
A
AAA pattern (aka 3A, Triple A, Given-When-Then) (Ch 3)

-​ Provides simple, uniform structure, which is the biggest advantages
of the pattern bc as you get used to it, can easily read & understand
any test

-​ Arrange: bring the system under test (SUT) & dependencies to
a desired state (initialize variables)

-​ Act: call methods on the SUT, pass prepared dependencies,
capture the output value (if any)

-​ Assert: verify the outcome, which may be represented by the
return value, final state of the SUT & its collaborators, or
methods the SUT called on those collaborators

-​ aka Given, When Then
-​ Given: Arrange
-​ When: Act
-​ Then: Assert

Access modifiers (Ch 5)

-​ private, public, internal (only 3 in C++)
-​ Keywords in OOP (Object-Oriented Programming) languages that set

the accessibility of classes, methods & other members
-​ A specific part of programming language syntax used to facilitate

the encapsulation of components

Active Record Pattern (Ch 7)

-​ An approach in which a domain class retrieves & persists itself to the
database

-​ Works fine in simple & short-lived projects, but often fails to scale as
the code base grows due to lack of separation between 2
responsibilities: business logic & communication with out-of-process
dependencies

Adapters (Ch 9)

-​ Abstract non-essential technical details of 3rd-party code
-​ Define the relationship with the library in your application’s terms
-​ Act as an anti-corruption layer between your code & the external

world, helping you:
-​ Abstract the underlying library’s complexity
-​ Only expose features you need from the library

https://en.wikipedia.org/wiki/Object-oriented_programming

-​ Do that using your project’s domain language

Aggregate Pattern (Ch 7)

-​ From Domain-Driven Design by Eric Evans
-​ Goal: reduce connectivity between classes by grouping them into

clusters (aggregates)
-​ The classes are highly connected inside those clusters, but the

clusters themselves are loosely-coupled
-​ Such a structure decreases the total number of

communications in the code base
-​ The reduced connectivity, in turn, improves testability

Anti-pattern (Ch 11)

-​ Common solution to a recurring problem that looks appropriate on
the surface but leads to problems further down the road

-​ Additional reading
-​ Anti-pattern: Lack of Documentation and Comments
-​ Anti-pattern: Magic Numbers

Assertion-free testing (Ch 1)

-​ Tests without assertion statements
-​ If they don’t have assertions, then they don’t verify anything
-​ You might see this if teams are using code coverage as a

requirement & intend to get 100% code coverage, but:
-​ Using code coverage as a requirement can lead to

artificial targets: bad/false positive, which is a liability &
hides bugs

Atomic Updates (Ch 10)

-​ Executed in all-or-nothing manner
-​ Each update in the set of atomic updates must either be complete in

its entirety or have no effect whatsoever
-​ Related concept: ACID Principles for Databases in which the A stands

for atomicity

B
Bad Positive / Good Negative (Ch 1)

-​ Terms have roots in statistics, but can be used to describe the
quality of unit tests

https://docs.google.com/document/d/1yrehmzwWn4Xtx6Dv6QB4j6pBeItYm7l8OZ8a00uUlAs/edit?tab=t.0
https://docs.google.com/document/d/1sr61KrMCRQ-xvEyFwHM4Rr7Ec3w7QOMW8Hom1AjLVAY/edit?tab=t.0#heading=h.5rb2z7ddig0b
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Atomicity_(database_systems)

-​ Bad Positive: Your test exists, you have coverage, but doesn’t
necessarily mean that your tests are effective or useful

-​ False Positive (Ch 4):
-​ A false alarm
-​ A result indicating that the test fails, whereas the

functionality it covers works as intended
-​ Can have a devastating effect of the test suite

-​ Dilute your ability & willingness to react to problems
in code bc you get accustomed to false alarms &
stop paying attention to them

-​ Diminish your perception of tests as a reliable
safety net & lead to losing trust in the test suite

-​ Result of tight-coupling between tests & internal
implementation details of the SUT

-​ To avoid, the test must verify the end result the SUT
produces, not the steps it took to do that

-​ Don’t have much of a negative effect in the beginning of
the project, but they become increasingly important as
the project grows: as important as false negatives
(unnoticed bugs, Type II error)

