
JDK9 Jetty ALPN Review
https://pastebin.mozilla.org/8923862

This document presents code notes that are intended to accompany a voice call to review the
JDK9 ALPN API as used by a servlet container. Green text indicates what our preferred
outcome would be, Red text indicates the current state. Links are to applicable code and/or
javadoc.

Negotiating Ciphers
So the first code that I'd like to show you is in way of background to show that negotiating a TLS
cipher is a very complex mechanism dependent on private APIs and user extensible behaviour:

1.​ The SslEngine delegates the choice of cipher to ServerHandshaker#chooseCipherSuite,
which iterates over preferred, proposed and legacy ciphers.

2.​ For each possible cipher the method ServerHandshaker#trySetCipherSuite is called until
one returns true. This is a complex method encoded many special cases, using private
APIs to extract cipher characteristics and specific algorithm knowledge.

3.​ Ultimately a specific certificate is chosen by calling either the
X509KeyManager#chooseServerAlias or
X509ExtendedKeyManager.html#chooseEngineServerAlias methods in a loop, iterating
over key type and issuers combinations until an acceptable certificate is returned. This
is user-extensible code, where SNI is typically implemented, but users are free to
provide their own KeyManager extensions that may apply arbitrary logic to the selection
and/or rejection of certificates.

While the behaviour of this negotiation can probably be modelled for the 99% case with much
simpler code, it is fundamentally impossible to predict the outcome of cipher negotiation without
actually running this cipher negotiation code. The only practicable way to determine which
cipher SslEngine will negotiate is by letting an SslEngine process the ClientHello.

https://pastebin.mozilla.org/8923862
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/7b0b28ceca62/src/java.base/share/classes/sun/security/ssl/ServerHandshaker.java#l1143
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/7b0b28ceca62/src/java.base/share/classes/sun/security/ssl/ServerHandshaker.java#l1207
http://x509keymanager/#chooseServerAlias
http://download.java.net/java/jdk9/docs/api/javax/net/ssl/X509ExtendedKeyManager.html#chooseEngineServerAlias-java.lang.String-java.security.Principal:A-javax.net.ssl.SSLEngine-

Jetty SSLEngine Usage
Jetty's usage of the SSLEngine API is done within the DecryptedEndPoint#fill method. This is
within the scope of a SslConnection that is unaware of what protocol will be run over the
connection, thus mechanisms like ALPN protocol negotiation are delegated to abstract classes.

We don't need to look at this method in detail other than to give an overview of how we plugin
the ALPN behaviour:

●​ As data is received, up until we set the _helloPreProcessed flag, we make a slice of
the data buffer and call an abstract ClientHelloProcessor#preProcess so that we can
separately parse the ClientHello frame for ALPN extensions. The data is also passed to
SslEngine#unwrap

●​ Once SslEngine#unwrap has consumed the ClientHello, it goes into the NEED_TASK
state; when the task is executed, it performs cipher negotiation (as above).

●​ Once the cipher is successfully negotiated, the SSLEngine enters the NEED_WRAP
state so it can generate the ServerHello frame. Before doing the wrap call, we call an
abstract ClientHelloProcessor#postProcess method to act on the negotiated cipher.

In short we break up our ALPN handling into an abstract preProcess(), which looks at the
ClientHello before a cipher is negotiated; and an abstract postProcess(), which is called after a
cipher is negotiated.

https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-io/src/main/java/org/eclipse/jetty/io/ssl/SslConnection.java#L509
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-io/src/main/java/org/eclipse/jetty/io/ssl/SslConnection.java#L538-L543
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-io/src/main/java/org/eclipse/jetty/io/ssl/SslConnection.java#L656-L660
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-io/src/main/java/org/eclipse/jetty/io/ssl/SslConnection.java#L656-L660
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-io/src/main/java/org/eclipse/jetty/io/ssl/SslConnection.java#L661-L688
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-io/src/main/java/org/eclipse/jetty/io/ssl/SslConnection.java#L668-L672

ClientHelloALPNProcessor
The ClientHelloALPNProcessor is written to implement ALPN generically, so it uses a pluggable
ALPNServerProvider interface to delegate the ALPN decisions about which application
protocols are: available; preferred; suitable for each cipher. Currently we only have a HTTP2
implementation, but it is possible if not expected that other ALPN usages will emerge.

#preProcess()
The preProcess() method is called to process the ClientHello frame extensions externally to the
SSLEngine:

●​ 68: We pass bytes to our own ClientHello parser, which ultimately extracts tlsProtocol,
ciphersOffered and protocolsOffered

●​ 76-78: Once the frame is parsed, we firstly create a list of available ciphers by trimming
the enabled cipher with those offered by the client.

