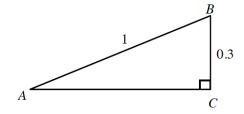

Lesson 9.1.2 to 9.1.3 Assignment

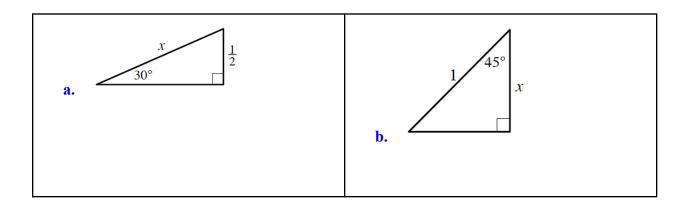
9-13.

Copy the triangles at right onto your paper. Homework Help


a. Label the missing sides with their *exact* lengths. That is, leave your answers in radical form.

b. A $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle is sometimes called a half-equilateral triangle. Draw a picture to illustrate this, and explain how that fact can be used to help label the missing sides in part (a).

9-14. What is the measure of angle A in the diagram below? Homework Help (S)



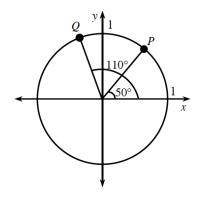
9-16. Divide $x^3 - 2x^2 + 25x - 50$ ÷ (x - 2). Homework Help \bigcirc

9-17.Use your answer from the previous problem to solve $x^3 - 2x^2 + 25x - 50 = 0$ Homework Help

9-22. Sketch a graph of $y = -x^2(x-2)^2(x+2)^2$. Homework Help

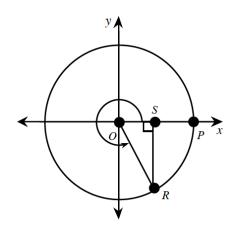
9-25. What is the length of the side labeled x? Write your answers in exact form. Homework Help \$\square\$

9-24. Solve each equation below. Homework Help Solve


	$2^{(x-1)}$		
a.	2` 1	=	64

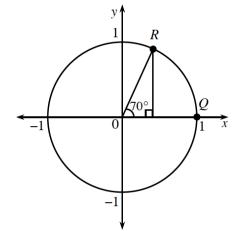
b.
$$9^3 = 27^{(2x-1)}$$

c.
$$x^6 = 29$$


d.
$$6^x = 29$$

9-45. What are the coordinates of points P and Q on the unit circle at right? Homework Help S

9-46.The measure of \angle ROS in \triangle ROS below is 60°. Homework Help \circledcirc

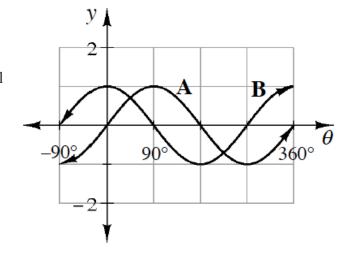

a. The curved arrow represents the rotation of OR⁻, beginning from the positive x-axis. Through how many degrees has OR⁻ rotated?

b. If OR=1, what are the *exact* length of OS and SR?

c. What are the *exact* coordinates of point R?

9-54. A 70° angle is drawn for you in the unit circle at right. Homework Help

- a. Approximate the coordinates of point R.
- b. How could you represent the exact coordinates of point R?
- c. Show that the Pythagorean Identity works for this angle.

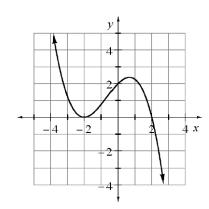

9-53. Sketch a unit circle. In your unit circle, sketch an angle that has: <u>9-53 HW eTool</u> (Desmos) Homework Help §

- a. A positive cosine and a negative sine.
- b. A sine of -1.

- c. A negative cosine and a negative sine.
- d. A cosine of approximately -0.9 and a sine of approximately 0.4.
- e. Can an angle have a sine of 0.9 and cosine of 0.8? Give an example or explain why not.

9-55. Daniel sketches the graphs at right for $y = \sin(\theta)$ and $y = \cos(\theta)$. Homework Help \bigcirc Unfortunately, he forgets to label the graphs, and now he cannot remember which graph goes with which equation. Explain to Daniel how he can tell (and remember!) which graph is

 $y = \sin(\theta)$ and which is $y = \cos(\theta)$.



9-56. Consider the system of equations y = cos(x) and y = -1. <u>9-56 HW eTool</u> (Desmos) Homework Help \bigcirc

a. Is it possible to solve this system by substitution? By the Elimination Method? By graphing?

- b. List at least five possible solutions.
- c. Consider the list of solutions you wrote in part (b) as a sequence and write an equation to represent *all* possible solutions.

9-57. What is the equation of the graph below? <u>9-57 HW eTool</u> (Desmos) <u>Homework Help </u>