-​ Good negative: A process that reveals your code is bad is ultimately
good / successful in that it yields useful information

-​ These phrases were introduced while discussing the limits of
Code Coverage programs

-​ “The ability to test code is a good litmus test, but only in 1
direction”

-​ “Good litmus test”
-​ A decisively indicative test
-​ Can be used to make a judgment about

whether someone or something is acceptable
or not

-​ If you can’t test your code, might be bad code
-​ If you can test your code, that doesn’t guarantee

quality
-​ True Positive (Ch 4)

-​ “When the functionality is broken & the test fails, it’s also
a correct inference, bc you expect to see the test fail
when the functionality is not working properly, which is
the whole point of unit testing”(76).

-​ When the test doesn’t catch an error, that’s a problem

-​ “In the context of testing, positive means that some set of
the conditions is now true” (77).

 Functionality Correct Functionality Broken

Test passes Correct inference
(true negatives)

Type II error
(false negative)

*Protection Against
Regressions

Test fails Type I error
(false positive)

 *Resistance to
Refactoring

Correct Inference
(true positives)

Black-box (functional, data-driven) Testing (Ch 4)

-​ Examines the functionality of a system without knowing its internal
structure

-​ Normally built around specifications & requirements
-​ What the app is supposed to do rather than how it does it
-​ White-box (Clear-box) Testing

-​ The opposite
-​ Verifies the app’s inner workings
-​ Tests are derived from the source code, not requirements

or specifications

 Protection against

regressions
Resistance to refactoring

White-box
Testing

Good Bad

Black-box
Testing

Bad Good

Branch Coverage (Ch 1)

-​ Type of code coverage metric
-​ More precise by helping cope with code coverage’s shortcomings

Branch coverage =
Branches traversed / Total number of branches

Brittle Test (Ch 4)
-​ Test that runs fast & has a good chance of catching a regression but

does so with a lot of false positives
-​ Can’t withstand a refactoring & will turn red regardless of whether

the underlying functionality is broken

C
CanExecute/Execute Pattern (Ch 7)

-​ Helps avoid leaking of business logic from the domain model to
controllers

-​ Helps you to consolidate all decisions in the domain layer
-​ Prepare the data, make a decision, acts on the decision

CAP Theorem (Ch 4)

-​ It’s impossible for a distributed data store to simultaneously provide
more than two of the three guarantees:

-​ Consistency
-​ Every read receives the most recent write or an error

-​ Availability
-​ Every request receives a response (apart from outages

that affect all nodes in the system)
-​ Partition tolerance

-​ The system continues to operate despite network
partitioning (losing connection between network nodes)

-​ There is always a trade-off between consistency & availability that
changes with different contexts

Circular Dependency (Ch 8)

-​ aka cyclic dependency
-​ 2 or more classes that directly or indirectly depend on each other to

function properly

Classical (Detroit) School (Ch 2)

-​ “Classical” bc how everyone originally approached unit testing & TDD
(test-driven-development)

-​ Unit tests isolated from each other
-​ Unit of behavior, not unit of code
-​ Only shared dependencies should be replaced with test doubles

-​ Shared dependencies affect other’s flow

Client (Ch 5)

-​ Overloaded, can mean different things depending on where the code
resides

-​ Common examples: client code from same code base, an external
app, or user interface

Code Complexity (Ch 7)

-​ The number of decision-making (branching) points in the code
-​ The greater this number, the higher the complexity

-​ Cyclomatic Complexity
-​ Computer Science term
-​ Indicates the number of branches in a given program or

method, calculated by
-​ 1 + <number of branching points>

-​ Method with no control flow statements (if statements /
conditional loops) has cyclomatic complexity of 1 + 0 = 2

-​ Can think of it in terms of the number of independent paths
through the method from an entry to an exit, or the number of
tests needed to get 100% branch coverage

-​ Number of branching points is counted as the number of
simplest predicates involved

-​ A statement like IF condition1 AND condition2 THEN … is
equivalent to IF condition1 THEN IF condition2 THEN…

-​ complexity would be 1 + 2 = 3
-​ We’re interested in the separation of business logic & orchestration

-​ These 2 responsibilities can be analyzed through code depth
vs code width

-​ Your code can either be deep (complex or important) or
wide (work with many collaborators), but never both