●​ 96-124: For each available cipher, we call an abstract ALPNServerProvider#select
method to ask our connection factory which protocol it would select IF this cipher was
negotiated. If no protocol would be selected, the cipher is removed from the available
ciphers, otherwise we remember the available in a cipher2protocol map.

●​ 105: Note that the select protocol callback is an extensible. Currently our only
implementation is the HTTP2 logic, however in future other ALPN uses may have
arbitrary logic here.

●​ 132: We configure the SslEngine with the trimmed available cipher list, which will be
used in the subsequent cipher negotiation.

●​ 137-139: Ideally here we would have like to configure the SslEngine with the
cipher2protocol map, so it could pick which application protocol to use depending on the
negotiated cipher. However the API does not support that, so instead we sort the
protocols in server priority order and pick the first one and hope it will be usable for the
negotiated cipher (but we do check later)!​
It can be debated if picking the application protocol by server priority is best. Perhaps we
should sort by server cipher order or even client cipher order? However, whichever way
we choose, it is still ultimately a guess that is dependent on the outcome of the cipher
negotiation. ​
However, even if this API is not changed to allow a map to be set, we could still avoid the
guess with the behaviour change described below.

https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L68
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L76-L78
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L96-L124
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L105
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-http2/http2-server/src/main/java/org/eclipse/jetty/http2/server/HTTP2ServerConnectionFactory.java#L68-L75
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L132
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L137-L139

#postProcess()
The postProcess() method is called to check and handle the negotiated cipher:

●​ 155: This is called after the cipher negotiation, so there is now a SSLSession instance

●​ 160: We check the same TLS protocol was negotiated

●​ 164: We discover which cipher was negotiated

●​ 165: We lookup what application protocol should be used with that cipher.

●​ 170: If the application protocol configured in preProcess() is not the same as the protocol
for the negotiated cipher then:

○​ 175-176: We set the SSLEngine application protocol to the protocol. This is
before the wrap that generates the ServerHello frame, so it should be able to be
used. However the current implementation of SSLEngine ignores this call after
the ClientHello has been received. See SSLEngineImpl#setSSLParameters. The
ServerHandshaker.started() method returns the value of the
Handshaker.clientHelloDelivered field, which is set at
Handshaker.java#processLoop, before the processing of the ClientHello frame
actually happens. Note that if the call to SSLEngine.setSSLParameters() was not
ignored, then we would change the Jetty code to not guess in preProcess() and
always just set the application protocol here in postProcess(), after cipher
negotiation.

○​ 178-183: Instead we will need to: create a new SSLEngine instance; configure it
with the cipher and protocol; replay the ClientHello message (which will have to
be saved in preProcess()); and then replace the SSLEngine in our calling scope
with the new one!. We have not yet implemented this code as it is moderately
invasive and best to be avoided if we can.

●​ 187: Signal the choice of application protocol. In the case of HTTP, this allows our
ConnectionFactory to provide a connection implementing the negotiated version of the
protocol. The protocol connection so constructed is then wrapped by the existing
SslConnection.

https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L155
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L160
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L164
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L165
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L170
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L175-L176
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6ce43dd8e954/src/java.base/share/classes/sun/security/ssl/SSLEngineImpl.java#l2193
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6ce43dd8e954/src/java.base/share/classes/sun/security/ssl/Handshaker.java#l1041
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L178-L183
https://github.com/eclipse/jetty.project/blob/jdk9-jetty-9.4.x/jetty-alpn/jetty-alpn-java-server/src/main/java/org/eclipse/jetty/alpn/java/server/ClientHelloALPNProcessor.java#L187

Summary
We do understand that the use-case we are concerned about is small, and that for most modern
browsers talking to a server running on a recent JVM, that a HTTP2 cipher will be successfully
negotiated and thus the server guess will be right.

However, any server that has h2 acceptable certificates for only some of SNI hosts will be
vulnerable to making a wrong guess about the application protocol. Moreover, future usages of
ALPN may follow h2’s example and introduce arbitrary logic that makes the negotiated
application protocol a function of the negotiated cipher.

Thus the use-case is non-zero now and possible may be even more used in future.

Currently when the application protocol guess is wrong, significant extra effort/resources are
required to correct the guess. Many implementation will probably not handle this case and thus
connection failure will result.

The solution is to avoid guessing an application protocol, which can be done by either:

1.​ Changing the API so a cipher to protocol map can be set before processing the
ClientHello. OR

2.​ Changing the SSLEngine implementation so that the application protocol can be
changed after the cipher is negotiated, but before the ServerHello frame is generated.

	JDK9 Jetty ALPN Review
	Negotiating Ciphers
	
	
	Jetty SSLEngine Usage
	
	
	ClientHelloALPNProcessor
	#preProcess()

	
	#postProcess()

	Summary

