
Exception Handling in Python
Introduction
In any programming language, errors may occur during program development or execution. In Python,
errors are broadly classified into Syntax Errors and Runtime Errors.

Types of Errors

1. Syntax Errors
Syntax errors occur due to invalid syntax in the program. These errors are detected by the Python
interpreter before program execution.

Examples:

x = 10​
if x == 10​
 print("Hello")

Error: SyntaxError: invalid syntax

print "Hello"

Error: SyntaxError: Missing parentheses in call to ‘print’

Note: The programmer is responsible for correcting syntax errors. Program execution starts only after
all syntax errors are fixed.

2. Runtime Errors
Runtime errors occur while executing the program and are also known as exceptions. These errors arise
due to invalid user input, programming logic, or memory problems.

Examples:

print(10/0) # ZeroDivisionError​
print(10/"ten") # TypeError​
x = int("ten") # ValueError

What is an Exception?
An unwanted and unexpected event that disturbs the normal flow of a program is called an exception.

Common Exceptions:
�​ ZeroDivisionError
�​ TypeError
�​ ValueError
�​ FileNotFoundError
�​ EOFError

Core Components

The primary keywords used for exception handling are:

try: This block contains the code that might raise an exception.

except: This block catches and handles the exception if one occurs in the try
block. You can specify the type of exception to catch for more granular control.

else: The code in this optional block is executed only if the try block runs without
any exceptions.

 finally: This optional block of code will run regardless of whether an exception
occurred or was handled. It is often used for cleanup operations, such as closing
files or network connections.

Different Types of Exceptions in Python

NameError: This Exception is raised when a name is not found in the local or
global namespace.

IndexError: This Exception is raised when an invalid index is used to access a
sequence.

KeyError: This Exception is thrown when the key is not found in the dictionary.

ValueError: This Exception is thrown when a built-in operation or function
receives an argument of the correct type and incorrect value.

IOError: This Exception is raised when an input/output operation fails, such as
when an attempt is made to open a non-existent file.

ImportError: This Exception is thrown when an import statement cannot find a
module definition or a from ... import statement cannot find a name to import.

SyntaxError: This Exception is raised when the input code does not conform to
the Python syntax rules.

TypeError: This Exception is thrown when an operation or function is applied to
an object of inappropriate type.

AttributeError: occurs when an object does not have an attribute being
referenced, such as calling a method that does not exist on an object.

ArithmeticError: A built-in exception in Python is raised when an arithmetic
operation fails. This Exception is a base class for other specific arithmetic
exceptions, such as ZeroDivisionError and OverflowError.

Floating point error: It is a type of arithmetic error that can occur in Python and
other programming languages that use floating point arithmetic to represent real
numbers.

ZeroDivisionError: This occurs when dividing a number by zero, an invalid
mathematics operation.

FileExistsError: This is Python's built-in Exception thrown when creating a file or
directory already in the file system.

PermissionError: A built-in exception in Python is raised when an operation
cannot be completed due to a lack of permission or access rights.

try:

 # Code that might raise an exception

 numerator = 10

 denominator = int(input("Enter a denominator: "))

 result = numerator / denominator

except ZeroDivisionError:

 # Handle the specific ZeroDivisionError

 print("Error: You can't divide by zero!")

except ValueError:

 # Handle the specific ValueError (e.g., if input is not an integer)

 print("Error: Please enter a valid number.")

else:

 # This runs if no exception occurred in the try block

 print(f"Result is: {result}")

finally:

 # This block always runs

 print("Execution finished.")

Need for Exception Handling
●​ Prevents abnormal termination of programs
●​ Ensures graceful termination
●​ Helps continue program execution using alternative logic
●​ Does not repair exceptions, but handles them

Default Exception Handling in Python
Every exception in Python is an object. For every exception type, a corresponding class exists.

If an exception occurs and no handling code is available, Python terminates the program abnormally and
prints exception information.