Code Pollution (Ch 6, 11)

-​ Anti-pattern that mixes test & prod code, increases maintenance
costs

-​ Process of adding code whose sole purpose is to enable or simplify
unit testing

-​ A pattern that highlights the complexity of a code in specific
unit testing

-​ Takes place when devs include more code in their DB to make
unit testing work

-​ Solution: Do not introduce additional code production

Communication-Based Testing (Ch 6)

-​ Uses mocks to verify communications between the system
under test & its collaborators

-​ Output-Based Testing
-​ Verify the output the system generates

-​ State-Based Testing
-​ Verify state of the system after an operation is complete

 Output-Based State-Based Communication-

Based

Due diligence to
maintain
resistance to
refactoring

Low Medium Medium

Maintainability
costs

Low Medium High

Concrete Class (Ch 8)

-​ A class that we can create an instance of, using the new keyword
-​ An abstract class can be instantiated either by a concrete subclass

or by defining all the abstract method along with the new statement

Controllers (Ch 7)

-​ Code that doesn’t do complex / business critical work by itself, but
coordinates the work of other components like domain classes &
external applications

-​ Overcomplicated Code
-​ Lots of collaborators, complex & important, like a fat

controller
-​ Controllers that don’t delegate complex work

anywhere & do everything themselves

Cost component (Ch 1)

-​ A metric that describes how much labor is required for maintenance,
usually time

-​ How much time spent on:

-​ Refactoring test & underlying code
-​ Running test on each change
-​ Dealing with false alarms raised by the test
-​ Spending time reading the test when you’re trying to

understand how the underlying code behaves

Coverage metric (Ch 1)

-​ Shows how much source code a test suite executes (none/0%-100%)
Code coverage (test coverage) =

Lines of code executed / Total number of lines

CQS (Command Query Separation) Principle (Ch 5)

-​ Every method should be either be a command or a query, but not
both

-​ Commands are methods that produce side effects & don’t
return any value (return void)

-​ Side effects: mutating an object’s state, changing file in
the file system

-​ Queries are the opposite
-​ Side-effect free
-​ Return a value

-​ Test doubles that substitute commands are mocks
-​ Test doubles that substitute queries are stubs

D
Database Schema (Ch 10)

-​ Tables, views, indexes, stored procedures & anything else that forms
a blueprint of how the DB is constructed

-​ Reference Data:
-​ Part of the DB Schema
-​ Data that must be pre-populated in order for the app to

operate properly
-​ Regular Data: your app can modify that data, while reference

data is the opposite

Data Motion (Ch 10)
-​ The process of changing the shape of existing data so that it

conforms to the new database schema

Dead Code (Ch 11)

-​ Code that’s not being used
-​ Extraneous code left after a refactoring - delete if possible
-​ Code Graveyard: Dead project that no one has proper knowledge to

fix
-​ A project is dead when there is no intent on reviving it

Diagnostic Logging (Ch 8)

-​ Helps devs understand what’s going on inside the app
-​ Support Logging produces messages that are intended to be

tracked by support staff or system administrators
-​ Structured Logging is a logging technique where capturing log data

is decoupled from the rendering of that data

Domain Event (Ch 7)

-​ Describes an event in the application that is meaningful to domain
experts

-​ The meaningfulness for domain experts is what differentiates
domain events from regular events (such as button clicks)

-​ These are often used to inform external applications about
important changes that have happened in your system

-​ Should always be named in the past tense bc they represent things
that already happened

-​ These are values - they’re immutable & interchangeable

Domain Model (Ch 8)

-​ The collection of domain knowledge about the problem your project
is meant to solve

-​ A domain model is a conceptual model of the domain that
incorporates both behavior and data.

