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Part 2. Part 3. Appendices. 

1 Introduction 

1.1 Executive summary 
The goal of this report is to reason about the likely timing of the development of artificial general 
intelligence (AGI). By AGI, we mean computer program(s) that can perform virtually any 
cognitive task as well as any human,  for no more money than it would cost for a human to do it. 1

The field of AI is largely held to have begun in Dartmouth in 1956, and since its inception one of 
its central aims has been to develop AGI.  2

 
We forecast when AGI might be developed using a simple Bayesian framework, and choose the 
inputs to this framework using commonsense intuitions and reference classes from historical 
technological developments. The probabilities in the report represent reasonable degrees of 
belief, not objective chances. 
 
One rough-and-ready way to frame our question is this: 

Suppose you had gone into isolation in 1956 and only received annual updates about 
the inputs to AI R&D (e.g. # of researcher-years, amount of compute  used in AI R&D) 3

and the binary fact that we have not yet built AGI? What would be a reasonable pr(AGI 
by year X) for you to have in 2021? 

 
There are many ways one could go about trying to determine pr(AGI by year X). Some are very 
judgment-driven and involve taking stances on difficult questions like "since AI research began 
in 1956, what percentage of the way are we to developing AGI?" or “what steps are needed to 
build AGI?”. As our framing suggests, this report looks at what it would be reasonable to believe 
before taking evidence bearing on these questions into account. In the terminology of Daniel 
Kahneman’s Thinking Fast and Slow, it takes an “outside view” approach to forecasting, taking 

3 ‘Compute’ means computation. In this report we operationalise this as the number of floating point 
operations (FLOP). 

2 The proposal for the Dartmouth conference states that ‘The study is to proceed on the basis of the 
conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it. An attempt will be made to find how to make 
machines use language, form abstractions and concepts, solve kinds of problems now reserved for 
humans, and improve themselves.’ Stuart Russell, professor of Computer Science and author of a best 
selling textbook in AI, says that “The [AI] field’s goal had always been to create human-level or 
superhuman AI” (Human Compatible, pp. 1-2). Well-funded research labs are actively researching AGI, 
including DeepMind and Open AI. Baum (2017) identifies many other active AGI R&D projects. 

1 Notice that this definition applies equally whether it is a single artificial agent that can perform all these 
tasks, or a collection of narrower systems working together. The ‘single agent’ perspective is the focus of 
Bostrom’s Superintelligence, while Drexler (2019) argues that general AI intellectual capabilities will first 
come in the form of many diverse AI systems. There are various ways to make this definition more 
precise - see Muehlhauser (2013).  

 

https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit?pli=1#
https://docs.google.com/document/d/11rxXny4DGpXW-JUhEpw4dyUFF-eoKb1aVgqfGvQzpaI/edit#
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#
https://en.wikipedia.org/wiki/Dartmouth_workshop
https://plato.stanford.edu/entries/epistemology-bayesian/
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
http://raysolomonoff.com/dartmouth/boxa/dart564props.pdf
https://en.wikipedia.org/wiki/DeepMind
https://www.openai.com/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3070741
https://en.wikipedia.org/wiki/Superintelligence:_Paths,_Dangers,_Strategies
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://intelligence.org/2013/08/11/what-is-agi/
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into account relevant reference classes but not specific plans for how we might proceed.  The 4

report outputs a pr(AGI by year X) that can potentially be updated by additional evidence.   5

 
Our framework only conditions on the inputs to AI R&D - in particular the time spent trying to 
develop AGI, the number of AI researchers, and the amount of compute used - and the fact that 
we haven’t built AGI as of the end of 2020 despite a sustained effort.  We place subjective 6

probability distributions ("beta-geometric distributions" ) over the amount of each input required 
to develop AGI, and choose the parameters of these distributions by appealing to analogous 
reference classes and common sense. Our most sophisticated analysis places a hyperprior over 
different probability distributions constructed in this way, and updates the weight on each 
distribution based on the observed failure to develop AGI to date.  
 
For concreteness and historical reasons,  we focus throughout on what degree of belief we 7

should have that AGI is developed by the end of 2036: pr(AGI by 2036).  Our central estimate is 8

about 8%, but other parameter choices we find plausible yield results anywhere from 1% to 
18%. Choosing relevant reference classes and relating them to AGI requires highly subjective 
judgments, hence the large confidence interval. Different people using this framework would 
arrive at different results. 
 
To explain our methodology in some more detail, one can think of inputs to AI R&D - time, 
researcher-years, and compute - as "trials" that might have yielded AGI, and the fact that AGI 
has not been developed as a series of "failures”.   Our starting point is Laplace’s rule of 9

succession, sometimes used to estimate the probability that a Bernoulli "trial" of some kind will 
"succeed" if n trials have taken place so far and f have been "failures". Laplace’s rule places an 
uninformative prior over the unknown probability that each trial will succeed, to express a 
maximal amount of uncertainty about the subject matter. This prior is updated after observing 
the result of each trial. We can use Laplace’s rule to calculate the probability that AGI will be 
developed in the next “trial”, and so calculate pr(AGI by 2036).  10

10 Strictly speaking, we should write this as pr(AGI by 2036 | no AGI by 2020), but we shorten this to 
pr(AGI by 2036) throughout. 

9 Though this assumption is not literally true, we find it gives rise to a fruitful framework that can 
approximate other reasonable distributions that we might have used, and that our results are not driven 
by the framework but by our inputs to it. We defend this claim at length in appendix 12. 

8 The analysis is easily extended to give the probability of AGI in any period. 

7 In a 2016 blog post, Open Philanthropy CEO Holden Karnofsky stated that he would personally estimate 
a >10% chance of transformative artificial intelligence being developed within 20 years. Using 2036 for 
this report allows its bottom line to be more easily compared with Holden’s statement. My colleague Ajeya 
Cotra briefly discusses the relation of AGI to ‘transformative artificial intelligence’ in this section of her 
draft report. 

6 The analysis can easily be extended to cover beliefs like, 'We can see that AGI will not be developed in 
the next 6 years, but after that we don't know’. 

5 Of course, technically speaking the distribution is also a posterior as it updates on the failure to develop 
AGI by the end of 2020. 

4 See this appendix for more detailed discussion of the evidence that this report does and doesn’t take 
into account, and this appendix for discussion of how we might update the prior in response to additional 
evidence. 

 

https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Bayesian_probability
https://en.wikipedia.org/wiki/Bayesian_probability
https://en.wikipedia.org/wiki/Beta_negative_binomial_distribution#Relation_to_other_distributions
https://en.wikipedia.org/wiki/Hyperprior
https://en.wikipedia.org/wiki/Rule_of_succession
https://en.wikipedia.org/wiki/Rule_of_succession
https://en.wikipedia.org/wiki/Bernoulli_trial#:~:text=In%20the%20theory%20of%20probability,time%20the%20experiment%20is%20conducted.
https://en.wikipedia.org/wiki/Prior_probability#Uninformative_priors
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.ghr68xhrbkg
https://www.openphilanthropy.org/blog/some-background-our-views-regarding-advanced-artificial-intelligence
https://www.openphilanthropy.org/about/team/holden-karnofsky
https://www.openphilanthropy.org/about/team/ajeya-cotra
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https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.m24hx6jgfaf6
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.7hgwcdrzn97h
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.pck2y6yam8k9
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We identify severe problems with this calculation. In response, we introduce a family of update 
rules, of which the application of Laplace’s rule is a special case.  Each update rule can be 11

updated on the failure to develop AGI by 2020 to give pr(AGI by year X) in later years. When a 
preferred update rule is picked out using common sense and relevant reference classes, we call 
the resultant pr(AGI by year X) a ‘semi-informative prior’. We sometimes use judgements about 
what is a reasonable pr(AGI by year X) to constrain the inputs, trying to achieve reflective 
equilibrium between the inputs and pr(AGI by year X). 
 

 
A specific update rule from the family is specified by four inputs: a first-trial probability (ftp), a 
number of virtual successes, a regime start-time, and a trial definition.  

●​ The first-trial probability gives your odds of success on the first trial. Roughly speaking, it 
corresponds to how easy you thought AGI would be to develop before updating on the 
observed failure to date.  

○​ The main problem with Laplace's rule is that it uses a first-trial probability of 50%, 
which is implausibly high and results in inflated estimates of pr(AGI by 2036). 

●​ The number of virtual successes influences how quickly one updates away from the 
first-trial probability as more evidence comes in (etymology explained in the report).  

●​ The regime start-time determines when we start counting successes and failures, and 
we think of it in terms of when serious AI R&D efforts first began.  

●​ The trial definition specifies the increase of an R&D input corresponding to a “trial” - e.g. 
‘a calendar year of time’ or ‘a doubling of the compute used to develop AI systems’.  

 
We focus primarily on a regime start-time of 1956, but also do sensitivity analysis comparing 
other plausible options. We argue that a number of virtual successes outside of a small range 
has intuitively odd consequences, and that answers within this range don't change our results 

11 The family of update rules generalises Laplace’s uniform distribution to a beta distribution. Other 
popular uninformative priors like the Jeffreys prior or the Haldane prior are also beta distributions, so the 
framework can express these variants on Laplace’s rule.  

 

https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Jeffreys_prior
https://en.wikipedia.org/wiki/Beta_distribution#Haldane.27s_prior_probability_.28Beta.280.2C0.29.29
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much. Within this range, our favoured number of virtual successes has the following implication: 
if the first-trial probability is 1/X, then pr(AGI in the first X years)  50%. ≃
 
The first-trial probability is much harder to constrain, and plausible variations drive more 
significant differences in the bottom line than any other input. Taking a trial to be a ‘a calendar 
year of time’, we try to constrain the first-trial probability by considering multiple reference 
classes for AGI - for example “ambitious but feasible technology that a serious STEM field is 
explicitly trying to build” and “technological development that has a transformative effect on the 
nature of work and society” - and thinking about what first-trial probability we'd choose for those 
classes in general. On this basis, we favor a first-trial probability in the range [1/1000, 1/100], 
and feel that it would be difficult to justify a first-trial probability below 1/3000 or above 1/50. A 
first-trial probability of 1/300 combined with a 1956 regime start-time and 1 virtual success yields 
pr(AGI by 2036) = 4%.  
 
We consider variations on the above analysis with trials defined in terms of researcher-years 
and compute used to develop AI, rather than time.  We find that these variations can increase 12

the estimate of pr(AGI by 2036) by a factor of 2 - 4. We also find that the combination of a high 
first-trial probability and a late regime start-time can lead to much higher estimates of pr(AGI by 
2036).  

Trial definition Low ftp Central ftp High ftp High ftp and 
late start-time: 2000 

Calendar year 1% 4% 9% 12% 

Researcher-year 2% 8% 15% 25% 

Compute  13 2% 15% 22% 28% 

 
Here are our central estimates for pr(AGI by year X) out to 2100, which rely on crude empirical 
forecasts past 2036.  14

14 The graph assumes that the number of AI researchers will grow at 11% until 2036 (based on recent 
data), and then grow at 4% (the US R&D average growth over the last 80 years). It also assumes 
spending on computation will rise to $1 billion by 2036, and then stay constant, while the cost of 
computation will fall by 100X by 2036, and then halve every 2.5 years. These compute assumptions are 
based on the tentative forecasts of my colleague Ajeya Cotra in her draft report. 
 

