31cbd803d62a2609d3814c3df/aws/src/main/java/org/apache/iceberg/aws/s3/S3InputFile.java#L167

 return new S3InputStream(client(), uri(), s3FileIOProperties(), metrics());​
 }

Current state:

With our proposed changes AAL will replace the default S3 input stream from above and will apply
its optimizations and S3 best practices to an AAL stream which will be consumed instead.

Desired State With AAL:

Testing

●​ AAL has its own set of unit and integration tests.
●​ Iceberg unit and integration tests are passing with AAL enabled.
●​ Micro-benchmarks for reading specific object types with AAL.
●​ Benchmarks on both unpartitioned and partitioned datasets that are showing

improvements.

Appendices

Appendix 1. High Level AAL features Matrix:

AAL Feature Description Applies To Pull Request

Sequential prefetching The library detects sequential read patterns to prefetch
data and reduce latency.

All Data Types https://github.com/awslabs/analytics-accelerator
-s3/pull/238

Small object pre-read AAL prefetches the object if the object size is less than
8MB.

All Data Types https://github.com/awslabs/analytics-accelerator
-s3/pull/258

CRT Integration AAL lets customers use the CRT client and S3Async
client. It does not support the S3Sync client.

All Data Types https://github.com/awslabs/analytics-accelerator
-s3/pull/15

https://github.com/awslabs/analytics-accelerator-s3/pull/65
https://github.com/awslabs/analytics-accelerator-s3/pull/65
https://github.com/awslabs/analytics-accelerator-s3/pull/258
https://github.com/awslabs/analytics-accelerator-s3/pull/258
https://github.com/awslabs/analytics-accelerator-s3/pull/15
https://github.com/awslabs/analytics-accelerator-s3/pull/15

Page Size/Request
Re-shaping

Minimum read size is 64KB, and maximum S3 request
size is 8MB. The library re-arranges S3 Requests to stay
within these boundaries.

All Data Types https://github.com/awslabs/analytics-accelerator
-s3/pull/16

Memory Management AAL keeps the prefetched data in-memory until the total
size of the objects reach a limit defined by the user.

All Data Types https://github.com/awslabs/analytics-accelerator
-s3/pull/221/files

Metadata Caching The library caches the object metadata (currently
contentLength and Etag only) while also letting the caller
pass it if they already have one.

All Data Types https://github.com/awslabs/analytics-accelerator
-s3/pull/15

Read Vectored AAL supports an implementation of the read vectored
API. This lets a list of ranges to read as well as buffers to
fill. AAL will then asynchronously read and full these
buffers. This is beneficial because it no longer waits for
one buffer to be read fully before starting to read the
next.

Parquet Objects
Only

https://github.com/awslabs/analytics-accelerator
-s3/pull/270

Parquet footer caching The library reads the tail of the object with configurable
size (1MB by default) as soon as a stream to a Parquet
object is opened and caches it in memory. This is done to
prevent multiple small GET requests that occur at the tail
of the file for the Parquet metadata, pageIndex, and
bloom filter structures.

Parquet Objects
Only

https://github.com/awslabs/analytics-accelerator
-s3/pull/35

Predictive column
prefetching

The library tracks recent columns being read using
parquet metadata. When subsequent Parquet files which
have these columns are opened, the library will prefetch
these columns. For example, if columns x and y are read
from A.parquet , and then B.parquet is opened, and
it also contains columns named x and y, the library will
prefetch them asynchronously.

Parquet Objects
Only

https://github.com/awslabs/analytics-accelerator
-s3/pull/65

Sequential Access
Prefetching

When the library detects the reader will perform a full
sequential read (either through a policy or from file
extension), it reads from the current position to the end of
the Spark Split Size proactively.

CSV/JSON/TXT https://github.com/awslabs/analytics-accelerator
-s3/pull/238

Appendix 2: Risks

https://github.com/awslabs/analytics-accelerator-s3/pull/16
https://github.com/awslabs/analytics-accelerator-s3/pull/16
https://github.com/awslabs/analytics-accelerator-s3/pull/221/files
https://github.com/awslabs/analytics-accelerator-s3/pull/221/files
https://github.com/awslabs/analytics-accelerator-s3/pull/15
https://github.com/awslabs/analytics-accelerator-s3/pull/15
https://github.com/awslabs/analytics-accelerator-s3/pull/270
https://github.com/awslabs/analytics-accelerator-s3/pull/270
https://github.com/awslabs/analytics-accelerator-s3/pull/35
https://github.com/awslabs/analytics-accelerator-s3/pull/35
https://github.com/awslabs/analytics-accelerator-s3/pull/65
https://github.com/awslabs/analytics-accelerator-s3/pull/65
https://github.com/awslabs/analytics-accelerator-s3/pull/238
https://github.com/awslabs/analytics-accelerator-s3/pull/238

Risk Description Mitigation

Increased Resource
Usage

Increased memory usage
AAL keeps all data in memory as it has a
caching layer this can reduce available heap
memory.