Domain Significance (Ch 7)

-​ Shows how significant the code is for the problem domain of your
project

-​ Normally, all code in the domain layer has a direct connection to the
end users’ goals & thus exhibits a high domain significance while
utility code doesn’t have a connection

E
Encapsulation (Ch 5)

-​ Act of protecting code against invariant violations
-​ Invariant: a condition that should be held true at all times

Enterprise application (Ch 1)

-​ App that aims at automating or assisting an org’s inner processes
-​ Can take many forms, but usual characteristics include:

-​ High business logic complexity
-​ Long project lifespan
-​ Moderate amounts of data
-​ Low or moderate performance requirements

F-G
Fail Fast Principle (Ch 8)

-​ Advocates for making bugs manifest themselves quickly & is a viable
alternative to integration testing

-​ Process of stopping current operation as soon as any unexpected
error occurs

-​ Makes your app more stable by:
-​ Shortening the Feedback Loop

-​ Sooner you detect a bug, the easier it is to fix
-​ A bug that’s already in prod is orders of magnitude more

expensive to fix compared to a bug found during
development

-​ Protecting the Persistence State
-​ Bugs lead to corruption of the app’s state
-​ Once that state penetrates into the DB, it becomes much

harder to fix
-​ Failing fast helps you prevent the corruption from

spreading
-​ Stopping the current operation is normally done by throwing

exceptions bc exceptions have semantics that are perfectly suited for
the FFP: they interrupt the program flow & pop-up to the highest level

of the execution stack, where you can log them & shut down or
restart the operation

-​ A failing precondition signifies an incorrect assumption made about
the app state, which is always a bug

-​ Reading data from a config file - can arrange the reading logic such
that it will throw an exception if the data in the config is incomplete
or incorrect; can also put this logic close to the app startup, so that
the app doesn’t launch if there’s a problem with it’s configuration

Functional Programming (Ch 6)

-​ Programming with mathematical functions (aka pure function)
-​ Function or method that doesn’t have any hidden inputs or

outputs
-​ Side effects (most prevalent type)

-​ An output that isn’t expressed in the method
signature, therefore, hidden

-​ An operation creates a side effect when it mutates
the state of a class instance, updates a file on the
disk, etc

-​ Exceptions
-​ When a method throws an exception, it creates a

path in the program flow that bypasses the
contract established by the method’s signature

-​ The thrown exception can be taught anywhere in
the call stack, thus introducing an additional
output that the method signature doesn’t convey

-​ A reference to an internal or external state is a hidden
output

-​ Method that gets current time & time
-​ Can query data from the db, refer to a private

mutable field
-​ These are all inputs to the exception flow that aren’t

present in the method signature & therefore,
hidden

-​ All inputs & outputs of a mathematical function must be
explicitly expressed in its method signature (method’s name,
arguments & return type)

-​ Produces the same output for a given input regardless of how
many times it is called

-​ Being explicit makes them extremely testable
-​ In mathematics, a function:

-​ Relationship between 2 sets that for each element in the
1st set, finds exactly 1 element in the 2nd set

-​ Functional Architecture (hexagonal architecture taken to an
extreme):

-​ Maximizes the amount of code written in a purely functional
(immutable) way, while minimizing code that deals with side
effects

-​ Immutable:
-​ Unchangeable
-​ Once an object is created, its state can’t be

modified
-​ Mutable (the opposite):

-​ Changeable object
-​ Can be modified after it is created

-​ Divides all code into function core & mutable shell
-​ Function Core makes decisions
-​ Mutable Shell supplies input data to the functional core,

converts decisions the core makes into side effects

H
Happy Path (Ch 8)

-​ Successful execution of a business scenario
-​ Edge Case: When the business scenario execution results in an error

Hexagonal architecture (Ch 5)

-​ Set of interacting apps represented as hexagons
-​ Each hexagon consists of 2 layers: domain & app services
-​ Each layer in a hexagon exhibits observable behavior & contains its

own set of implementation details
-​ Emphasizes separation of concerns between layers, 1-way flow of

dependencies from app to domain layer & no direct access to the
domain layer

Humble Object Design Pattern (Ch 7)

-​ Introduced by Gerard Meszaros in xUnit Test Patterns: Refactoring
Test Code

-​ 1 of the ways to battle code coupling

-​ Process of decoupling code from a difficult dependency by
bringing logic of this code under test & extracting testable part
out of it

-​ The result is the code becoming a thin, humble wrapper
around that testable part: it glues the hard-to-test
dependency & the newly extracted component together,
but itself contains little or no logic, thus doesn’t need to
be tested

-​ A way to implement the Single Responsibility Principle
-​ Each class should have only 1 single responsibility - one

such responsibility is always business logic; this pattern
can be applied to segregate the logic from pretty much
anything

-​ "...every class should have only one reason to change"

