Combinational Logic I

Learning Objectives

- 1. Generate a POS or SOP Boolean expression from a truth table.
- 2. Build a logic circuit from a Boolean expression.
- 3. Create a truth table from a Boolean expression or logic circuit.
- 4. Build a multiplexor out of primitive logic gates.

Electronics Basics

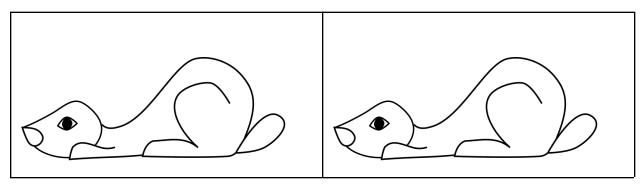
Short		
Draw a closed switch:		
at any point on	a	is the same
Example		
Draw a simple switched circuit		
Transistors are	controlled	
Draw the circuit using a transistor	Draw the simplified circuit	

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

There are many types of transistors:				
triode tube, BJT:		, FET:		
triode tube	ВЈТ		FET	
MOSFET Transistor				
M O S_		F E	T	
3 terminals:				
Gate voltages are either		or	·	
Draw a PMOS		Draw an NMOS		
Closes when gate =		Closes when ga	ate =	
TRANSISTOR CIRCUIT		SWITCH REPRES	ENTATION	
IN = 0 OUT = ?				
001 - :				
IN = 1				
OUT = ?				
This circuit is a				

© 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

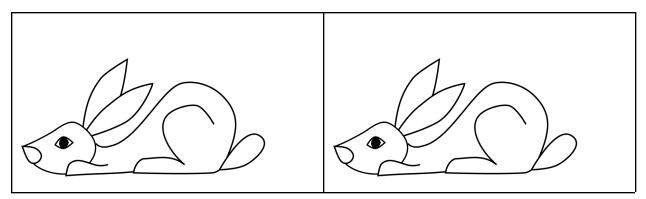
Truth Table


A truth table represents the	Draw the truth table for an inverter
of a logic circuit.	
# of inputs:	
# of outputs:	
# of columns:	
# of rows:	

"Not" A can be written as: _____

Logic Operations

Rabbit Analogy


Say "P" is any statement. E.g. P = "The rabbit has floppy ears"

This sentence is either ______ or _____

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Say "Q" is another statement. Q = "The rabbit has patched fur"

Now form the compound sentences:

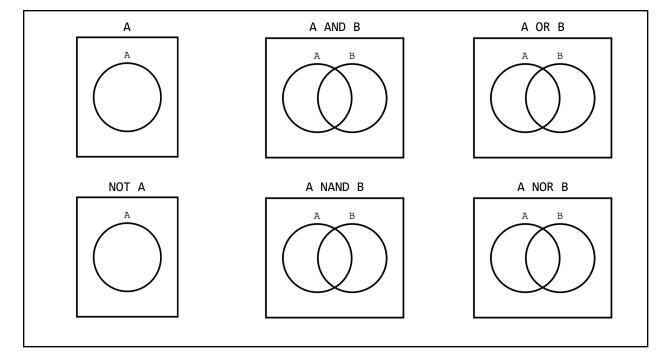
The rabbit has _____

_					_
D	-	n	Ы	- (٦
	а		L I	٠,	J

The	rabbit	has .	
The	rabbit	has	
P or			
The	rabbit	has	

Truth Tables

Has floppy ears? (P)	Has patched fur? (Q)	Has floppy ears AND patched fur? (P AND Q)


^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

Has floppy ears? (P)	Has patched fur? (Q)	Has floppy ears OR patched fur? (P OR Q)

The rabbit analogy was adapted from a lesson in the Cartoon Guide for Computer Science, 1st Ed. © 1983 p 102-104

Venn Diagrams

Shade the appropriate areas on the Venn diagrams

Logic Gates

BUFFER

Draw the schematic here:	Complete the truth table:		
	Α	Out = A	
	0	0	
	1	1	

NOT (Inverter)

Draw the schematic here:	Complete the truth t	able:
	A	Out = A'
(the indicates inversion)		

AND

Draw the schematic here:	Complete the truth table:		
	A	В	Out =
	0	0	
	0	1	
	1	0	
	1	1	
	•	•	

NAND

Draw the schematic here:	Complete the truth table:		
	A	В	Out =

[©] 2019, Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)

-1	1)

Draw the schematic here:	Complete the truth table:		
	A	В	Out =
NOR			
Draw the schematic here:	Complete the truth table:		
	Α	В	Out =
XOR			
Draw the schematic here:	Complete the truth table:		

A	В	Out =
		i

XNOR

Draw the schematic here:	Complete the truth table:		
	A	В	Out =

^{© 2019,} Rebecca Rashkin - This document may be copied, redistributed, transformed, or built upon in any format for **educational**, non-commercial purposes. Please give me appropriate credit should you choose to modify this resource. Thank you:)