I. 2-Dimensional Motion and Trajectories

What kinds of objects have a 2-dimensional motion?

- Objects moving along Earth's surface (projectiles)
- Planets around the sun
- Pendulums
- A) Objects moving along the Earth's surface (projectiles)
 - 1. Projectile fired horizontally

What you need to know before solving this type of problem:

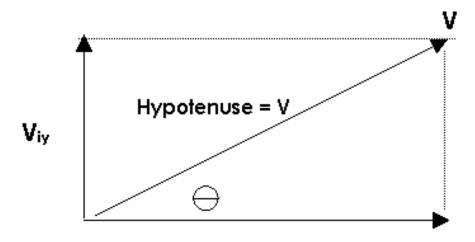
B) Projectile fired horizontally - Solving Word Problems

Use all the same motion equations you used before

- Ex) A baseball is thrown horizontally from a grandstand 20. m above ground at a speed of 10. m/s.
 - (a) How long will the ball remain in flight before reaching the ground?

(b) What is the projectile's maximum range before it hits the ground?

2. Projectile fired at an angle


Projectiles move in a _____path

Angle and Initial Velocities

Projectile fired at 5 m/s: if $\Theta = 0$ _____ if $\Theta = 90$ ____

If the angle not 0 or 90 the initial velocity is

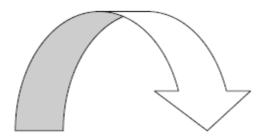
Finding the horizontal and vertical components parts

Opposite Side = Viv

Adjacent Side = Vix

V - _____that projectile is fired

 V_{ix} - initial V in _____ direction V_{iy} - initial V in _____ direction


Ex) A baseball is thrown upward at an angle of 30.° and a velocity of 6.0 m/s.

Find the initial horizontal & vertical components of the baseball's velocity.

3. Other important facts about projectile motion

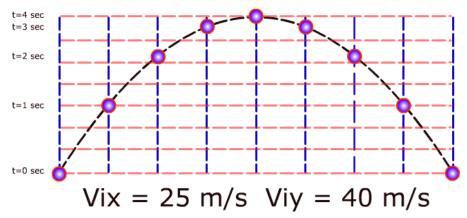
$d_x = V_x t$ (memorize)

- $a_y = \underline{\hspace{1cm}}$ ascending
- $a_y = \underline{\hspace{1cm}}$ descending

Angles and Ranges

Max Range _____ Minimum Range _____

What angle would have the same Range as 55 degrees?


Angle with the <u>longest</u> time in the air? _____

Ex) Which projection angle causes a projectile to <u>stay in the air longer</u>?

50 or 70 degrees? Why?

Projectile projected upward at an angle.

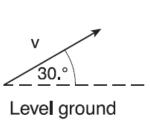
Where $V_{ix} = 25 \text{ m/s} \ V_{iy} = 40 \text{ m/s}$

t (sec)	V_x (m/s)	$V_v(m/s)$
0	25	40
1		
2		
3		
4		
5		
6		
7		
8		

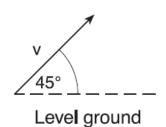
4. Projectile Fired at an Angle - Word Problems

Ex) An athlete doing a running jump leaves the ground at an angle of 25° and a velocity of 10. m/s.

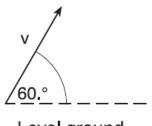
(a) What is the athlete's velocity's initial vertical component (Viy)?


(b) How long does it take for the athlete to reach her maximum height?

(c) How long did it take for the athlete to complete the entire jump?

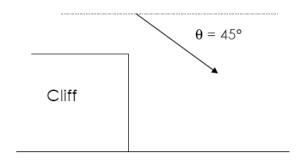

Total time equals

(d) How far did she jump?


Ex) Rank the horizontal displacements from **least to greatest**.