I-L
Incoming Interactions (Ch 5)

-​ Calls the SUT makes to its dependencies to get input data
-​ Outcoming Interactions

-​ Calls from the SUT to its dependencies that change the state
of those dependencies

Integration Test (Ch 2, 8)

-​ Verifies 2 or more units of behavior
-​ Often a result of trying to optimize speed
-​ Plays a significant part in contributing to software quality by

verifying the system as a whole
-​ Verifies that your code works in integration with shared

dependencies, out-of-process dependencies, or code
developed by other teams in the organization

-​ Provide better protection against regressions & resistance to
refactoring while unit tests have better maintainability &
feedback speed

-​ End-to-end (E2E) tests are a subset of integration tests
-​ Includes more out-of-process dependencies
-​ Test verifies the system from the end user’s POV,

including all the external apps this system integrates with

-​ There may be no test version of some dependencies, or it
may be impossible to bring those dependencies to the
required state automatically

-​ May need to still use a test double, meaning there isn’t a
distinct line between integration & E2E tests

Inter-system Communication (Ch 5)

-​ Communication between app & external apps
-​ Part of observable behavior, with the exception of external systems

that are accessible only thru your app, but also implementation
details bc the resulting side effects aren’t observed externally
Intra-system Communication

-​ Communication between classes inside app
-​ Are implementation details

M-N
Managed Dependencies (Ch 8)

-​ Out-of-process that are only accessible through your app
-​ Interactions with them aren’t observable externally
-​ Typical example is app database: external systems don’t access your

DB directly, but do that through your API your app provides
-​ Unmanaged Dependencies

-​ The opposite; other apps have access to it; you don’t have full
control over these

-​ Interactions are observable externally / are visible to the
external world

-​ Example: SMTP server, message bus
-​ Both produce side effects visible to other apps

Message Bus (Ch 8)

-​ aka Service Bus, provides a way for one (or more) application to
communicate messages to one or more other applications

-​ An unmanaged dependency bc sole purpose is to enable
communications with other systems

Mock (Ch 2, 9)

-​ Subset of test doubles, used synonymously although they’re
technically not

-​ Test double is general, overarching term that describes all kind
of non-production-ready, fake dependencies in a test while
mock is just 1 kind of such dependencies

-​ Special kind of test double that allows you to examine interactions
between the SUT & its collaborators

Mock chain (Ch 6)

-​ Mocks or stubs returning other mocks, which also return mocks & so
on, several layers deep

Mockist (London) School (Ch 2)

-​ “London” bc geographical location of popularity
-​ Units should be isolated
-​ Unit is usually a class
-​ All dependencies (except immutables) should be test doubles in tests
-​ Benefits

-​ Better granularity
-​ Ease of testing interconnected classes
-​ Ease of debugging

-​ Issues
-​ Focus on classes misplaced, as tests should verify units of

behavior & not exactly units of code & test doubles doesn’t fix
this problem (just hides it)

-​ Ease of debugging might not be significant if your process is
just about what you edited last

-​ Overspecificiation & coupling to the SUT(system under test)
implementation details

Model Database (Ch 10)

-​ A dedicated DB instance
-​ Serves as a reference point
-​ During development, all schema changes accumulated in this

instance
-​ Upon production deployments, compare the prod & model

databases, use a special tool to generate upgrade scripts & run
those scripts in prod

Model-View-Presenter Design Pattern, (MVP), Model-View-Controller Design
Pattern (MVC) (Ch 7)

-​ Help decouple business logic (Model), UI concerns (View) & the
coordination between them (Presenter or Controller)

-​ The Presenter & Controller components are humble objects
-​ They glue the View & the Model together

MUT (Method Under Test) / SUT (System Under Test)

-​ Method in the SUT called by the test
-​ MUT/SUT often synonyms, but normally MUT refers to a method

while SUT refers to the whole class

O-Q
Object graph (Ch 2)

-​ The web of communicating classes solving the same problem
-​ This web might become quite complicated: every class in it may have

several immediate dependencies, each of which relies on
dependencies of their own & so on, or

-​ Circular dependencies
-​ Where the chain of dependency eventually comes back

to where it started

Object Mother Pattern (Ch 10)

-​ A class or method that helps create test fixtures (objects that test
runs against)