[partially-mitigated]
Our cache uses a memory threshold and data unlikely to be accessed again is evicted. However we
still use more memory than the default stream due to the additional features of AAL.
PR

Cost Considerations Overfetching data/More Get Requests
- AAL makes more requests to S3 which will
increase the S3 bill.
- Increased cross region request costs

[mitigated]
While AAL increases the total number of S3 API calls (which results in higher S3 API costs), it
significantly speeds up the access to S3 for compute instances. The reduction in data transfer,
combined with faster processing times, leads to lower overall compute costs. Since compute costs
typically represent a larger portion of total costs in data analytics workloads compared to S3 costs,
the net result is a cost savings. For cross region access you pay per byte sent and with AAL the
total bytes read should be decreasing.

Consistency Object Changes during a read
- AAL caches the metadata as well as the
bytes for an object. There is the risk that the
data changes during a read and a second risk
that the data changes between reads when
the object is already fully cached and we still
respond with the old one.

AAL failure affects reading data
- We are introducing a new point of failure to
Iceberg. If AAL fails its errors might affect the
whole workload, not just the specific AAL
operation.

[mitigated]
For when the data changes during a read, AAL will detect it by comparing the Etags and will clear
the object from its cache and will raise a retryable exception and the application will attempt the
request again. PR
For the case when the data is changed between reads AAL will still respond with the old data. The
fix for this is adding TTL or a manual eviction mechanism, there is an open issue on our library to fix
this.

AAL runs its optimizations like Sequential prefetching and Predictive column prefetching as Async
tasks. Even when they fail they just warn and don't raise an error. For normal synchronous reads
AAL supports a retry policy that can be configured much in the same way as normal Iceberg. It also
wraps all the exceptions from S3 and will return them to Iceberg as is the norm today.

Appendix 3: Open PRs with Iceberg

Number PR Depends on Comments

1 AWS: Add support to run all integration tests when S3 Analytics Accelerator is enabled -

https://github.com/awslabs/analytics-accelerator-s3/pull/221/files
https://github.com/awslabs/analytics-accelerator-s3/pull/209/
https://github.com/awslabs/analytics-accelerator-s3/issues/218
https://github.com/awslabs/analytics-accelerator-s3/pull/307
https://github.com/awslabs/analytics-accelerator-s3/pull/210
https://github.com/awslabs/analytics-accelerator-s3/pull/210
https://github.com/apache/iceberg/pull/13347

2 AWS: Support metrics tracking when using Analytics Accelerator stream 1

3 AWS: Support RangeReadable in Analytics Accelerator Stream 1

4 AWS: Support similar S3 Sync Client configurations for S3 Async Clients 1->3

5 S3FILEIO integration with SSEC support in AAL 1->3

6 AWS: Add Read Vector IO support to AAL 1->3

7 AWS: AAL Default ON 1->6

Appendix 4: Calculations
Note: You need to have enabled S3 access logs to get this data and these queries are run from
Athena.

TOTAL Request COUNT

TOTAL COUNT requests​
SELECT COUNT(*) as total_get_requests​
FROM "s3_access_logs_db"."your_db"​
WHERE operation LIKE '%GET%'​
AND ("timestamp" = '2025/07/13' OR "timestamp" = '2025/07/14')​
AND "requestdatetime" BETWEEN '13/Jul/2025:14:01:17 +0000' AND

'14/Jul/2025:14:01:17 +0000'

TOTAL Bytes READ

SELECT SUM(bytessent) as total_bytes_sent​
FROM "s3_access_logs_db"."your_db"​
WHERE operation LIKE '%GET%'​
AND ("timestamp" = '2025/07/13' OR "timestamp" = '2025/07/14')​
AND "requestdatetime" BETWEEN '13/Jul/2025:14:01:17 +0000' AND

'14/Jul/2025:14:01:17 +0000'

https://github.com/apache/iceberg/pull/13348
https://github.com/apache/iceberg/pull/13361
https://github.com/apache/iceberg/pull/13387
https://github.com/apache/iceberg/pull/13335
https://github.com/apache/iceberg/pull/13396
https://github.com/apache/iceberg/pull/13527

	Analytics Accelerator Library for Amazon S3 and Iceberg
	Motivation
	Goals
	Non-Goals
	What problems does AAL currently solve
	Benchmarking
	Considerations
	Why a library and not just build this into S3FileIO directly?
	What input do we need from the Community?
	What is next for AAL?

	Technical Details
	Current AAL integration with S3FileIO
	Testing

	Appendices
	Appendix 1. High Level AAL features Matrix:
	Appendix 2: Risks
	Appendix 3: Open PRs with Iceberg
	Appendix 4: Calculations