(1)

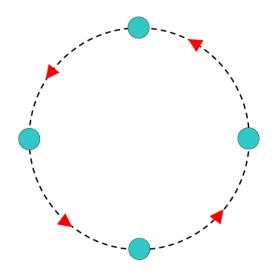
(2)

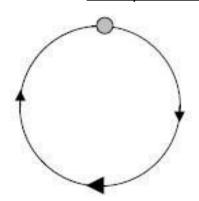

Level ground (3)

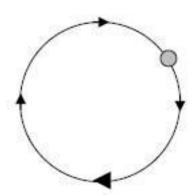
70.° Level ground

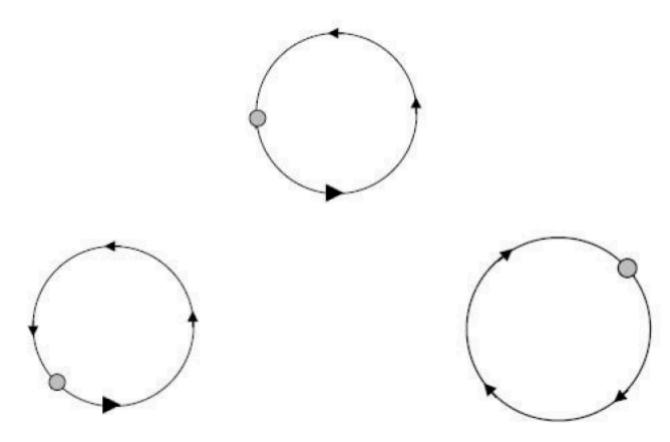
(4)

- Ex) A projectile leaves the ground at an angle of 60° and a speed of 100. m/s.
 - (a) Find the initial vertical component of the object's velocity
 - (b) Find the object's maximum height.


Ex) A rock is thrown from a cliff with an initial speed of 40m/s at an angle of 45° below the horizontal.


(a) What is the vertical component of the initial velocity?


(b) If the rock strikes the ground in 1.0 sec what is the height of the cliff?


I. <u>Uniform Circular Motion</u>

1. Draw the <u>centripetal force</u> on each sphere 2. Draw the <u>tangential velocity</u>

Instructional Video

. The Equa	ations and Vectors			
1		(a	c) –	
	Mass n	noving with circular r	motion	
	171033 11	noving with thetalar i	motion.	
	a	Equation:		_ (On reference table)
		Units		
	a) (v)		velocity -	
	to circle, in the dir	ection of the motion		
	b)		acceleration - c	directed toward the
		of the circle		
Example Pro	<u>oblem</u>			

Ex) A car moving in a circular path with a radius of 2.0 m has a velocity of 8.0 m/s. What is the centripetal acceleration of this car?

B. Different ways we can change centripetal acceleration

1. How does acceleration change with velocity?

$$a_c = v^2/r$$

***Answer - <u>Relationship</u>
(Both variables on top, one is squared)

V	ac
X2	Х
Х3	Х
X4	

1. How does acceleration change with the radius of the circle?

*** Answer - Relationship

ac	R
X	X2
Χ	Х3
	X4

C. More Circular Motion Word Problems

Example: A 2 kg cart travels in a horizontal circle at a constant speed of 6m/s. If the radius of the circle is 3m, what is the centripetal acceleration?

Equation:

Challenge Example: Calculate the speed an earth satellite must have to enter a circular orbit at an altitude of 200 km where the acceleration due to gravity at 200,000 m is 9.2 m/s ² and the radius of the earth is 6,400,000 m

Centripetal Force (Fc)	_ directed toward
which keeps an object moving in a	path
$F_c = ma_c =$	
Force units () or

Ex) A 5.0 kg object moves in a circle at a constant speed of 10. m/s. What is the radius of the object's circular path if the object's centripetal force is 1000. Newtons?

D. Changing the Centripetal Force

1. How does centripetal force change with mass?

m	Fc
X2	X
Х3	X
	X4

2. How does centripetal force change with radius?

Relationship (One variable on top, other on bottom)

F _c	r
Х	X2
Х	Х3
	X4

3. How does centripetal force change with velocity?

_____Relationship (Both variables on top, one is squared)

V	Fc
X2	Χ
Х3	Х
X4	

I. Satellite Motion

		<u>Satellite</u>	
		Natural Satellites - ex) Moon, all 8 planets, comet	
		Artificial Satellites - weather, spy, communications	
A.	Satellit	te Motion	
	1.	. To send artificial satellite	
		around the earth, it must first achieve a speed of	
		• " If greater than 7900 m/s satellite has an orbit	
		If velocity is greater than 11 km/s then the satellite Escape Velocity	
		Escape orbit velocity more than 40 000 km/h Elliptical orbit	
	2.	Air resistance slows down satellites and	
В.	Geosyı	nchronous Orbits -	
	A.	When a satellite orbitswith the earth's rotation it	is
	C	alled	
	В.	Time for one revolution	
	C.	A satellite at a distance of	
		from Earth's center will orbit the Earth every hrs.	
	D.	Since both satellite and Earth	