-​ Test Builder Pattern
-​ Helps achieve the same goal of reusing code in arrange

sections
-​ Exposes a fluent interface instead of plain methods
-​ Can improve readability, but requires boilerplate

Open-Closed Principle (OCP) (Ch 8)

-​ SOLID Principle
-​ Objects or entities should be open for extension but closed for

modification
-​ A class should be extendable without modifying the class itself

-​ Can extend a class’ behavior without changing the source code itself

Operation (Ch 5)

-​ A method that performs a calculation or incurs a side effect

Out-of-process dependency (Ch 2)

-​ Runs outside the app’s execution process
-​ Proxy to data that is not yet in the memory
-​ Corresponds to shared dependency in vast majority of cases, but not

always, a db (database) is both out-of-process & shared, while
read-only db is also out-of-process but not shared

-​ Tests can’t mutate data in such a db & can’t affect each other’s
outcome

Overspecification (Ch 5)

-​ Practice of verifying things that aren’t part of the end result
-​ Commonly take place when examining interactions

Parameterized tests (Ch 2)

-​ Type of data-driven testing that allows you to execute the same test,
multiple times using different parameters

-​ Help reduce amount of code needed for similar tests
-​ Drawback: sacrifice readability as they become more generic

R
Read Operation (Ch 10)

-​ Example: Returning user info to the external client
-​ Write Operation

-​ An operation that leaves a side effect in the DB & other
out-of-process dependencies

-​ Example: Changing a user email

Refactoring (Ch 4)

-​ Changing existing code without modifying its observable behavior
-​ Intention is usually improvement to code’s nonfunctional

characteristics
-​ Increase readability
-​ Reduce complexity

-​ Examples: renaming a method, extracting a piece of code into a new
class

Referential Transparency (Ch 6)

-​ The ability to replace a method call with the corresponding value
-​ If a method call can be replaced, it’s likely a mathematical function

Regression (Ch 1, 4)

-​ aka software bug (synonymous, can be used interchangeably)
-​ When a feature stops working as intended after a certain event

(usually a code modification, roll-out new functionality)
-​ The author is using this as a general, umbrella term to reference

bugs, they’re not referring to regression testing:
-​ A type of software testing to confirm that a recent program or

code change has not adversely affected existing features
-​ A full or partial selection of already executed test cases that

are re-executed to ensure existing functionalities work fine
-​ Done to ensure that new code changes do not have side

effects on the existing functionalities
-​ Ensures that the old code still works once the latest code

changes are done
-​ Includes re-running functional & non-functional tests to ensure

that previously developed & tested software still performs as
expected after a change

-​ If not, that would be called a regression

Repository (Ch 10)

-​ A class that enable access to & modification of the data in the DB
-​ Lifecycle: short-lived; can dispose of a repository as soon as the call

to the DB is completed; always work on top of the current transaction
-​ When connecting to the DB, a repository enlists itself into the

transaction so that any data modifications made during that
connection can later be rolled back by the transaction

S
Shared dependency (Ch 2)

-​ Shared between tests & provides means for those tests to affect each
other’s outcome, like a static mutable field or database/db

-​ A change to a mutable field is visible across all unit tests running
within the same process

-​ While a private dependency is not shared

Signal-to-noise ratio (Ch 4)

-​ Signal is the number of bugs found
-​ Noise is the number of false alarms raised
-​ Test accuracy = Signal / Noise

Single Responsibility Principle (Ch 11)

-​ SOLID Principles of OOP
-​ Every class, module, or function in a program should have 1

responsibility/purpose in a program
-​ As a commonly used definition, "every class should have only one

reason to change"

Software entropy (Ch 1)

-​ Phenomenon of quickly decreasing development speed
-​ Process in which code base becomes unreliable

-​ Without proper care (cleaning, refactoring)
-​ Complexity, disorganization
-​ Bugs that introduce other bugs, domino-effect type of break
-​ Entropy

-​ A metric that describes the amount of disorder in a
system

-​ Mathematical & scientific concept that can also be
applied to software systems

Spy (Ch 9)

-​ aka handwritten mocks
-​ Variation of a test double that serves the same purpose as a mock
-​ Only difference is that spies are written manually, while mocks come

from frameworks

State (Ch 5)

-​ Current condition of the system

T
Tautology Tests (Ch 4, 9)

-​ A tautology is “a statement that is true by necessity or by virtue of its
logical form”

-​ The most basic form of tautological test is when the test & the code
use the same formula

-​ Don’t test/verify anything bc they’re set-up in such a way that they
always pass or contain semantically meaningless assertions

-​ In a way that is connected with the meaning of words;
grammatically correct / syntax correct, but meaning is
nonsensical

Test Double (Ch 2)

-​ Object that looks & behaves like its release-intended counterpart but
is actually a simplified version that reduces the complexity &
facilitates testing

-​ Term 1st introduced by Gerard Meszarose (xUnit Test Patterns)
-​ Name itself comes from the notion of a stunt double in movies

Test-Driven Development (TDD)

-​ Software development process that relies on tests to drive the
project development

-​ Consists of 3 stages repeated for each case:
1.​ Write a failing test

-​ To indicate which functionality needs to be added & how
it should be behave

2.​ Make the tests pass
-​ Doesn’t have to be elegant or clean, but just enough to

pass the tests you just wrote
3.​ Refactor

-​ Under protection of passing test, can safely clean-up for
readability/maintainability

Text fixture (Ch 3)

-​ An object the test runs against
-​ Can be data that remains in a known, fixed state before each

test run & produces the same result, hence “fixture”

-​ Can be a regular dependency, an argument passed to the SUT
-​ Attribute from NUnit testing framework that marks classes

continuing tests

Test isolation (Ch 5)

-​ Ability for tests to run in parallel, sequentially & in any order

Test Pyramid (Ch 4)

-​ Concept that advocates for a certain ratio of different types of tests
in the test suite

-​ The width of the pyramid layers refers to the prevalence of a
particular type of test

-​ Test count is widest at bottom / horizontal, emulating user increases
vertically

-​ “The wider the layer, the greater the test count. The height of
the layer is a measure of how close these tests are to emulating
the end user’s behavior” (88).

Transaction (Ch 10)

-​ A class that either commits or rolls back data updates in full
-​ Will be a custom class relying on the underlying DB’s transactions to

provide atomicity of data modification
-​ Lifecycle: Lives during the whole business operation & is disposed of

at the very end of it

Trivial Test (Ch 4, 7)

-​ Maximizes 2 out of 3 attributes at the expense of the 3rd
-​ Runs very quickly, low chance of producing a false positive /

good resistance to refactoring, unlikely to reveal any

regressions bc there’s not much room for a mistake in the
underlying code

-​ Covers a simple piece of code, something unlikely to break bc it’s too
trivial

-​ Low complexity & domain significance, few collaborators - not worth
testing at all

-​ Examples: parameterless constructors, 1-line properties

U-Z
Unit of Work Pattern (Ch 10)

-​ Maintains a list of objects affected by a business operation
-​ Once the operation is completed, the unit of work figures our all

updates that need to be done to alter the DB & executes those
updates as a single unit

Unit Test (Ch 1)

-​ Verifies a single unit of behavior, quickly & in isolation from other
tests

Value object (Ch 6)

-​ A class whose instances are compared by value & not by reference

Volatile dependency (Ch 2)

-​ Exhibits 1 of the following:
-​ Introduces requirements to set-up & config runtime

environment in addition to what’s installed on a developer’s
machine by default (dbs, APIs)

-​ Contains nondeterministic behavior (random number
generator, class returning timestamp)

YAGNI (You Aren’t Going To Need It) Principle (Ch 8)

-​ Advocates against investing time in functionality that’s not needed
right now

-​ You shouldn’t develop this functionality, not should you modify your
existing code to account for the appearance of such functionality in
the future

-​ Opportunity Cost

-​ If you spend time on a feature that the business doesn’t
need now, you’re taking away from features needed now ->
wasteful

-​ It’s more beneficial to implement the functionality from
scratch when the actual need for it emerges

-​ The less code in the project, the better
-​ Introducing code just in case without immediate need

increases your code base’s cost of ownership -> better to
postpone introducing new functionality until as late a
stage of your project as possible

	A
	B
	C
	
	D
	E
	F-G
	H
	I-L
	M-N
	O-Q
	R
	S
	T
	U-Z