13 The 2nd and 3rd columns of the compute row assign 50% weight to a start-time of 1956 and 50% to a 
late start-time - the regime started when the amount of computation needed to run a human brain first 
became affordable. This is in contrast to the other rows, which assign 100% to start-time = 1956 in the 
first three columns, and 100% to start-time = 2000 in the fourth column.  

12 We do account for diminishing returns to R&D effort. In particular, we define trials as percentage 
increases in i) the total number of AI researcher-years, and ii) the compute used to develop the largest AI 
systems. We discuss our choice of trial definition at greater length in section 6 and in this appendix.  

 

https://docs.google.com/document/d/1qjgBkoHO_kDuUYqy_Vws0fpf-dG5pTU4b8Uej6ff2Fg/edit#heading=h.nmcod2jynsy4
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.ofnunxbxg3cq
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; 
 
 
To form an all-things-considered judgment, we place a hyperprior over different update rules 
(each update rule is determined by the 4 inputs). The hyper-prior assigns an initial weight to 
each update rule and then updates these weights based on the fact that AGI has not yet been 
developed.  15

 
The inputs leading to low-end, central, and high-end estimates are summarized in this table 
(outputs in bold, inputs in standard font).  
 

 Low-end  Central High-end 

first-trial probability 
(trial = 1 calendar 
year) 

1/1000 1/300 1/100 

Regime start-time 1956 85% on 1956 
15% on 2000 

20% on 1956 
80% on 2000 

Initial weight on time 
update rule 

50% 30% 10% 

Initial weight on 
researcher-year 

30% 30% 40% 

15 This hyper prior update is a standard application of Bayesian updating. Suppose you have two rules, r 
and s. Suppose the likelihoods of the evidence (AGI not being developed by 2020) for both rules is as 
follows: pr(e|r) = 50%, pr(e|s) = 25%. If your initial weights in r and s are in the ratio 1:1, the ratio after 
updating will be 2:1, as s is twice as surprised by the evidence. So if you initially place 50% weight on 
each, then after updating you’ll place 67% on r and 33% on s. 

 

https://en.wikipedia.org/wiki/Bayesian_inference
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update rule 

Initial weight on 
compute update rule 

0% 30% 40% 

Initial weight on AGI 
being impossible 

20% 10% 10% 

pr(AGI by 2036) 1% 8% 18% 

pr(AGI by 2100) 5% 20% 35% 

 
The 4 rows of weights are set using intuition, again highlighting the highly subjective nature of 
many inputs to the framework. We encourage readers to use this tool to see the results of their 
preferred inputs.  
 
Much of the report investigates and confirms the robustness of these conclusions to a variety of 
plausible variations on the analysis and anticipated objections. For example, we consider 
models where developing AGI is seen as a conjunction of independent processes or a 
sequence of accomplishments; some probability is reserved for AGI being impossible; different 
empirical assumptions are used to fix the first-trial probability for various trial definitions. We also 
consider whether using this approach would produce absurd consequences in other contexts 
(e.g. what does analogous reasoning imply about other technologies?), whether it matters that 
the framework is discrete (dividing up continuous R&D inputs into arbitrarily sized chunks), and 
whether it’s a problem that the framework models AI R&D as a series of Bernoulli trials. On this 
last point, we argue in appendix 12 that using a different framework would not significantly 
change the results because our bottom line is driven by our choices of inputs to the framework 
rather than our choice of distribution. 
 
One final upshot of interest from the report is that the failure to develop AGI to date is not strong 
evidence for low pr(AGI by 2036). In this framework, pr(AGI by 2036) lower than ~5% would 
primarily be a function of one's first-trial probability. In other words, a pr(AGI by 2036) lower than 
this would have to be driven by an expectation — before AI research began at all — that AGI 
would probably take hundreds or thousands of years to develop.  16

 
Acknowledgements: TODO 
 

16 A low pr(AGI by 2036) could potentially also be driven by evidence that this report does not take into 
account. For example, if you believe we can measure how far we are away from AGI, and how fast we 
are progressing towards it, then this might allow you to argue that pr(AGI by 2036) is very low. 

 

https://aipriors.com/
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.ghr68xhrbkg
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1.2 Structure of report 
Section 2 applies Laplace’s rule of succession to calculate pr(AGI by year X). We call the result 
an ‘uninformative prior over AGI timelines’, because of the rule’s use of an uninformative prior. 
This approach yields pr(AGI by 2036) of 20%.  
 
Section 3 identifies a family of update rules of which the previous application of Laplace’s rule is 
a special case, highlighting some arbitrary assumptions made in section 2. When a preferred 
update rule from the family is picked out using common sense and relevant reference classes, 
we call the resultant pr(AGI by year X) a ‘semi-informative prior over AGI timelines’. 

 
Section 3 also identifies severe problems with the application of Laplace’s rule to AGI timelines, 
but suggests that these do not arise in context of the broader family of update rules. Lastly, it 
conducts a sensitivity analysis which highlights that one input is particularly important to pr(AGI 
by 2036) - the first-trial probability.  
 
Section 4 describes what I think is the correct methodology for constraining the first-trial 
probability in principle, and discusses a number of considerations that might help the reader 
constrain their own first-trial probability in practice. I then explain the range of values for this 
input that I currently favour. Much more empirical work could be done to inform this section; the 
considerations I discuss are merely suggestive. This is somewhat unfortunate as the first-trial 
probability is the single most important determinant of your bottom line pr(AGI by 2036) in this 
framework. 
 
Section 5 analyses how much the number of virtual successes and regime start-time affect the 
bottom line, once you’ve decided your first-trial probability. Its key conclusion is that they don’t 
matter very much.  
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Section 6 considers definitions of a ‘trial’ researcher-years and compute. (Up until this point a 
‘trial’ was defined as a year of calendar time.) More specifically, it defines trials as percentage 
increases in i) the total number of AI researcher-years, and ii) the compute used to develop the 
largest AI systems.  I find that each successive trial definition increases the bottom line, relative 17

to those before it. This is because the relevant quantities are all expected to change rapidly over 
the next decade, matching recent trends , and so an outsized number of ‘trials’ will occur.   18

  
Section 7 extends the model in three ways, and evaluates the consequences for the bottom line. 
First, it explicitly models AGI as conjunctive. In this simple extension, multiple goals must be 
achieved to develop AGI and each goal has its own semi-informative prior. I also consider 
models where these goals must be completed sequentially. The main consequence is to 
dampen the probability of developing AGI in the initial decades of development. These models 
output similar values for pr(AGI by 2036), as they make no assumption about how many 
conjuncts are completed as of 2020.  

 
Second, section 7 places a hyperprior over multiple semi-informative priors. The hyperprior 
assigns initial weights to the semi-informative priors and updates these weights based on how 
surprised each prior is by the failure to develop AGI to date. The semi-informative priors may 
differ in their first-trial probability, their trial definition, or in other ways. Thirdly, it explicitly models 
the possibility that AGI will never be developed, which slightly decreases pr(AGI by 2036). 

18 The compute used to develop the largest AI systems has increased significantly over the last 60 years 
due to Moore’s Law, and has recently been increasing even faster due to increased $ spending. The 
number of researchers has recently also been growing quickly (see these sources). 

17 Why use percentage increases in inputs, rather than absolute increases? Essentially because only the 
former reflects our deep uncertainty about the order of magnitude of effort that will be required to develop 
AGI. It turns out that in our framework the latter (absolute increases) implies that the unconditional 
probability of developing AGI is concentrated almost entirely in 1 - 2 orders of magnitude of effort. We 
don’t find this plausible. Further, when inputs are increasing exponentially (as they are currently) the latter 
choice concentrates the probability of developing AGI in a ~20 year period. Again, we don’t find that this 
adequately reflects our uncertainty about when AGI will be developed. We explain our choice of trial 
definition at greater length in section 6 and in this appendix. 

 

https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit?pli=1#heading=h.b3ax64lwk41b
https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit?pli=1#heading=h.4hzd12dpifjr
https://www.investopedia.com/terms/m/mooreslaw.asp#:~:text=Moore's%20Law%20states%20that%20the,observation%20that%20became%20Moore's%20Law.
https://openai.com/blog/ai-and-compute/
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.lyuxtz4sgqd5
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.ofnunxbxg3cq
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Section 8 concludes, summing up the main factors that influence the bottom line. My own 
weighted average over semi-informative priors implies that pr(AGI by 2036) is about 8%. 
Readers are strongly encouraged to enter their own inputs using this tool. 
 
The appendices cover a number of further topics, including: 

●​ In what circumstances does it make sense to use the semi-informative priors framework 
(here)? 

●​ Is it a problem that the framework unrealistically assumes that AI R&D is a series of 
Bernoulli trials (here)?  

●​ Is it a problem that the framework treats inputs to AI R&D as discrete, when in fact they 
are continuous (here)? 

●​ Does this framework assign too much probability to crazy events happening (here)? 
●​ Is the framework sufficiently sensitive to changing the details of the AI milestone being 

forecast? I.e. would we make similar predictions for a less/more ambitious goal (here)? 
●​ How might other evidence make you update from your semi-informative prior (here)? 

 
Appendix 12 is particularly important. It justifies the adequacy of the semi-informative priors 
framework, given this report’s aims, in much greater depth. It argues that, although the 
framework models the AGI development process as a series of independent trials with an 
unknown probability success, the framework’s legitimacy and usefulness does not depend upon 
this assumption being literally true. To reach this conclusion, I consider the unconditional 
probability distributions over total inputs (total time, total researcher-years, total compute) that 
the semi-informative priors framework gives rise to. This turns out to correspond to the family of 
beta-geometric distributions. Each semi-informative prior corresponds to one such 
beta-geometric distribution, and we can consider these distributions as fundamental (rather than 

 

https://docs.google.com/document/d/11rxXny4DGpXW-JUhEpw4dyUFF-eoKb1aVgqfGvQzpaI/edit#heading=h.u7qn3ivo3lw9
https://aipriors.com/
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.8kh18zm15z0t
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.5fatf38xe061
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.e9j7syp1htos
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.yghfwdkg7dh
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.8lb143cirj8f
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.pck2y6yam8k9
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.ghr68xhrbkg
https://en.wikipedia.org/wiki/Beta_negative_binomial_distribution#Relation_to_other_distributions
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derivative on the assumption that AI R&D is a series of trials). I argue that this class of 
unconditional probability distributions is sufficiently expressive for the purposes of this report. 
 
Three academics reviewed the report. I link to their reviews in appendix X. 
 
Note: throughout the report, potential objections and technical subtleties are often discussed in 
footnotes to keep the main text more readable.  
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2 Uninformative priors over AGI timelines 

2.1 The sunrise problem 
The polymath Laplace introduced the sunrise problem: 
 
Suppose you knew nothing about the universe except whether, on each day, the sun has risen. 
Suppose there have been N days so far, and the sun has risen on all of them. What is the 
probability that the sun will rise tomorrow? 
 
Just as we wish to bracket off information about precisely how AGI might be developed, the 
sunrise problem brackets off information about why the sun rises. And just as we wish to take 
into account the fact that AGI has not yet been developed as of the start of 2020, the sunrise 
problem takes into account the fact that the sun has risen on every day so far.  
 

2.1.1 Naive solution to the sunrise problem 
One might think the probability of an event is simply the fraction of observations you’ve made in 
which it occurs: (number of observed successes) / (number of observations).   19

 
 
In the sunrise problem, we’ve observed N successes and no failures, so this naive approach 
would estimate the probability that the sun rises tomorrow as 100%. This answer is clearly 
unsatisfactory when N is small. For example, observing the sun rise just three times does not 
warrant certainty that it will rise the next day.  

19 This approach can be expressed in a Bayesian framework by placing a Haldane prior over the 
probability that each observation is a success. The frequentist Hans Reichenbach proposed this method. 

 

https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Sunrise_problem
https://en.wikipedia.org/wiki/Beta_distribution#Haldane.27s_prior_probability_.28Beta.280.2C0.29.29
https://plato.stanford.edu/entries/reichenbach/
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2.1.2 Laplace’s solution to the sunrise problem: the rule of succession 
Laplace’s proposed solution was his rule of succession. He assumes that each day there is a 
‘trial’ with a constant but unknown probability p that the sun rises. To represent our ignorance 
about the universe, Laplace recommends that our initial belief about p is a uniform distribution in 
the range [0, 1]. According to this uninformative prior, p is equally likely to be between 0 and 
0.01, 0.5 and 0.51, and 0.9 and 0.91; the expected value of p .  𝐸(𝑝) = 0. 5
 
When you update this prior on N trials where the sun rises and none where it does not,  your 20

posterior expected value of p is: 
 𝐸(𝑝) =  (𝑁 + 1) / (𝑁 +  2)

In other words, after seeing the sun rise without fail N times in a row, our probability that it will 
rise on the next day is . (𝑁 + 1) / (𝑁 +  2)
 
One way to understand this formula is to suppose that, before we saw the sun rise on the first 
day, we made two additional virtual observations.  In one of these the sun rose, in another it 21

didn’t. Laplace’s rule then says the probability the sun rises tomorrow is given by the fraction of 
all past observations (both virtual and actual) in which the sun rose. 
 

21 I believe the idea of virtual observations was first introduced by Rudolf Carnap in The Logical 
Foundations of Probability. Though it is funny to imagine that we have already made virtual observations 
before we start making actual observations, I find it a useful way to think about Laplace’s rule. 

20 Mathematically, we are modelling each day as a discrete independent trial with probability p of success 
- a Bernoulli distribution. We then update our estimate of p according to Bayes’ rule. See details here. 

 

https://en.wikipedia.org/wiki/Rule_of_succession
https://en.wikipedia.org/wiki/Prior_probability#Uninformative_priors
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Rule_of_succession#Mathematical_details
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2.2 Applying Laplace’s rule of succession to AGI timelines 
We want to estimate pr(AGI by 2036).   Rather than observing that the sun has risen for N 22

days, we have observed that AI researchers have not developed AGI with N years of effort. The 
field of AI research is widely held to have begun in Dartmouth in 1956, so it is natural to take N 
= 64. (The choice of a year - rather than e.g. 1 month - is arbitrary and made for expositional 
purposes. The results of this report don’t depend on such arbitrary choices, as discussed in the 
next section.) 
 
By analogy with the sunrise problem, we assume there’s been some constant but unknown 
probability p of creating AGI each year. We place a uniform prior probability distribution over p to 
represent our uncertainty about its true value, and update this distribution for each year that AGI 
hasn’t happened.  23

 
The rule of succession implies that the chance AGI will again not be developed on the next trial 
is (N + 1) / (N + 2) = 65/66. The chance it will not be developed in any of the next 16 trials is 
65/66 * 66/67 * … * 81/82 = 0.8, and so pr(AGI by 2036) = 0.2. 
 

23 This update is made according to Bayes’ rule. Suppose that before observing a trial our initial credence 
in each value of p is given by pri(p=x). After observing a failed trial X, our final credence in each possible 
value of p is  prf(p=x) = pri(p=x|X) = pri(p=x) * pri(X|p=x) / pri(X). The relative weight of our credence in p=x 
is boosted by the factor pri(X|p=x) = (1 - p). We perform an update of this kind for every failed trial. 

22 I am not the first person to apply an uninformative prior to AGI timelines. Firstly, Fallenstein and 
Mennen use Laplace’s rule as one argument in favour of using a pareto probability distribution over 
pr(AGI by year X) - see section 3.3 of the linked paper. Their favoured distribution is the continuous limit 
of the one reached by applying Laplace’s rule. Secondly, informal discussions about AGI timelines on the 
Effective Altruist Forum, and in the community more generally, have sometimes referenced the rule (e.g. 
here). 

 

https://en.wikipedia.org/wiki/Dartmouth_workshop
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://concepts.effectivealtruism.org/concepts/credences/#:~:text=The%20credence%20a%20person%20has,it%20is%2C%20given%20their%20evidence.&text=For%20example%2C%20if%20all%20of,rain%20tomorrow%20should%20be%200.73.
https://intelligence.org/files/PredictingAGI.pdf
https://intelligence.org/files/PredictingAGI.pdf
https://forum.effectivealtruism.org/posts/Ayu5im98u8FeMWoBZ/my-personal-cruxes-for-working-on-ai-safety#AI_timelines
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An equivalent way to think about this calculation is that, after observing 64 failed trials, our belief 
about chance of success in the next trial E(p) is 1/66. This is the fraction of our actual and virtual 
observations that are successes. So our probability of developing AGI next year is 1/66. We 
combine the probabilities for the next 16 years to get the total probability of success. 
 

 
 
The next section discusses some significant problems with this application of Laplace’s rule of 
succession. These problems will motivate a more general framework, in which this calculation is 
a special case. 
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3 Semi-informative priors over AGI timelines 
This section motivates and explores the semi-informative priors framework in the context of AGI 
timelines. In particular: 

●​ I introduce the framework by identifying various debatable inputs in our previous 
application of Laplace’s rule (here). 

●​ I explain how the semi-informative priors framework addresses problems with applying 
Laplace’s rule to AGI timelines (here). 

●​ I describe key properties of the framework (here). 
●​ I perform a sensitivity analysis on how pr(AGI by 2036) depends on each input (here). 

 
This lays the groundwork for sections 4-6 which apply the framework to AGI timelines.  
 

3.1 Introducing the semi-informative priors framework 
Our application of Laplace’s rule of succession to calculate pr(AGI by 2036) had several inputs 
that we could reasonably change. 
 
First, the calculation identified the start of a regime such that the failure to develop AGI before 
the regime tells us very little about the probability of success during the regime. This regime 
start-time was 1956. This is why we didn’t update our belief about p based on AGI not being 
developed in the years prior to 1956. Though 1956 is a natural choice, there are other possible 
regime start-times. 
 
Second, we assumed that each trial (with constant probability p of creating AGI) was a calendar 
year. But there are other possible trial definitions. Alternatives include ‘a year of work done by 
one researcher’, and ‘a doubling of the compute used in AI R&D’. With this latter alternative, the 
model would assume that each doubling of compute costs was a discrete event with a constant 
but unknown probability p of producing AGI.  24

 
Third, we assumed that an appropriate initial distribution over p was uniform over [0, 1]. But 
there are many other possible choices of distribution. The Jeffreys prior over p, another 
uninformative distribution, is more concentrated at values close to 0 and 1, reflecting the idea 
that many events are almost certain to happen or certain not to happen. It turns out that the 
difference between these two distributions corresponds to the number of virtual successes we 

24 We will see in the next subsection that it doesn’t affect the results whether a trial is a ‘doubling’ of 
compute, a ‘10% increase’, or a ‘0.1% increase’. As long as there have been many (>5) such trials since 
the regime start-time, and many trials (>5) between now and 2036, pr(AGI by 2036) will be very similar. 
For the same reason, it would make ~0 difference to change the trial definition from ‘a calendar year’ to “2 
calendar years” or “10 minutes”. Throughout I use fine-grained trial definitions (e.g. a 0.1% increase) to 
ensure none of the results are a product of an unrealistic discretisation of effort. 

 

https://en.wikipedia.org/wiki/Jeffreys_prior#Bernoulli_trial
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observed before the regime started. While Laplace has 1 virtual success (and 1 virtual failure), 
Jeffreys has just 0.5 virtual successes (and 0.5 failures) and so these virtual observations are 
more quickly overwhelmed by further evidence. The significance of this input is that the fewer 
virtual successes, the quicker you update E(p) towards 0 when you observe failed trials. 
 
Lastly, and most importantly, both Laplace and Jeffreys initially have E(p) = 0.5, reflecting an 
initial belief that the first trial of the regime is 50% likely to create AGI. Call this initial value of 
E(p) the first-trial probability. The first-trial probability is the probability that the first trial 
succeeds. There are different initial distributions over p corresponding to different first-trial 
probabilities. Both Laplace’s uniform distribution and the Jeffreys prior over p are specific 
examples of beta distributions,  which can in fact be parameterised by the first-trial probability 25

and the number of virtual successes.  Roughly speaking, the first-trial probability represents 26

how easy you expect developing AGI to be before you start trying; more precisely, it gives the 
probability that AGI is developed on the first trial. 
 
If you find thinking about virtual observations helpful, the first-trial probability gives the fraction of 
virtual observations that are successes:  

. 𝑓𝑖𝑟𝑠𝑡 𝑡𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  (# 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠) / (# 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 +  # 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)
 

 
 
So we have 4 inputs to our generalised update rule (Laplace’s values in brackets): 

26 The beta distribution is only well-defined if virtual successes > 0 and 0 < first-trial probability < 1. 

25 Beta distributions are useful in this context because they’re easy to update in response to evidence 
from Bernoulli trials. Formally, this is because beta distributions are conjugate priors to Bernoulli 
distributions. I am not the first to suggest replacing Laplace’s uniform distribution with the more general, 
yet analytically tractable, beta distribution. For example see Huttegger (2017); Raman (2000); Bernardo 
and Smith (1994), p271-272, example 5.4, 2nd edition. 

 

https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Conjugate_prior_distribution
https://www.cambridge.org/core/books/probabilistic-foundations-of-rational-learning/F371AD3B3BF46C49EAB5E7339507CEAF
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.3096&rep=rep1&type=pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316870
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316870
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●​ Regime start-time (1956) 
●​ Trial definition (calendar year) 
●​ Number of virtual successes (1) 
●​ first-trial probability (0.5) 

 
 
 
 
I find it useful to think about these inputs in terms of how E(p), our belief about the probability of 
success in the next trial, changes over time.  The first-trial probability specifies the initial value 27

of E(p) and the number of virtual successes describes how quickly E(p) falls when we observe 
failed trials.  The regime start-time and trial definition determine how many failed trials we’ve 28

observed to date; for some trial definitions (e.g. ‘one researcher-year’) we also need empirical 
data. The trial definition, perhaps in conjunction with empirical forecasts, also determines the 
number of trials that will occur in each future year. Together the four inputs determine a 
probability distribution over the year in which AGI will be developed. When the choice of inputs 
are informed by commonsense and relevant reference classes for AGI, I call such a distribution 
a semi-informative prior over AGI timelines. We will see that some highly subjective judgements 
seem to be needed to choose precise values for the inputs. 

28 Why not use the total number of virtual observations (both successes and failures) as an input, rather 
than just the number of virtual successes? Both influence the size of the update from failed trials. 
Essentially, because using virtual observations has the consequence that the first-trial probability also 
affects the size of the update from failed trials. Using virtual successes, we avoid this consequence and 
only the number of virtual successes affects the size of the update from failed trials. I explain this in 
greater detail here. 

27 Another equally valid perspective is that the inputs determine an unconditional probability distribution 
over the total amount of time needed to develop AGI. I take this alternative perspective in section 9, 
where I argue the family of unconditional probability distributions corresponding to the framework are 
sufficiently general for our purposes. 

 

https://docs.google.com/document/d/185QBE8vFZyGl-HN5j4mjgSN8aA-7ZEfGXubLcZ9ewvs/edit#heading=h.o0m9p1xlhjgg
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To use this framework to calculate pr(AGI by 2036) you need to choose values for each of the 
four inputs, estimate the number of trials that have occurred so far and estimate the number that 
will occur by 2036. I do this, and conduct various sensitivity analyses in sections 4, 5 and 6. The 
rest of section 3 explores the behaviour of the semi-informative framework in more detail. 
 
The following diagram gives a more detailed mathematical view of the framework: 
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The first-trial probability and # virtual successes determine your initial probability distribution 
over p. This initial distribution corresponds to the number of virtual successes and virtual 
failures. The start-time and trial definition determine the number of observed failures by 2020. 
Updating on these failures creates you 2020 probability distribution over p. The 2020 
distribution, together with the number of trials between 2020 and year X, determines pr(AGI by 
year X).] 

3.2 The semi-informative priors framework can solve problems 
with using uninformative priors 
This section identifies two problems with the application of Laplace’s rule of succession to AGI 
timelines, and argues that both can be addressed by the semi-informative priors framework.  

3.2.1 Uninformative priors are aggressive about AGI timelines 
Before the first trial, an uninformative prior implies that E(p) is 0.5.  So our application of 29

uninformative priors to AGI timelines implies that there was a 50% probability of developing in 
AGI in the first year of effort. Worse, it implies that there was a 91%  probability of developing 30

AGI in the first ten years of effort.  The prior is so uninformative that it precludes the 31

commonsense knowledge that highly ambitious R&D projects rarely succeed in the first year of 
effort!  32

 
The fact that these priors are initially overly optimistic about the prospects of developing AGI 
means that, after updating on the failure to develop it so far, they will still be overly optimistic. 
For if we corrected their initial optimism by reducing the first-trial probability, the derived pr(AGI 
by 2036) will also decrease as a result. Their unreasonable initial optimism translates into 
unreasonable optimism about pr(AGI by 2036). 
 
To look at this from another angle, when you use an uninformative prior the only source of 
scepticism that we’ll build AGI next year is the observed failures to date. But in reality, there are 
other reasons for scepticism: the bare fact that ambitious R&D projects typically take a long time 
means that the prior probability of success in any given year should be fairly low. 
 

32 One way to think about this is that the uninformative prior abstracts away so much knowledge that it 
treats the proposition “we do develop AGI” in exactly the same way as it treats “we don’t develop AGI”, 
initially estimating E(p) = 0.5 for both.  

31 Again this problem is not particular to Laplace’s uninformative prior. The Jeffreys prior similarly implies 
82% likely to develop AGI in the first 10 years. (1 - ½ * ¾ * ⅚ *... * 19/20). This is lower, but still 
unreasonably high. The uninformative Haldane prior suffers from a different problem. Like the naive 
frequentist approach, it is certain that we won’t ever develop AGI simply because we do not do so in the 
first year of effort. 

30 91% = 1 - (1/2 * 2/3 * … * 10/11)    

29 This is not just true of Laplace’s uniform prior. The same is true of the two other common choices of 
uninformative prior over p for a Binomial distribution: the Jeffreys prior and the Haldane prior. 

 

https://en.wikipedia.org/wiki/Jeffreys_prior
https://en.wikipedia.org/wiki/Beta_distribution#Haldane's_prior_probability_(Beta(0,0))
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In the semi-informative priors framework, we can address this problem by choosing a lower 
value for the first-trial probability. In this framework there are two sources of scepticism that we’ll 
build AGI in the next trial: the failure to develop AGI to date and our initial belief that a given 
year of effort is unlikely to succeed. 
 

3.2.2 The predictions of uninformative priors are sensitive to trivial changes 
in the trial definition 
A further problem is that certain predictions about AGI timelines are overly sensitive to the trial 
definition. For example, if I had defined a trial as two years, rather than one, Laplace’s rule 
would have predicted a 83%  probability of AGI in the first 10 years rather than 91%. If I had 33

used one month, the probability would have been 99%.  But predictions like these should not 34

be so sensitive to trivial changes in the trial definition.  Further, there doesn’t seem to be any 35

privileged choice of trial definition in this setting. 
 
This problem can be addressed by the semi-informative priors framework. We can use a 
procedure for choosing the first-trial probability that makes the framework’s predictions invariant 
under trivial changes in the trial definition. For example, we might choose the first-trial 
probability so that the probability of AGI in the first 20 years of effort is 10%. In this case, the 
model’s predictions will not materially change if we shift our trial definition from 1 year to (e.g.) 1 
month: although there will be more trials in each period of time, the first-trial probability will be 
lower and these effects cancel.   36

 
In fact, using common sense and analogous reference classes to select the first-trial probability 
naturally has this consequence. Indeed, all the methods of constraining the first-trial probability 
that I use in this report are robust to trivial changes in the trial definition.  
 

36 Trivial changes in trial definition can still have small effects on the model’s predictions by discretizing a 
continuous quantity in different-sized chunks. Throughout the report I use small enough chunks that this 
effect disappears.  
In more detail, the effect of any trivial change is negligible as long as both trial definitions are sufficiently 
fine-grained. In particular, if for both trial definitions there have been >5 trials since the regime start-time 
and >5 trials between now and 2036, then changing the trial definition will have a negligible effect on 
pr(AGI by 2036). By “negligible” I mean that pr(AGI by 2036) will be the same to 2 significant figures. 
Throughout this report I subdivide trials into small parts to ensure none of the results are a product of an 
unrealistic discretisation of effort. The subdivisions are small enough that further subdivisions would make 
no difference to any of the numbers in the report. Similarly, taking the framework to the continuous limit 
would make no difference to the results. 

35 By a ‘trivial change’ I mean a change where we keep the quantity the same (in this case time) but divide 
this quantity into slightly more (or less) fine-grained chunks. Such a change does not change the ratio (# 
trials in period 1) / (# trials in period 2) for any two periods of time. An example of non-trivial change is 
from ‘trial = a calendar year’ to ‘trial = one researcher-year’. This isn’t trivial because the underlying 
quantity has changed.  

34 = 1 - (1/2 * 2/3 * … * 120/121) 
33 = 1 - (1/2 * 2/3 * … * 5/6) = 99.2% 
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3.3 How does the semi-informative priors framework behave? 
There are a few features of this framework that it will be useful to keep in mind going forward. 

●​ If your first-trial probability is smaller, your update from failure so far is smaller. If 
it takes 100 failures to reduce E(p) from 1/100 to 1/200, then it takes 200 failures to 
reduce E(p) from 1/200 to 1/400, holding the number of virtual successes fixed.  37

●​ The first-trial probability is related to the median number of trials until success. 
Suppose your first-trial probability is 1/N and there’s 1 virtual success. Then, it turns out, 
the probability of success within the first (N - 1) trials is 50%.   38

●​ E(p) is initially dominated by the first-trial probability; after observing many 
failures it’s dominated by your observed failures. Suppose your first-trial probability 
is 1/N and you have v virtual successes. After observing n failures, it turns out that 

. For small values of n, E(p) is approximately equal to the first-trial 𝐸(𝑝) =  1/(𝑁 +  𝑛/𝑣)
probability. For large values of n,  , E(p) is dominated by the update from 𝑛/𝑣 >> 𝑁
observed failures.  

 

3.4 Strengths and weaknesses 
Here are some of the framework’s strengths: 

●​ Quantifies the size of the negative update from failure so far. We can compare the 
initial value of E(p) with its value after updating on the failed trials observed so far. The 
ratio between these values quantifies the size of the negative update from failure so far. 

●​ Highlights the role of intuitive parameters. The report’s analysis reveals the 
significance of the first-trial probability, regime start-time, the trial definition, and 
empirical assumptions for the bottom line. These are summarised in the conclusion. 

●​ Arguably appropriate for expressing deep uncertainty about AGI timelines.  
○​ The framework produces a long-tailed distribution over the total time for AGI, 

reflecting the possibility that AGI will not be developed for a very long time. More. 
○​ The framework can express Pareto distributions (more), exponential distributions 

(more), and uninformative priors as special cases. 
○​ The framework spreads probability mass fairly evenly over trials.  For example, it 39

couldn’t express the belief that AGI will probably be developed between 2050 
and 2070, but not in the periods before or after this. 

39 The one exception to this if you use a large first-trial probability, >1/10. In this case, probability is 
concentrated in the first few trials. However, I recommend using a first-trial probability below 1/100. 

38 There are similar results if we vary the number of virtual successes. For example, if there’s 0.5 virtual 
successes, then 1 / first-trial probability is roughly the time until there’s a 42% chance of success, rather 
than 50%. More generally, the fewer virtual successes we use, the smaller x is in the following: 1 / 
first-trial probability is the time until x% chance of success. 

37 This example assumes 1 virtual success. If there are 0.5 virtual successes, it takes 50 failures to 
reduce E(p) from 1/100 to 1/200, and 100 failures to reduce E(p) from 1/200 to 1/400. 

 

https://docs.google.com/document/d/11rxXny4DGpXW-JUhEpw4dyUFF-eoKb1aVgqfGvQzpaI/edit#heading=h.r691jbfzivdf
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.enl9usi105p3
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.cxziz9ylytpj
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.l0ae2rq7t13b
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○​ The framework avoids using anything like “we’re x% of the way to completing 
AGI” or “X of Y key steps on the path to AGI have been completed.” This is 
attractive if you believe we are not in a position to make more direct judgments 
about these things. 

 
Here are some of the framework’s weaknesses: 

●​ Incorporate limited kinds of evidence.  
○​ The framework excludes evidence relating to how close we are to AGI and how 

quickly we are getting there. For some, this is the most important evidence we 
have.  

○​ It excludes knowledge of an end-point, a time by which we will have probably 
developed AGI. So it cannot express (log-)uniform distributions. More. 

○​ Evidence only includes the binary fact we haven’t developed AGI so far, and 
information from relevant reference classes about how hard AGI might be to 
develop.  

●​ Near term predictions are too high. Today’s best AI systems are not nearly as capable 
as AGI, which should decrease our probability that AGI is developed in the next few 
years. But the framework doesn’t take this evidence into account. 

●​ Insensitive to small changes in the definition of AGI. The methods I use to constrain 
the inputs to the framework involve subjective judgements about vague concepts. If we 
changed the definition of AGI to make it slightly easier/harder to achieve, the judgements 
might not be sensitive to these changes.   

●​ Assumes a constant chance of success each trial. This is of course unrealistic; 
various factors could lead the chance of success to vary from trial to trial.  

○​ The assumption is more understandable given that the framework purposely 
excludes evidence relating to the details of the AI R&D process.  

○​ Appendix 12 argues that our results are driven by our choice of inputs to the 
framework, not by the framework itself. If this is right, then relaxing the 
problematic assumption would not significantly change our results. 

○​ Indeed, I analysed sequential models in which multiple steps must be completed 
to develop AGI. pr(next trial succeeds) is very low in early years, rises to a peak, 
and then slowly declines. I compared my framework to a sequential model, with 
the inputs to both chosen in a similar way. Although pr(next trial succeeds) is 
initially much lower for the sequential model, after a few decades the models 
agree within a factor of 2. This is shown by the similar steepness of the lines.  ​40

40 Inputs for both models are chosen to give the same value for pr(AGI within the 100 years). After about 
50 years, the sequential model has a higher value for pr(next trial succeeds), but still within a factor of 2. 

 

https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.c0ru3pdr4gih
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.2yswqgiruvxy
https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit?pli=1#heading=h.4hzd12dpifjr


23 

​
The reason is that the sequential models are agnostic about how many steps still 
remain in 2020; for all they know just 1 step remains! Such agnostic sequential 
models have similar pr(AGI by year X) to my framework once enough time has 
passed that all the steps might have been completed. ​
 

○​ That said, the argument in appendix 12 is not conclusive and I only analysed a 
few possible types of sequential model. It is possible that other ways of 
constructing sequential models, and other approaches to outside view 
forecasting more generally, may give results that differ more significantly from our 
framework. 

 
​ ​  
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3.5 How do the inputs to the framework affect pr(AGI by 2036)? 
How does pr(AGI by year X) depend on the inputs to the semi-informative priors framework? I 
did a sensitivity analysis around how varying each input within a reasonable range alters pr(AGI 
by 2036); the other inputs were left as in the initial Laplacean calculation.  
 
The values in this table are not trustworthy because they use a first-trial probability of 0.5, which 
is much too high. I circle back and discuss each input’s effect on the bottom line in section 8. 
Nonetheless, the table illustrates that the first-trial probability has the greatest potential to make 
the bottom line very low, and its uncertainty spans multiple orders of magnitude. This motivates 
an in-depth analysis of the first-trial probability in the next section. 

Input Values tested Range for 
pr(AGI by 
2036) 

Comments 

Regime 
start-time 

1800 - industrial 
revolution 
1954 - Dartmouth 
conference 
2000 - brain-compute 
affordable (explained in 
section 5) 

[0.07, 0.43] I discuss that even earlier regime 
start-times in section 5.  
0.43 corresponds to ‘2000’. 
 
When the first-trial probability is 
constrained within reasonable bounds, 
this range is much smaller. 

Trial 
definition 
 
 

- A calendar year 
- A researcher-year 
- 1% increase in total 
researcher-years so far 
(See explanations of 
these definitions here) 

[0.14, 0.71] 0.71 corresponds to ‘a researcher-year’ 
 
When the first-trial probability is 
constrained within reasonable bounds, 
this range is much smaller. 
 

Number of 
virtual 
successes 

0.5, 1 [0.11, 0.2] I explain why I prefer the range [0.5, 1] 
for the case of AGI in section 5. 

first-trial 
probability  

0.5, 0.1, 1e-2, 1e-3, 1e-4 [1/1000, 
0.2] 

 

 
The next section, section 4, discusses how we might constrain the first-trial probability for AGI; it 
also implicitly argues that it was reasonable for me to countenance such small values for 
first-trial probability in this sensitivity analysis. After this, section 5 revisits the importance of the 
other inputs. Both sections 4 and 5 assume that a trial is a calendar year; in section 6 we 
consider other trial definitions. 
 

 

https://colab.research.google.com/drive/1ErtsiwpVLQFSPRP0u5WXwYr7Kf_4ognL#scrollTo=Sj_Ha6FyJo8l
https://docs.google.com/document/d/11rxXny4DGpXW-JUhEpw4dyUFF-eoKb1aVgqfGvQzpaI/edit#heading=h.u7qn3ivo3lw9
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.enl9usi105p3
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4 Constraining the first-trial probability 
The sensitivity analysis in the previous section suggested that the first-trial probability was the 
most important input for determining pr(AGI by 2036). This section explains my preferred 
methodology for choosing the first-trial probability (here) and then makes an initial attempt to put 
this methodology into practice in the case of AGI (here).  
 

4.1 How to constrain the first-trial probability in principle 
One compelling way to constrain the first-trial probability for a project’s duration would be as 
follows: 

1.​ List different reference classes that seem potentially relevant to the project’s likely 
difficulty and duration. Each reference class will highlight different features of the project 
that might be relevant. 

2.​ For each of these reference classes, try to constrain or estimate the first-trial probability 
using a mixture of data and intuitions. This leaves you with one constraint for each 
reference class. These constraints should be interpreted flexibly; they are merely 
suggestive and can be overridden by other considerations. 

3.​ Weight each constraint by how relevant you think its reference class is to the project. 
Then, either by taking a formal weighted sum or by combining the individual constraints 
in an informal way, arrive at an all-things-considered constraint of the first-trial 
probability.  

 
To illustrate this process, I’ll give a brief toy example with made-up numbers to show what 
these steps might look like when the project is developing AGI. To make the example short, I’ve 
removed most of the reasoning that would go into a comprehensive analysis, leaving only the 
bare bones. 

1.​ List multiple different reference classes for the development of AGI: 
a.​ ‘Hard computer science problem’ - the frequency with which such problems are 

solved is potentially relevant to the probability that developing AGI, an example of 
such a problem, is completed. 

b.​ ‘Development of a new technology that leads to the automation of a wide range 
of tasks’ - the frequency at which such technologies are developed is potentially 
relevant to the probability that AGI, an example of such a technology, is 
developed. 

c.​ ‘Ambitious milestone that an academic STEM field is trying to achieve’ - the time 
it typically takes for such fields to succeed is potentially relevant to the probability 
that the field of AI R&D will succeed. 

2.​ Constrain the first-trial probability for each reference classes: 
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a.​ Data about hard computer science problems suggests about 25% of such 
problems are solved after 20 years of effort. (These numbers are made up.) On 
the basis of this reference class, we should choose AGI’s first-trial probability so 
that the chance of success in the first 20 years is close to 25%. This corresponds 
to a first-trial probability of 1/61. So this reference class suggests that the 
first-trial probability be close to 1/60. 

b.​ Data about historical technological developments suggest that developments with 
an impact on automation comparable to AGI occur on average less often than 
once each century.  So our probability that such a development occurs in a 41

given year should be less than 1%. On the basis of this reference class, we 
should choose AGI’s first-trial probability so that the chance of success each year 
is <1%. So this reference class suggests that the first-trial probability be 
<1/100. 

c.​ Data about whether STEM fields achieve ambitious milestones they’re trying to 
achieve seems to suggest it is not that rare for fields to succeed after only a few 
decades of sustained effort. On the basis of this reference class, we should 
choose AGI’s first-trial probability so that the chance of success in the first 50 
years is >5%. This implies first-trial probability >1/950. So consideration of this 
reference class suggests that the first-trial probability should be >1/1000. 

3.​ To reach an all-things-considered view on AGI’s first-trial probability, weigh each 
constraint by how relevant you think the associated reference class is to the likely 
difficulty and duration of developing AGI. For example, someone might think the latter 
two classes are both somewhat relevant but put less weight on “hard computer science 
problem” because they think AGI is more like a large collection of such problems than 
any one such problem. As a consequence, their all things-considered view might be that 
AGI’s first-trial probability should be >1/1000 and <1/100. 

 
This is just a brief toy example (again, with made-up numbers) to illustrate what my preferred 
process for constraining the first-trial probability might look like. Clearly, difficult and debatable 
judgement calls must be made in all three steps. In the first step, a short list of relevant 
reference classes must be identified. In the second step, data about the reference class must be 
interpreted to derive a constraint for the first-trial probability. In the third step, judgement calls 
must be made about the relevance of each reference class and the individual constraints must 
be combined together. 
 
It may be that no reference class both has high quality data and is highly relevant to the likely 
duration of developing AGI. In this case, my preference is to make the most of the reference 
classes and data that is available, interpreting the derived constraints as no more than 
suggestive. It may be that by making many weak arguments, each with a different reference 
class, we can still obtain a meaningful constraint on our all-things-considered first-trial 

41 Of course, if you think that AGI automation would be more transformative than any previous 
technological development then this would complicate this argument. I discuss this consideration in this 
supplement, which discusses a methodology for this reference class in more detail. 

 

https://www.lesswrong.com/posts/9W9P2snxu5Px746LD/many-weak-arguments-vs-one-relatively-strong-argument
https://docs.google.com/document/d/193gMzbJ9QJ41dC-4dTiYQuxL6S1IHsESZpId1q5whGs/edit#bookmark=id.iwj4l0wy68jo
https://docs.google.com/document/d/193gMzbJ9QJ41dC-4dTiYQuxL6S1IHsESZpId1q5whGs/edit#bookmark=id.iwj4l0wy68jo
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probability. Even if we do not put much weight in any particular argument, multiple arguments 
collectively may help us triangulate what values for the first-trial probability are reasonable. 
 

4.2 Constraining AGI’s first-trial probability in practice 
The first-trial probability should of course depend on the trial definition. For example, the 
first-trial probability should be higher if a trial is ‘5 calendar years’ than if it’s ‘1 calendar year’; it 
should be different again if a trial is ‘a researcher-year’. In this section I assume that a trial is 
‘one calendar year of sustained AI R&D effort’,  which I abbreviate to ‘1 calendar year’. I also 42

assume that the regime start-time is 1956 and the number of virtual successes is 1; I consider 
the effects of varying these inputs in the next section. 
 
The focus of this project has been in the articulation of the semi-informative priors framework, 
rather than in finding data relevant for constraining the first-trial probability. As such, I think all of 
the arguments I use to constrain the first-trial probability are fairly weak. In each case, either the 
relevance of the reference class is unclear, I have not found high quality data for the reference 
class, or both. Nonetheless, I have done my best to use readily available evidence to constrain 
my first-trial probability for AGI, and believe doing this has made my preferred range more 
reasonable. 
 
I currently favour values for AGI’s first-trial probability in the range [1/1000, 1/100], and my 
central estimate is 1/300. 
 
This preferred range is informed by 4 reference classes. In each case, I use the reference class 
to argue for some constraint on, or estimate of, the first-trial probability. The 4 reference classes 
were not chosen because they are the most relevant reference classes to AGI, but because I 
was able to use them to construct constraints for AGI’s first-trial probability that I find somewhat 
meaningful. While I extract inequalities or point estimates of the first-trial probability from each 
reference class, my exact numbers shouldn’t be taken seriously and I think one could 
reasonably differ by at least a factor of 3 in either direction, perhaps more. Further, people might 
reasonably disagree with my views on the relevance of each reference class. 
 
I explain my thinking about each reference class in detail in supplementary documents that are 
linked individually in the table below. These supplementary documents are designed to help the 
reader use their own beliefs and intuitions to derive a constraint from each reference class. I 
encourage readers use these to construct their own constraints for AGI’s first-trial probability. 
Much more work could be done finding and analysing data to better triangulate the 
first-trial probability, and I’d be excited about such work being done. 
 

42 This means that if no research happens in some year, no trial occurs in that year. 

 

https://drive.google.com/drive/u/1/folders/198mhm1h3inGgAptHjpWwZl_gWx7BfJGh
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The following table summarizes how the 4 reference classes inform my preferred range for the 
first-trial probability. Please keep in mind that I think all of these arguments are fairly weak and 
see all the constraints and point estimates as merely suggestive.  
 

Reference 
class 

Argument deriving a 
constraint on the first-trial 
probability (ftp) 

Constraints 
and estimates 
of ftp 

My view on the 
informativeness of 
this reference class 

Ambitious but 
feasible 
technology 
that a serious 
STEM field is 
explicitly 
trying to 
develop. 
(more) 

Scientific and technological R&D 
efforts have an excellent track 
record of success. Very 
significant advances have been 
made in central and diverse 
areas of human understanding 
and technology: physics, 
chemistry, biology, medicine, 
transportation, communication, 
information, and energy. I list 11 
examples, with a median 
completion time of 75 years.  
 
Experts regard AGI as feasible 
in principle. Multiple well-funded 
and prestigious organisations 
are explicitly trying to develop 
AGI. 
 
Given the above, we shouldn’t 
assign a very low probability to 
the serious STEM field of AI 
R&D achieving one of its central 
aims after 100 years of 
sustained effort.  

Lower bound: 
ftp > 1/3000 
-- pr(AGI within 
100 years of 
effort) >3%, or 
pr(AGI within 30 
years of effort) 
>1%. 
 
 
Conservative 
estimate: 
ftp = 1/300 
-- pr(AGI within 
100 years of 
effort) = 25%. 
 
Optimistic 
estimate: 
ftp = 1/50 
-- pr(AGI within 
50 years of 
effort) = 50%. 
 

In my view, this is the 
most relevant 
reference class of the 
4 that I consider. The 
fact that a serious 
STEM field is trying to 
build AGI is clearly 
relevant to AGI’s 
probability of being 
developed.  
 
That said, STEM fields 
vary in their degree of 
success and AGI may 
be an especially 
ambitious technology, 
reducing the relevance 
of this reference class. 
There is also a 
selection bias in the list 
of successful STEM 
fields (that I try to 
adjust for in the 
conservative estimate). 

Possible 
future 
technology 
that a STEM 
field is trying 
to build in 
2020. (more) 

This report focuses on AGI and 
its core reason for having a 
non-tiny first-trial probability is 
that a STEM field is trying to 
build AGI.  
 
But we could apply the same 
framework to multiple different 
technologies that STEM fields 
are trying to build in 2020. It 
would be worrying if, by doing 
this many times, we could 
deduce that the expected 

Conservative 
upper bound: 
ftp < 1/100 
-- assumes that 
STEM fields are 
trying to build 
10 highly 
impactful 
technologies in 
2020, but we 
expect <0.5 
technologies 
with this level of 

In principle, I think this 
reference class is 
highly relevant. We 
shouldn’t trust this 
methodology if 
applying it elsewhere 
leads to unrealistic 
predictions. 
 
In practice, however, 
it’s hard to make this 
objection cleanly for 
various reasons. As 

 

https://docs.google.com/document/d/1eNKBkoQ-ABywSNRdZLbaaF7CSLP8yrvEcYHSAqnB2tA/edit#
https://docs.google.com/document/d/1iunOkxBYKmobKFULZPzzVkLIdHJCOM0GNexLWsoiGoc/edit#
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number of transformative 
technologies that will be 
developed in a 10 year period is 
very large. 
 
We can avoid this problem by 
placing an upper bound on the 
first-trial probability. 

impact to be 
developed in a 
ten year period 
on average) 
 
Aggressive 
upper bound: 
fpt < 1/300 
-- As above but 
expect <0.25 to 
be developed 

such, I put very little 
stock in the precise 
numbers derived. I’m 
unsure what constraint 
a more comprehensive 
analysis would 
suggest. 

Technological 
development 
that has a 
transformative 
effect on the 
nature of work 
and society. 
(more) 

Some people believe that AGI 
would have a transformative 
effect on the nature of work and 
society. We can use the history 
of technological developments to 
estimate the frequency with 
which transformative 
developments like AGI occur. 
This frequency should guide the 
probability ptransf we assign to a 
transformative development 
occurring in a given year. 
 
Our annual probability that AGI 
is developed should be lower 
than  ptransf, as it’s less likely that 
AGI in particular is developed 
than that any transformative 
development occurs. 

Upper bound: 
ftp < 1/130 
 
-- Assume two 
transformative 
events have 
occurred. 
Assume the 
probability of a  
transformative 
development 
occurring in a 
year is 
proportional to 
the amount of 
technological 
progress in that 
year. 

I believe that a 
technology’s impact is 
relevant to the likely 
difficulty of developing 
it (more). So I find this 
reference class 
somewhat informative.  
 
Further, a common 
objection to AGI is that 
it would have such a 
large impact so is 
unrealistic. This 
reference class 
translates this 
objection into a 
constraint on the ftp. 
 
However, there are 
very few (possibly 
zero) examples of 
developments with 
impact comparable to 
AGI; this makes this 
reference class less 
informative. 

Notable 
mathematical 
conjectures. 
(more) 

AI Impacts investigated how long 
notable mathematical 
conjectures, not explicitly 
selected for difficulty, take to be 
resolved. They found that the 
probability that an unsolved 

ftp ~ 1/170 The data for this 
reference class is 
better than for any 
other. However, I doubt 
that resolving a 
mathematical 
conjecture is similar to  
developing AGI. So I 

 

https://docs.google.com/document/d/193gMzbJ9QJ41dC-4dTiYQuxL6S1IHsESZpId1q5whGs/edit#
https://docs.google.com/document/d/193gMzbJ9QJ41dC-4dTiYQuxL6S1IHsESZpId1q5whGs/edit#heading=h.rxt0dbctuog
https://docs.google.com/document/d/11gr8aEZ2TzmYhoPdv6RbL25QgGPnLnOqWLJ5l6AHPb4/edit#
https://aiimpacts.org/resolutions-of-mathematical-conjectures-over-time/
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conjecture is solved in the next 
year of research is ~1/170. 
 

view this as the least 
informative reference 
class. 

 
The following table succinctly summarizes the most relevant inputs for forming an 
all-things-considered view. 
 

Reference class Constraints and point estimates of 
the first-trial probability (ftp) 

Informativeness 

Ambitious but feasible 
technology that a serious 
STEM field is explicitly trying 
to build. (link) 

Lower bound: ftp > 1/3000 
Conservative estimate: ftp ~ 1/300 
Optimistic estimate: ftp ~ 1/50 

Most informative. 

High impact technology that a 
serious STEM field is trying to 
build in 2020. (link) 

Conservative upper bound: ftp < 1/100 
Aggressive upper bound: fpt < 1/300 

Weakly 
informative. 

Technological development 
that has a transformative 
effect on the nature of work 
and society. (link) 

Upper bound: ftp < 1/130 Somewhat 
informative. 

Notable mathematical 
conjectures. (link) 

ftp ~ 1/170 Least informative. 

 
I did not find it useful to use a precise formula to combine the constraints and point estimates 
from these four reference classes. Overall, I favour a first-trial probability in the range [1/1000, 
1/100], with a preference for the higher end of that range.  If I had to pick a number I’d go with 43

~1/300, perhaps higher.  
 
The numbers I’ve derived depend on subjective choices about which references classes 
to use (reviewers suggested alternatives ), how to interpret them (the reference classes 44

44 Here are some alternative reference classes that reviewers suggested: crazy-hard ancient ambitions 
(e.g. immortality, teleportation, mind control, soothsaying, turning lead in gold cheaply, flying to the moon); 
hard business problems; years between inception of a technology and realisation (e.g. computers – 
Babbage to Turing, flight – ancient Greeks to Wright Brothers); process of automation (e.g. identify AGI 
with the point at which 90% of current-day-jobs are automated); growth of the world economy (e.g. 
identify AGI with passing some milestone in Gross World Product). I’m not sure exactly what first-trial 
probabilities these reference classes would suggest if someone worked them through. 

43 One other reason to prefer this range is that first-trial probabilities much higher than 1/100 lead to very 
large updates towards thinking AGI is impossible, based on the failure to develop it by 2020. See this 
table. 

 

https://docs.google.com/document/d/1eNKBkoQ-ABywSNRdZLbaaF7CSLP8yrvEcYHSAqnB2tA/edit#
https://docs.google.com/document/d/1iunOkxBYKmobKFULZPzzVkLIdHJCOM0GNexLWsoiGoc/edit#
https://docs.google.com/document/d/193gMzbJ9QJ41dC-4dTiYQuxL6S1IHsESZpId1q5whGs/edit#
https://docs.google.com/document/d/11gr8aEZ2TzmYhoPdv6RbL25QgGPnLnOqWLJ5l6AHPb4/edit#
https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit?pli=1#heading=h.sr5irn12xivk
https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit?pli=1#heading=h.sr5irn12xivk
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are somewhat vague ), and how relevant they are to AGI. I did my best to use a balanced 45

range of reference classes that could drive high and low values. These subjective 
judgements would probably not be sensitive to small changes in the definition of AGI 
(see more). 
 
The following table shows how different first-trial probabilities affect the bottom line, assuming 
that 1 virtual success and a regime start-time of 1956.    46

first-trial probability pr(AGI by 2036) 

1/50 12% 

1/100 8.9% 

1/200 5.7% 

1/300 4.2% 

1/500 2.8% 

1/1000 1.5% 

1/2000 0.77% 

1/3000 0.52% 

(Throughout this report, I typically give results to 2 significant figures as it is sometimes useful 
for understanding a table. However, I don’t think precision beyond 1 significant figure is 
meaningful.) 
 
Based on the table and my preferred range for the first-trial probability, my preferred range for 
pr(AGI by 2036) is 1.5 - 9%, with my best guess around 4%. I will be refining this preferred 
range over the course of the report. (At each time, I'll refer to the currently most refined estimate 
as my "preferred range," though it may continue to change throughout the report.) 
 
 
 

46 Notice that when the first-trial probability is very small, doubling it roughly doubles pr(AGI by 2036) - this 
is because the update from failure so far makes very little difference. But after the first-trial probability 
exceeds 1/300, doubling it less than doubles pr(AGI by 2036) - this is because the update from failure is 
more significant when the first-trial probability is bigger. Another way to think about this is that the update 
from failure puts a cap at how large pr(AGI by 2036) can be. That cap is 20%, which is reached for very 
high first-trial probabilities like that of Laplace’s rule of succession. When the cap is near to being 
approached, doubling the first-trial probability less than doubles pr(AGI by 2036). For very high first-trial 
probabilities above 1/20, doubling them makes very little difference to pr(AGI by 2036).  

45 They’re defined using vague words like “ambitious”, “high impact”, “serious”. 

 

https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.8lb143cirj8f
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5 Importance of other inputs 
The semi-informative priors framework has four inputs: 

●​ Regime start-time  
●​ Trial definition  
●​ Number of virtual successes  
●​ first-trial probability 

 
In the previous section we assumed that the regime start-time was 1956, the number of virtual 
successes was 1, and the trial definition was a ‘calendar year’. I then suggested that a 
reasonable first-trial probability for AGI should probably be in the range [1/1000, 1/100]. This 
corresponded to a bottom line pr(AGI by 2020) in the range [1.5%, 9%]. 
 
In this section, I investigate how this bottom line changes if we allow the regime start-time and 
the number of virtual successes to vary within reasonable bounds, still using the trial definition 
‘calendar year’. My conclusion is that these two inputs don’t affect the bottom line much if your 
first-trial probability is below 1/100. They matter even less if your first-trial probability is below 
1/300. The core reason for this is that if your first-trial probability is lower, you update less from 
observed failures. Both the regime start-time and the number of virtual successes affect the size 
of the update from observed failures; if this update is very small to begin with (due to a low 
first-trial probability), then these inputs make little difference. 
 
Overall, this section slightly widens my preferred range to [1%, 10%]. If this seems reasonable, I 
suggest skipping to section 6. 
 
The section has three parts: 

●​ I briefly explain with an example why having a lower first-trial probability means that you 
update less from observed failures (here). 

●​ I investigate how the number of virtual successes affects the bottom line (here). 
●​ I investigate how the regime start-time affects the bottom line (here). 

 

5.1 The lower the first-trial probability, the smaller the update from 
observing failure 
To illustrate this core idea, let’s consider a simple example:  
 
You’ve just landed in foreign land that you know little about and are wondering about the 
probability p that it rains each day in your new location. You’ve been there 10 days and it hasn’t 
rained yet. 
 

 

https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit?pli=1#heading=h.b3ax64lwk41b
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Let’s assume each day is a trial and use 1 virtual success. Ten failed trials have happened. We’ll 
compare the size of the update from these failures for different possible first-trial probabilities.  
 
If your first-trial probability was ½, then your posterior probability that it rains each day is 

 (see formula). You update  from  to . 𝐸(𝑝) =  1/(2 +  10) = 1/12 𝐸(𝑝) 1/2 1/12
 
But if your first-trial is 1/50 -- you initially believed it was very unlikely to rain on a given day -- 
then your posterior is . You update  from 1/50 to 1/60. This is 𝐸(𝑝) =  1/(50 +  10) = 1/60 𝐸(𝑝)
a smaller change in your belief about the probability that it rains , both in absolute and 𝐸(𝑝)
percentage terms.  47

 
A similar principle is important for this section. If you have a sufficiently low first-trial probability 
that AGI will be developed, then the update from failure to develop it so far will make only a 
small difference to your probability that AGI is developed in future years. Changing the number 
of virtual successes and the regime start-time changes the exact size of this update; but if the 
update is small then this makes little difference to the bottom line. 
 

5.2 Number of virtual successes 
In this section I: 

●​ Discuss the meaning of the number of virtual successes (here). 
●​ Explain what I range I prefer for this parameter (here). 
●​ Analyse the effect of varying this parameter on the bottom line (here). 

5.2.1 What is the significance of the number of virtual successes? 
Recall that, in this model, p is the constant probability of developing AGI in each trial. Intuitively, 
p represents the difficulty of developing AGI. We are unsure about the true value of p so place a 
probability distribution -- a beta distribution, in fact -- over its value. E(p) is our expected value of 
p, our overall belief about how likely AGI is to be developed in one trial, given the outcomes 
(failures) in any previous trials.​
 
The number of virtual successes, together with the first-trial probability, determines your initial 
probability distribution over p. The following graphs show this initial distribution for different 
values of these two inputs, which I shorten to nvs and ftp on the graph labels. 
 

47 We can also consider the change in your belief about the median number of trials until it first rains. 
When the first-trial probability is 1/2, this shifts from 1 day to 11 days; when the first-trial probability is 
1/50, this shifts from 49 days to 59 days. So the absolute change in the median is constant between the 
two examples, but the percentage change is smaller when your first-trial probability is smaller. 

 

https://en.wikipedia.org/wiki/Beta_distribution#Haldane.27s_prior_probability_.28Beta.280.2C0.29.29
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The vertical orange dotted lines shows the value of the first-trial probability. More virtual 
successes makes the distribution spike more sharply near the first-trial probability; this 
represents increased confidence about how difficult AGI is to develop. Conversely, fewer virtual 
successes spreads out probability mass towards extremal values of p; this represents more 
uncertainty about the difficulty of developing AGI. In other words, the number of virtual 
successes relates to the variance of our initial estimate of p. More virtual successes -> less 
variance.  
 
We can relate this to the reference classes discussed in section 4. If there is a strong link 
between AGI and one particular reference class, and items in that reference class are similarly 
difficult to one other, this suggests we can be confident about how difficult AGI will be. This 
would point towards using more virtual successes. Conversely, if there are possible links to 
multiple reference classes, these reference classes differ from each other in their average 
difficulty, and the items within each reference class vary in their difficulty, this suggests we 
should be uncertain about how difficult AGI will be. This would point towards using fewer virtual 
successes.  48

 
As discussed in section 3, fewer virtual successes means that E(p) changes more when you 
observe failed trials (holding ftp fixed). So we can think of virtual successes as representing the 
degree of resiliency of our belief about p. An alternative measure of resiliency would be the total 

48 Thanks to Alan Hajek and Jeremy Strasser for making the link with reference classes. 
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number of virtual observations: virtual successes + virtual failures. I explain why I don’t use this 
measure in an appendix. 
 
We can also use the above graphs to visualize what happens to our distribution over p when we 
observe failed trials. The distribution changes just as if we had decreased the first-trial 
probability.  If our initial distribution is one of the top graphs then as we observe failures it will 49

morph into the distributions shown directly below it.  50

 

5.2.2 What is a reasonable range for the number of virtual successes? 
This section briefly discusses a few ways to inform your choice of this parameter.  
 
I favour values for this parameter in the range [0.5, 1], and think there are good reasons to avoid 
values as high as 10 or as low as 0.1.  
 

Eyeballing the graphs 
One way to inform your choice of number of virtual successes is to eyeball the above collection 
of graphs, and favour the distributions that look more reasonable to you. For example, I prefer 
the probability density to increase as p approaches 0 -- e.g. I think p is more likely to be 
between 0 and 1 / 10,000 than between 1 / 10,000 and 2 / 10,000. This implies that the number 
of virtual successes .  ≤ 1 51

 
Such considerations aren’t very persuasive to me, but I give them some weight. 
 

Consider what a reasonable update would be 
Suppose your first-trial probability for AGI is 1/100. That means that initially you think a year of 
research has a 1/100 chance of successfully developing AGI: E(p) = 1/100. Suppose you then 
learn that 50 years of research have failed to produce AGI. Later, you learn that a further 50 
years have again failed. The following table shows your posterior value of E(p) after these 
updates.   52

 

Number of virtual 0.1 0.5 1 2 10 

52 The table uses the equation E(p) = 1/(N + n/v), where first-trial probability = 1/N, n is the number of 
observed failures, v is the number of virtual successes.  

51 With 1 virtual success, the probability density tends upwards towards a constant as p tends 0; with <1 
virtual successes, the probability density tends to infinity as p tends to 0. 

50 If you have fewer virtual successes then it will take fewer observed failures for your distribution to 
morph into the one directly below it. For example, the top left distribution (0.5 virtual successes) will 
morph into the bottom left after 50 observed failures, while the top right distribution (10 virtual successes) 
would take 1000 failures to morph into the bottom right. 

49 I prove this in this appendix. 

 

https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.slzb4q5gc6yj
https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.k0p0grrjp9t7
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successes 

Initial E(p) 1/100 1/100 1/100 1/100 1/100 

E(p) after 50 
failures 

1/600 1/200 1/150 1/125 1/105 

E(p) after 100 
failures 

1/1100 1/300 1/200 1/150 1/110 

 
I recommend choosing your preferred number of virtual successes by considering which update 
you find the most reasonable. I explain my thinking about this below. 
 
Intuitively, I find the update much too large with 0.1 virtual successes. If you initially thought the 
annual chance of developing AGI was 1/100, 50 years of failure is not that surprising and it 
should not reduce your estimate down as low as 1/600.  Such a large update might be 53

reasonable if we initially knew that AGI would either be very easy to develop, or it would be very 
hard. But, at least given the evidence this project is taking into account, we don’t know this. 
 
Similarly, I intuitively find the update with 10 virtual successes  much too small. If you initially 
thought the annual chance of developing AGI was 1/100, then 100 years of failure is somewhat 
surprising (~37%) and should reduce your estimate down further than just to 1/110.  Such a 54

small update might be reasonable if we initially had reason to be very confident about exactly 
how hard AGI would be to develop (e.g. because we had lots of very similar examples to inform 
our view). But this doesn’t seem to be the case. 
 
I personally find the updates most reasonable when the number of successes is 1, followed by 
those for 0.5. This and the previous section explains my preference for the range [0.5, 1]. I 
expect readers to differ somewhat, but would be surprised if people preferred values far outside 
the range [0.5, 2]. 
 

54 The reason why this happens is because, when the number of virtual successes is that lower, your 
initial distribution over p is more concentrated at values of p close to 0 and 1. The observed failures then 
very significantly reduce your probability that p is indeed close to 1, only leaving the possibility that p is 
very close to 0. Intuitively, this corresponds to you initially thinking that AGI is either easy or very hard and 
then updating to thinking it must be very hard. 

53 The reason why this happens is because, when the number of virtual successes is that lower, your 
initial distribution over p is more concentrated at values of p close to 0 and 1. The observed failures then 
very significantly reduce your probability that p is indeed close to 1, only leaving the possibility that p is 
very close to 0. Intuitively, this corresponds to you initially thinking that AGI is either easy or very hard and 
then updating to thinking it must be very hard. 
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A pragmatic reason to prefer number of virtual successes = 1 
The mathematical interpretation of the first-trial probability is easier to think about if there is 1 
virtual success.  
 
In this case, if the first-trial probability = 1 / N then it turns out that there’s a 50% chance of 
success within the first N - 1 trials. This makes it easy to translate claims about the first-trial 
probability into claims about the median expected time until success. This isn’t true for other 
numbers of virtual successes. 
 
This consideration could potentially be a tiebreaker.  
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5.2.3 How does varying the number of virtual successes affect the bottom 
line? 
The following table shows pr(AGI by 2036) for different numbers of virtual successes and 
first-trial probabilities. I use a regime start-time of 1956. 
 

 
Number of virtual 
successes 

first-trial probability 

1/100 1/300 1/1000 

0.1 2.0% 1.6% 0.93% 

0.25 4.1% 2.7% 1.2% 

0.5 6.4% 3.6% 1.4% 

1 8.9% 4.2% 1.5% 

2 11% 4.7% 1.5% 

4 13% 4.9% 1.6% 

10 14% 5.1% 1.6% 

 
There are a few things worth noting: 

●​ Fewer virtual successes means a lower pr(AGI by 2036) as you update more from 
failures to date. 

●​ Varying the number of virtual successes within my preferred range [0.5, 1] makes little 
difference to the bottom line.  

●​ Varying the number of virtual successes makes less difference when the first-trial 
probability is lower.   55

●​ Using very large values for the number of virtual successes won’t affect your bottom line 
much, but using very small values will.  For example, the increase from 4 to 10 has very 56

little effect, while the decrease from 0.25 to 0.1 has a moderate effect. 
 

56 The reason for this is that as the number of virtual successes tends to infinity, the update from the 
observed failures so far tends to 0. Once the update is already small, further increases in the number of 
virtual successes can have very little effect. By contrast, as the number of virtual successes tends to 0, 
the update from the observed failures grows without limit and the posterior E(p) tends to 0. So decreases 
in the number of virtual successes can continue to halve your bottom line without limit. 

55 The reason for this stems from the fact that when your first-trial probability is low, your update from 
observed failures is low. Halving / doubling the number of virtual successes can double / halve the size of 
these updates. But if these updates are sufficiently small to begin with, then doubling or halving their size 
makes little difference to the bottom line. 
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In fact, the above table may overestimate the importance of the number of virtual successes. 
This is because using fewer virtual successes may lead you to favour a larger first-trial 
probability, and these effects partially cancel out.  
 
In particular, when choosing the first-trial probability one useful tool is to constrain or estimate 
the cumulative probability of success within some period. A smaller number of virtual successes 
will lower this cumulative probability, so you will need a larger first-trial probability in order to 
satisfy any given constraint. 

 0.5 virtual successes 1 virtual success 

first-trial probability 1/50 1/100 1/300 1/1000 1/100 1/300 1/1000 

pr(AGI in first 50 years) 43% 30% 13% 4.7% 34% 14% 4.8% 

pr(AGI in first 100 years) 56% 43% 23% 8.7% 50% 25% 9.1% 

pr(AGI by 2036 | no AGI by 2020)  8.0% 6.4% 3.6% 1.4% 8.9% 4.2% 1.5% 

 
For example, suppose you constrain the probability of success in the first 100 years of research 
to be roughly 50%. If you use 1 virtual success, your first-trial probability will be close to 1/100; 
but if you use 0.5 virtual successes, your first-trial probability will be closer to 1/50. As a 
consequence, using 0.5 virtual successes rather than 1 only decreases pr(AGI by 2036) by 
about 8.9% - 8.0% = 0.9%, rather than the 8.9% - 6.4% = 2.5% that it would be if you kept the 
first-trial probability constant. 
 
(Using a table like this is in fact another way to inform your preferred number of virtual 
successes. Keeping the reference classes discussed in section 4 in mind, you can decide which 
combination of inputs give the most plausible values for pr(AGI in first 50 years) and pr(AGI in 
first 100 years).) 
 
Summary - How does varying the number of virtual successes affect the bottom line? 
I prefer a range for the number of virtual successes of [0.5, 1]. If the first-trial probability  ≤
1/300, changes with this range make <1% difference to the bottom line; if the first-trial 
probability is as high as 1/100, changes in this range make <2% difference to the bottom line.  57

Throughout the rest of the document, I use 1 virtual success unless I specify otherwise.  
 

57 If your first-trial probability is 1/50, changing the number of virtual successes from 1 to 0.5 can affect the 
bottom line by about 3%. For example, suppose that you choose the first-trial probability so that the 
probability of success in the first 50 years is 50%. Then with 1 virtual success you’ll choose first-trial 
probability = 1/50 and have pr(AGI by 2036) = 12%. While with 0.5 virtual successes you’ll choose 
first-trial probability = 1/30 and have pr(AGI by 2036) = 8.9%. 
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5.3 Regime start time 
The regime start time is a time such that the failure to develop AGI before that time tells us very 
little about the probability of success after that time. Its significance in the semi-informative 
priors framework is that we update our belief about p -- the difficulty of developing AGI -- based 
on failed trials after the regime start time but not before it. 
 
A natural choice of regime start time is 1956, the year when the field of AI R&D is commonly 
taken to have begun. However, there are other possible choices: 

●​ 1945, the date of the first digital computer. 
●​ 2000, roughly the time when an amount of computational power that’s comparable with 

the brain first became affordable.  58

●​ 1650, roughly the time when classical philosophers started trying to represent rational 
thought as a symbolic system. 

 
What about even earlier regime start times? Someone could argue: 
 

‘Humans have been trying to automate parts of their work since society began. AGI would 
allow all human work to be automated. So people have always been trying to do the same 
thing AI R&D is trying to do. A better start-time would be 5000 BC.’ 
 

The following table shows the bottom line for various values of the first-trial probability and the 
regime start-time. 
 

Pr(AGI by 2036) for different inputs 

 Regime start-time 

first-trial 
probability 

2000 1956 1945 1650 5000 BC 

1/50 19% 12% 11% 3.7% 0.23% 

1/100 12% 8.9% 8.4% 3.3% 0.22% 

1/300 4.8% 4.2% 4.1% 2.3% 0.22% 

1/1000 1.5% 1.5% 1.5% 1.2% 0.20% 

58 I operationalise this as the first year when you could first buy machines that can do 1e15 FLOP/s for $1 
billion. My colleague Joe Carlsmith has written a report on how much computational power might be 
needed to match the human brain (see blog); his median estimate is that it would take 1e15 FLOP/s to 
match the brain’s cognitive task performance.  This table from AI impacts suggests that the first time 1e15 
FLOP/s cost $1 billion was around 2000. 

 

https://en.wikipedia.org/wiki/History_of_artificial_intelligence
https://plato.stanford.edu/entries/artificial-intelligence/#HistAI
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/History_of_artificial_intelligence#Formal_reasoning
https://en.wikipedia.org/wiki/History_of_artificial_intelligence#Formal_reasoning
https://www.openphilanthropy.org/about/team/joseph-carlsmith
https://www.openphilanthropy.org/brain-computation-report
https://www.openphilanthropy.org/blog/new-report-brain-computation
https://aiimpacts.org/wikipedia-history-of-gflops-costs/
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A few things are worth noting: 

●​ If your first-trial probability is lower, changes in the regime start time make less difference 
to the bottom line.  

●​ The highest values of pr(AGI by 2036) correspond to large first-trial probabilities and late 
regime start-times. 

●​ Very early regime start-times drive very low pr(AGI by 2036) no matter what your 
first-trial probability. 

 
However this last conclusion is misleading. The above analysis ignores the fact that the world is 
changing much more quickly now than in ancient times. In particular, technological progress is 
much faster.  As a result, even if we take very early regime start-times seriously, we should 59

judge that the annual probability of creating AGI is higher now than in ancient times. But our 
above analysis implicitly assumes that the annual probability p of success was the same in 
modern times as in ancient times. As a consequence, its update from the failure to build AGI in 
ancient times was too strong.  
 
In response to this problem we should down-weight the number of trials occurring each year in 
ancient times relative to modern times. There are a few ways to do this: 

●​ Weight each year by the global population in that year. The idea here is that twice as 
many people should make twice as much technological progress. 

●​ Weight each year by the amount of economic growth that occurs in each year, 
measured as the percentage increase in Gross World Product (GWP). Though GWP is 
hard to measure in ancient times, economic growth is a better indicator of technological 
progress than the population. 

●​ Weight each year by the amount of technological progress in frontier countries, 
operationalised as the percentage increase in French GDP per capita.  60

 
As we go down this list, the quantity used to weight each year becomes more relevant to our 
analysis but our measurement of the quantity becomes more uncertain. I will present results for 
all three, and encourage readers to use whichever they think is most reasonable.  
 
Each of these approaches assigns a weight to each year. I normalise the weights for each 
approach by setting the average weight of 1956-2020 to 1 - this matches our previous 
assumption of one trial per calendar year since 1956. Then I use the weights to calculate the 

60 I chose France on the basis of data availability and its proximity to the frontier in both modern and 
Roman times. In many standard economic growth models the long-run growth rate in the level of 
technology is the same as the long-run growth rate of GDP per capita. However, I expect this measure to 
underestimate the amount of technological progress in ancient times, as such progress often contributed 
to a larger population rather than a higher quality of life. 

59 The rate of technological progress is faster today than in ancient times by all measures of technological 
progress that I’m aware of: percentage increase in TFP, percentage increase in MFP, GDP/capita, and 
land productivity. This is true despite the fact that we may already have discovered most of the 
low-hanging fruit technologies.  

 

https://en.wikipedia.org/wiki/Gross_world_product#:~:text=In%202017%2C%20according%20to%20the,according%20to%20the%20World%20Factbook.
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number of trials before 1956. The following table shows the results when the regime start-time is 
5,000 BC.  

 Approach to weighting each year 

Population Economic 
growth (%) 

Technological 
progress (%) 

Zero weight 
before 1956   61

Trials between 
5000 BC and 1956 

168 220 139 0 

first-trial probability Pr(AGI by 2036) 

1/2 6.4% 5.3% 7.3% 20% 

1/100 4.6% 4.0% 5.0% 8.9% 

1/300 2.9% 2.7% 3.1% 4.2% 

1/1000 1.3% 1.2% 1.3% 1.5% 

 
All three approaches to weighting each year give broadly similar results. They imply that a few 
hundred trials occurred before 1956, rather than thousands, and so pr(AGI by 2036) is only 
moderately downweighted. The effect, compared with a regime start-time of 1956, is to push the 
bottom line down into the 1 - 7% range regardless of your first-trial probability.  So if you regard 62

very early regime start-times as plausible, this gives you a reason to avoid the upper-end of my 
preferred range of 1 - 9%.   63

 
 

63 We could also keep the regime start-time at 1956 and then use the 2nd row of the table ‘Trials between 
5000 BC and 1956’ to inform our choice of the first-trial probability. In the case of technological progress, 
rather than regime start-time = 5,000 BC and first-trial probability = 1/100, we could use regime start-time 
= 1956 and first-trial = 1/(100 + 139) = 1/239. These two approaches give identical results: our distribution 
over p in 1956 is the same on either approach (see more on why here). 
 
The above example assumes 1 virtual success, but the result applies more generally: we can use a 
regime start-time of 1956 and use the above analysis to adjust our first-trial probability. There’s a formula 
relating (first-trial probability for 1956), (first-trial probability for 5,000 BC), (failed trials between 5,000 BC 
and 1956), and v the number of virtual successes. The formula is 1/(first-trial probability for 1956) = v * 
(failed trials before 1956) + 1/(first-trial probability for 5,000 BC). The exact value of (failed trials between 
5,000 BC and 1956) depends on the approach to weighting each year, as in the main text. 
 

62 This analysis used 1 virtual success. I did the analysis with 0.5 virtual successes, and the equivalent 
table suggested a range of 1 - 5%; this range is lower because we update more from the ‘failed trials’ 
between 5000BC and 1956. 

61 This is what we did in section 4: trials as calendar years and a regime start-time of 1956. 

 

https://docs.google.com/document/d/18pB2nBLiuk-v0ryKZ8fYsHZPHvY_rZn61vF6_fksPPg/edit#heading=h.k0p0grrjp9t7
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Summary - How does varying the regime start-time affect the bottom line? 
Overall, the effect of very early regime start-times is to bring down the bottom line into the range 
1 - 7% even if you have a very large first-trial probability. Late regime start-times would 
somewhat increase the higher end of my preferred range, potentially from 9 to 12%. 
 

5.4 Summary - importance of other inputs 
In section 4 we assumed that there was 1 virtual success and that the regime start-time was 
1956. On this basis my preferred range for pr(AGI by 2036) was 1.5 - 9%.  
 
This basic picture changes surprisingly little when we consider different values for the number of 
virtual successes and the regime start-time.  

●​ If your bottom line was towards the top of that range, then fewer virtual successes or an 
earlier regime-start time can push you slightly towards the bottom of that range. 
Conversely, a late regime start-time could raise your bottom line slightly.  

●​ But if you were already near the bottom of that range, then varying these two inputs has 
very little effect. This is because when your first-trial probability is lower, you update less 
from the failure to develop AGI to date. 

 
On this basis, my preferred range for pr(AGI by 2036) is now 1 - 10%,  and my central estimate 64

is still around 4%.  65

 
All the analysis so far assumes that a trial is a calendar year. The next section considers other 
trial definitions.  

65 To reiterate from earlier, I’m refining my preferred range and estimate over the course of the report. At 
each time, I'll refer to the currently most refined estimate as my "preferred range," though it will continue 
to change throughout the report. 

64 The increase in the upper bound is due to having some weight on first-trial probability = 1/100 and a 
late regime start-time. 

 

https://docs.google.com/document/d/1PGkJNjOQtWh3bA9yWjzLa7mIjvum-y2tX3hOG7itQQg/edit#heading=h.8joavmm5o23n
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