Example:

print("Hello")​
print(10/0)​
print("Hi")

Exception Hierarchy
●​ Every exception in Python is a class
●​ All exception classes are child classes of BaseException
●​ Programmers usually deal with Exception and its child classes

Customized Exception Handling using try-except
Syntax:

try:​
 Risky Code​
except ExceptionName:​
 Handling Code

●​ Risky code is placed inside try
●​ Handling code is placed inside except

Without try-except

print("stmt-1")​
print(10/0)​
print("stmt-3")

Result: Abnormal termination

With try-except
print("stmt-1")​
try:​
 print(10/0)​
except ZeroDivisionError:​
 print(10/2)​
print("stmt-3")

Result: Normal termination

Control Flow in try-except
try:​
 stmt-1​
 stmt-2​
 stmt-3​
except Exception:​
 stmt-4​
stmt-5

Possible Cases:

●​ No exception → stmt-1,2,3,5 → Normal termination
●​ Exception matched → stmt-1,4,5 → Normal termination
●​ Exception not matched → Abnormal termination

Printing Exception Information
try:​
 print(10/0)​
except ZeroDivisionError as msg:​
 print("Exception description:", msg)

Multiple except Blocks
Different exceptions require different handling logic.

try:​
 x = int(input("Enter First Number: "))​
 y = int(input("Enter Second Number: "))​

 print(x/y)​
except ZeroDivisionError:​
 print("Can't divide by zero")​
except ValueError:​
 print("Please provide integer values only")

Note: Order of except blocks is important. Python checks from top to bottom.

Single except Block for Multiple Exceptions
except (ZeroDivisionError, ValueError) as msg:​
 print("Invalid input:", msg)

Default except Block
except:​
 print("Default exception")

Note: Default except block must be the last except block.

Finally Block
The finally block is used to maintain cleanup code such as resource deallocation.

Syntax:

try:​
 Risky Code​
except:​
 Handling Code​
finally:​
 Cleanup Code

●​ finally block is always executed
●​ Except when os._exit() is used

else Block with try-except-finally
try:​
 Risky Code​
except:​
 Exception Handling​
else:​
 Executes if no exception​
finally:​
 Always executes

Nested try-except-finally Blocks

Nested exception handling is possible.

try:​
 try:​
 print(10/0)​
 except ZeroDivisionError:​
 print("Inner except")​
 finally:​
 print("Inner finally")​
except:​
 print("Outer except")​
finally:​
 print("Outer finally")

Types of Exceptions
1. Predefined Exceptions

Also known as in-built exceptions. Raised automatically by Python.

Examples: - ZeroDivisionError - ValueError

2. User Defined Exceptions

Also known as Customized Exceptions or Programmatic Exceptions.

Programmers define and raise these exceptions explicitly using raise keyword.

Defining and Raising Customized Exceptions
Syntax:

class CustomException(Exception):​
 def __init__(self, msg):​
 self.msg = msg

Example:
class TooYoungException(Exception):​
 def __init__(self, msg):​
 self.msg = msg​
​
class TooOldException(Exception):​
 def __init__(self, msg):​
 self.msg = msg​
​
age = int(input("Enter Age:"))​

if age > 60:​
 raise TooYoungException("Please wait some more time")​
elif age < 18:​
 raise TooOldException("Not eligible")​
else:​
 print("You will get match details soon")

Important Note

●​ raise keyword is best suitable for customized exceptions
●​ Not recommended for predefined exceptions

Exception handling is a critical feature of Python that helps write robust, reliable, and
error-resistant programs. Proper use of try, except, else, finally, and custom exceptions
ensures smooth program execution and graceful error handling.

Important Definitions

●​ Exception: An unwanted and unexpected event that disturbs the normal flow of a program.
●​ Runtime Error: An error that occurs during program execution.
●​ Graceful Termination: Proper termination of a program without abrupt failure.
●​ Custom Exception: A user-defined exception created using a class that extends Exception.

 Programs
Program 1: Handle Division by Zero
try:​
 a = int(input("Enter a number:"))​
 b = int(input("Enter another number:"))​
 print(a/b)​
except ZeroDivisionError:​
 print("Cannot divide by zero")

Program 2: Handle Multiple Exceptions
try:​
 x = int(input("Enter First Number:"))​
 y = int(input("Enter Second Number:"))​

 print(x/y)​
except ZeroDivisionError:​
 print("Zero is not allowed")​
except ValueError:​
 print("Please enter integer values only")

Program 3: Demonstrate finally Block
try:​
 print("Inside try")​
 print(10/2)​
except:​
 print("Inside except")​
finally:​
 print("Inside finally")

Program 4: User Defined Exception
class InvalidAgeException(Exception):​
 def __init__(self, msg):​
 self.msg = msg​
​
age = int(input("Enter Age:"))​
if age < 18:​
 raise InvalidAgeException("Age must be 18 or above")​
else:​
 print("Eligible")

	Example:

