

Gooru Oneroster APIs
Overview​ 2

Authentication for APIs​ 2

Data Requirements​ 2
Organization Rostering​ 2
Class Rostering​ 4
User Rostering​ 5
Enrollment Rostering​ 6

Upload Roster​ 7
Details​ 8
Headers​ 8
Request Payload​ 8
Success Response​ 8
Error Response​ 8

Get Upload Status​ 8
Details​ 9
Headers​ 9
Request Payload​ 9
Success Response​ 9
Possible Status​ 9
Responses​ 10

Error Response Payload​ 10
Completed Response Payload​ 10

Error Response​ 10

Reference​ 11
HTTP Response codes​ 11

Do’s and Don’ts​ 12

Last Updated: 2 Feb 2021 Page 1 of 14

Overview
This document lists all the APIs related to Oneroster.

Authentication for APIs
All Oneroster APIs are authenticated based on the client id and secret shared by Gooru with
partners. Partners need to base64 encode the client id and secret in order to pass as Basic
authorization header to APIs.

Example: (To generate Base64 Encoded Credentials)

ClientId: <Will be shared by Gooru team in Email>
Secret: <Will be shared by Gooru team in Email>

Combine client id and secret with ‘:’ -
<clientId>:<Secret>

And then encode it by Base64 encoder which will generate a string like below. Use it to pass in
a request header.
Basic
ODU4NGIxY2QtNjEyNy00M2U1LWFlNjMtMTA3MmRmOTJhOGYzOk1sNWpKbWVrL0Y2WUpFa
HAzVXBpM0xSZ1JKaz0=

Last Updated: 2 Feb 2021 Page 2 of 14

Data Requirements
All csv files contained in the zip should comply to the IMS Global Oneroster specification

CSV Overview:
Tenants should provide the student information to Gooru as .csv formatted files.

Tenants must continue to use .csv files to exchange roster information with Gooru, below is an
outline of the format for the roster data which corresponds to the OneRoster standard.

Tenants can choose to upload class rosters by preparing four (4) files in csv format outlined in
this document.

1.​ orgs.csv
2.​ users.csv
3.​ classes.csv
4.​ enrollments.csv

CSV Format:
The file format MUST be comma separated values format (CSV) for the OneRoster profile.
Each field will be separated by commas and line breaks between each row. Double quotes
MUST be used with a field that contains a comma.

● All files are required

● The header row is required.

● Some fields are required.

● The primary id is marked in red below, this must be unique per file.

ALL Header fields MUST be supplied in EXACTLY the same order as in the tables below.
Optional fields with no data MUST simply be empty in the CSV. Header fields MUST be
named the same as per the field header in the tables below. All filenames and header fields are
case sensitive.

Last Updated: 2 Feb 2021 Page 3 of 14

https://www.imsglobal.org/lis/imsOneRosterv1p0/imsOneRosterCSV-v1p0.html

In order to roster the data into Gooru, tenants should already exist in the Gooru system against
which the data will be rostered. In Case the tenant is not created, please get in touch with the
Gooru Team.

Organization Rostering
First step in the rostering to create the organization based on the details provided in the
“organization.csv”. This file should be processed first if present

●​ New organization will be created if there is no organization present with the same
“sourced_id” for the tenant.

●​ If an organization with the same “sourced_id” found for the tenant rostering the data,
then the last modified date from the csv will be compared with the last modified date
present in the database. If date from csv file is later than what present in date, class data
will be updated otherwise no action will be taken

If this file is not present in the zip uploaded by the tenant, other csv files should contain
references to existing organizations (orgSourcedId).

If there is no organization with orgSourcedId, no data will be rostered and error should be
returned to the tenant.

There is one to one mapping between the organization and tenant. If any partner wants to roster
the data for multiple school districts, all school districts should be first configured in Gooru as a
sub tenant of the partner’s tenant.

School districts will contain multiple schools having their own organization sourced ids. Data will
be mapped in Gooru based on the tenant for which the data is getting rostered.

Partner’s roster sync system will be responsible to roster the data against each school district
separately.

Support Fields:

field header required format description

sourcedId Yes UUID unique id for the organization. SourcedId is
used in other files and must be unique across
all organizations. (For example –schools in
your district).

status No String “active”.

Last Updated: 2 Feb 2021 Page 4 of 14

dateLastModified No Date The date that this record was last modified.
(format is YYYY-MM-DD)

name Yes string name of the organization

type Yes String “school”

identifier No string NCES ID National Center for Education
Statistics) for the school / district

metadata.classificati
on

No String “charter” | “private” | “public”

metadata.gender No String “female” | “male” | “mixed”

metadata.boarding No Boolean True if school is boarding school

parentSourcedId No UUID SourcedId of the Parent organization

Class Rostering
Based on the data present in the “classes.csv” file, classes are rostered into Gooru.

●​ New class will be created if there is no existing class present for the organization with
same “sourced_id”

●​ If a class with the same “sourced_id” is found for the organization, the last modified date
from the csv will be compared with the last modified date present in the database. If date
from csv file is later than what present in date, class data will be updated otherwise no
action will be taken

Support Fields:

field header required format description

sourcedId Yes UUID Unique ID for the class. SourcedId is used in other
files and must be unique across all classes.

status No String “active”

dateLastModified No Date The date that this record was last modified.
(FORMAT IS YYYY-MM-DD)

title Yes String Name of this class

grade No String Grade (i.e. 9 or range 9-12)

courseSourcedId No UUID SourcedId of the course of which this class is an
instance

Last Updated: 2 Feb 2021 Page 5 of 14

classCode No String Human readable code used to help identify this class

classType Yes String “homeroom”, “scheduled”

location No String Human readable description of where the class is
physically located

schoolSourcedId Yes UUID SourcedId of the organization which teaches this
class

termSourcedId Yes UUID SourcedId of the academicSessions(s) in which the
class is taught. If more than one term is needed, use
double quotes and delimit with commas, (per RFC
4180)
Examples:
“1,2”
1
“1,4,8”

subjects No String Subject name(s). If more than one subject is needed,
use double quotes, and delimit with commas (per
RFC 4180):

Examples:
“chemistry, physics”
physics
“music, drama, poetry”

User Rostering
Based on the data present in the “users.csv” file, users data will be rostered into the Gooru
system.

●​ New user will be created if there is no user present for the organization with same
“sourced_id” and username

●​ If a user with the same “sourced_id” and username / user_id found for the organization,
the last modified date from the csv will be compared with the last modified date present
in the database. If date from csv file is later than what present in date, user data will be
updated otherwise no action will be taken

“username” is mandatory while rostering users data. This should be the login name or login id of
the user in the client system.

Last Updated: 2 Feb 2021 Page 6 of 14

While rostering the record into Gooru, uniqueness of the records is based on the “username”
and tenant. If there is already a user with “username” (i.e. reference_id in “users” table of Core
DB) for the tenant, error (409 Conflict) will be returned.

Supported Fields:

field header required format description

sourcedId Yes UUID Unique ID for the user. SourcedId is used in
other files and must be unique across all users,

status No String “active”

dateLastModified No Date The date that this record was last modified.
(FORMAT IS YYYY-MM-DD)

orgSourcedIds Yes UUID SourcedIds of the Organizations to which this
user belongs.

(Note in most cases, it is expected that users will
belong to a single school).

role Yes String “teacher”, “student”

username Yes String Username

userId No String external machine readable id (e.g. LDAP id, LTI
id) for this user, to be used if the sourcedId
should not be used.

givenName Yes String User’s first name

familyName Yes String User’s surname

identifier No String Identifier for the user with a human readable
meaning

email No String Email address for the user

sms No String SMS address for the user

phone No String Phone number for the user

agents No String SourcedIds of the users to which this user has a
relationship.
Note: In most cases this will be for indicating
parental relationships.

Last Updated: 2 Feb 2021 Page 7 of 14

Enrollment Rostering
Based on the data present in the “enrollments.csv” file, enrollments will be rostered into the
Gooru system.

●​ It's mandatory to pass organization sourced id, class sourced id and user sourced id in
order to enroll the users. Missing any of the details will not create enrollment and specific
errors should be returned.

Support Fields:

field header required format description

sourcedId Yes UUID Id of this enrollment

classSourcedId Yes UUID Id of the class

schoolSourcedId Yes UUID Id of the school

userSourcedId Yes UUID Id of the user (teacher or student)

role Yes String “student” | “teacher”

status No String “active”

dateLastModified No Date The date that this record was last modified.
(FORMAT IS YYYY-MM-DD)

primary No Boolean MUST only be set to true for ONE teacher for a
class.

Upload Roster
This API is used to upload the roster files in zip format. Invalid or extra uploaded files are
skipped from rostering. Current scope of this API is to process orgs, users, classes and
enrollments only. Other files such as academicSessions, demographics and courses will not be
processed and rostered into the system.

All data will be rostered against the client id (tenant) in Gooru. Client applications need to
provide the same client id and secret while performing SSO which id used while rostering the
users.

This API will not return any details on error / exceptions for the failed records. Status API should
be explicitly called with required parameters to get the status / error while rostering files.

Last Updated: 2 Feb 2021 Page 8 of 14

Details

HTTP Method POST

End Point http://{host}/api/nucleus-oneroster/{version}/upload

Sample http://oneroster.gooru.org/api/nucleus-oneroster/v1/upload

Headers

Header Name Value

Authorization Basic <BASE64 ENCODED CREDENTIALS>

Content-Type multipart/form-data;
boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW

●​ Replace the correct value of encoded credentials in ‘Authorization’ header
●​ Boundary in the ‘Content-Type’ header is a sample. Need to be replaced with actual

boundaries while calling the API.

Request Payload
Attach the file with request.

Success Response
HTTP Status Code: 201 Created
Location header of the response will contain the Upload Id which can be used to get the status
of the upload.

Error Response
In case of any error while uploading the Roster, API will not provide any details of error /
exceptions for records in the files. For Error response codes, refer to HTTP Response Codes.

Get Upload Status
This API is used to get the status of the upload for a given upload id. For now this API will return
total records and success record counts. It may be enhanced in future to return records level
details.

Last Updated: 2 Feb 2021 Page 9 of 14

Details

HTTP Method GET

End Point http://{host}/api/nucleus-oneroster/{version}/upload/{uploadId}/status

Sample http://oneroster.gooru.org/api/nucleus-oneroster/v1/upload/62f3fbd3-43
41-4e30-8efe-3b655074133d/status

Headers

Header Name Value

Authorization Basic <BASE64 ENCODED CREDENTIALS>

●​ Replace the correct value of encoded credentials in the ‘Authorization’ header.

Request Payload
No request payload required for this API

Success Response
HTTP Status Code: 200 OK

Possible Status

Status Purpose

in-progress Denotes the in progress status of the upload.

accepted Denotes that the upload zip file has been accepted for
rostering. This is the status after parsing and validation of all
csv files, and still the sync with Gooru main database is
pending.

failed Denotes that the upload has been failed. In case of failure
while rostering records, this status will be returned.

completed Denotes that the upload has been complete. When all records
are rostered successfully, this status will be returned.

Last Updated: 2 Feb 2021 Page 10 of 14

Responses

Error Response Payload
{
​ "status": "completed",
​ "orgs_errors": [{
​ ​ "<<source_id of Org>>": "org.postgresql.util.PSQLException: ERROR:
duplicate key value violates unique constraint"
​ }],
​ "users_errors": [{}],
​ "classes_errors": [{}],
​ "enrollments_errors": [{}]
}

Completed Response Payload
{
​ "status": "completed",
​ "saved_records": {
​ ​ "users": 1055,
​ ​ "classes": 1280,
​ ​ "enrollments": 7701
​ },
​ "total_records": {
​ ​ "orgs": 0,
​ ​ "users": 0,
​ ​ "classes": 0,
​ ​ "enrollments": 0
​ },
​ "success_records": {
​ ​ "orgs": 0,
​ ​ "users": 0,
​ ​ "classes": 0,
​ ​ "enrollments": 0
​ }
}

Error Response
For Error response codes, refer to HTTP Response Codes.

Last Updated: 2 Feb 2021 Page 11 of 14

Reference

HTTP Response codes
For our standardized APIs we shall be using the following HTTP Status code to send back the
information to the client.

HTTP Status Code HTTP Method Response Body/Contents Description

200 GET Entity which is requested Operation successful
without error

201 Created POST No Entity in body except
for the location of entity in
header

Entity creation
successful

204 No Content PUT, DELETE No Content Entity update or
delete is successful

400 Bad Request ALL Error messages Malformed, invalid or
incorrect request or
request parameters
which are applicable
to this Entity

401 Unauthorized ALL No Content Action requiring
authentication or
session token may
have expired. Note
that we don’t return
www-authenticate
headers as we do not
want the browser to
participate in the auth
flow.

403 Forbidden ALL Error message Authentication failure,
or invalid API key, or
insufficient privileges

404 Not Found ALL No Content Entity not found

Last Updated: 2 Feb 2021 Page 12 of 14

405 Not Allowed ALL No Content Entity does not
support the
requested operation

408 Request Timeout ALL No Content Request has timed
out. The system was
not able to complete
the operation within
specified time

413 Request Entity
Too Large

POST, PUT No Content The representation of
payload is too large
for server to handle,
or is not allowed

500 Internal Server
Error

ALL Error message Some exceptions
happened while
processing the
request. The
message may be
technical and may
not be suitable for UI
consumption.

Last Updated: 2 Feb 2021 Page 13 of 14

Do’s and Don’ts

1.​ Make sure to keep a track of all sourcedIds. These sourcedIds are required when you
want to enrol the new user to the old class or old user to new class.

2.​ CSV files should include all columns in the same sequence, including optional ones
irrespective of whether there is data or not.

3.​ One user can be associated to one organization only.
4.​ Always class is associated with a teacher account.
5.​ If you need to associate a Student to an existing class please use the same sourcedid of

that respective class.
6.​ ​Supported organization type : "school"​
7.​ ​Supported Users Role : student, teacher​
8.​ Enrollments : make sure teacher related data is available first then student.
9.​ Update existing Users records: there is no change in the process. But if you need to

delete any account, update the status column with appropriate value and sourcedId.
10.​Update existing Enrollments:

a.​ If you want to add a new user to the existing class, make sure you provide the
correct sourcedId in the enrollments.csv file

Last Updated: 2 Feb 2021 Page 14 of 14

	Gooru Oneroster APIs
	
	
	Overview
	Authentication for APIs
	
	Data Requirements
	CSV Overview:
	CSV Format:
	Organization Rostering
	Class Rostering
	User Rostering
	Enrollment Rostering

	Upload Roster
	Details
	Headers
	Request Payload
	Success Response
	Error Response

	Get Upload Status
	Details
	Headers
	Request Payload
	Success Response
	Possible Status
	Responses
	Error Response Payload
	Completed Response Payload

	Error Response

	Reference
	HTTP Response codes

	
	
	Do’s and Don’ts

