A

AAA pattern (aka 3A, Triple A, Given-When-Then) (Ch 3)

- Provides simple, uniform structure, which is the biggest advantages
of the pattern bc as you get used to it, can easily read & understand
any test

- Arrange: bring the system under test (SUT) & dependencies to
a desired state (initialize variables)

- Act: call methods on the SUT, pass prepared dependencies,
capture the output value (if any)

- Assert: verify the outcome, which may be represented by the
return value, final state of the SUT & its collaborators, or
methods the SUT called on those collaborators

- aka Given, When Then

- Given: Arrange

- When: Act

- Then: Assert

Access modifiers (Ch 95)
- private, public, internal (only 3 in C++)
- Keywords in OOP (Object-Oriented Programming) languages that set
the accessibility of classes, methods & other members
- A specific part of progromming language syntox used to facilitate
the encapsulation of components

Active Record Pattern (Ch 7)
- An approach in which a domain class retrieves & persists itself to the
dotabase
- Works fine in simple & short-lived projects, but often fails to scale as
the code base grows due to lack of separation between 2
responsibilities: business logic & communication with out-of-process
dependencies

Adapters (Ch 9)
- Abstract non-essential technical details of 3rd-party code
- Define the relationship with the library in your application’s terms
- Act as an anti-corruption layer between your code & the external
world, helping you:
- Abstract the underlying library's complexity
- Only expose features you need from the library

https://en.wikipedia.org/wiki/Object-oriented_programming

- Do that using your project’'s domain language

Aggregate Pattern (Ch 7)
- From Domain-Driven Design by Eric Evans
- Goal: reduce connectivity between classes by grouping them into
clusters (aggregates)
- The classes are highly connected inside those clusters, but the
clusters themselves are loosely-coupled
- Such o structure decreases the total number of
communications in the code base
- Thereduced connectivity, in turn, improves testability

Anti-pattern (Ch 1)
- Common solution to a recurring problem that looks appropriate on
the surface but leads to problems further down the road
- Additional reading
- Anti-pattern: | ack of Documentation and Comments
- Anti-pattern: Magic Numbers

Assertion-free testing (Ch 1)
- Tests without assertion statements
- If they don’t have assertions, then they don't verify anything
- You might see this if teams are using code coverage as a
requirement & intend to get 100% code coverage, but:
- Using code coverage as a requirement can lead to

artificial targets: bad/false positive, which is a liability &
hides bugs

Atomic Updates (Ch 10)
- Executed in all-or-nothing manner
- Each update in the set of atomic updates must either be complete in
its entirety or have no effect whatsoever
- Related concept: ACID Principles for Databases in which the A stands

for atomicity

B

Bad Positive / Good Negative (Ch 1)
- Terms have roots in statistics, but can be used to describe the
quality of unit tests

https://docs.google.com/document/d/1yrehmzwWn4Xtx6Dv6QB4j6pBeItYm7l8OZ8a00uUlAs/edit?tab=t.0
https://docs.google.com/document/d/1sr61KrMCRQ-xvEyFwHM4Rr7Ec3w7QOMW8Hom1AjLVAY/edit?tab=t.0#heading=h.5rb2z7ddig0b
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Atomicity_(database_systems)

Bad Positive: Your test exists, you have coverage, but doesn't
necessarily mean that your tests are effective or useful
- False Positive (Ch 4):.
A false alarm
- Avresult indicating that the test fails, whereas the
functionality it covers works as intended
- Can have a devastating effect of the test suite
- Dilute your ability & willingness to react to problems
in code bc you get accustomed to false alarms &
stop paying attention to them
- Diminish your perception of tests as a relioble
safety net & lead to losing trust in the test suite
- Result of tight-coupling between tests & internal
implementation details of the SUT
- To avoid, the test must verify the end result the SUT
produces, not the steps it took to do that
- Don't have much of a negative effect in the beginning of
the project, but they become increasingly important as
the project grows: as important as false negatives
(unnoticed bugs, Type Il error)
Good negative: A process that reveals your code is bad is ultimately
good / successful in that it yields useful information
- These phrases were introduced while discussing the limits of
Code Coverage progroms
- “The ability to test code is a good litmus test, but only in 1
direction”
- “Good litmus test”
- A decisively indicative test
- Can be used to make a judgment about
whether someone or something is acceptable
or not
- If you can't test your code, might be bad code
- If you can test your code, that doesn’t guarantee
quality
- True Positive (Ch 4)
- “When the functionality is broken & the test fails, it’s also
a correct inference, bc you expect to see the test fail
when the functionality is not working properly, which is
the whole point of unit testing'(76).
- When the test doesn't catch an error, that's a problem

- ‘In the context of testing, positive means that some set of
the conditions is now true”(77).

Functionality Correct Functionality Broken

Test passes Correct inference Type Il error

(true negatives) (false negative)

*Protection Against
Regressions

Test fails Type | error Correct Inference
(false positive) (true positives)
*Resistance to
Refactoring

Black-box (functional, dato-driven) Testing (Ch 4)
- Examines the functionality of a system without knowing its internal
structure
- Normally built around specifications & requirements
- Whatthe app is supposed to do rather than how it does it
- White-box (Clear-box) Testing
- The opposite
- Verifies the app’s inner workings
- Tests are derived from the source code, not requirements
or specifications

Protection against Resistance to refactoring
regressions
White-box Good Bad
Testing
Black-box Bad Good
Testing

Branch Coverage (Ch 1)
- Type of code coverage metric
- More precise by helping cope with code coverage's shortcomings
Branch coverage =
Branches traversed / Total number of branches

Brittle Test (Ch 4)
- Test that runs fast & has a good chance of catching a regression but
does so with a lot of false positives
- Can't withstand a refactoring & will turn red regardless of whether
the underlying functionality is broken

C

CanExecute/Execute Pattern (Ch 7)
- Helps avoid leaking of business logic from the domain model to
controllers
- Helps you to consolidate all decisions in the domain layer
- Prepare the data, make a decision, acts on the decision

CAP Theorem (Ch 4)
- It'simpossible for a distributed data store to simultaneously provide
more than two of the three guarantees:
- Consistency
- Everyread receives the most recent write or an error
- Availability
- Every request receives a response (apart from outages
that offect all nodes in the system)
- Partition tolerance
- The system continues to operate despite network
partitioning (losing connection between network nodes)
- There is always a trade-off between consistency & availability that
changes with different contexts

Circular Dependency (Ch 8)
- aka cyclic dependency
- 2 or more classes that directly or indirectly depend on each other to
function properly

Classical (Detroit) School (Ch 2)
“Classical” bc how everyone originally approached unit testing & TDD
(test-driven-development)
Unit tests isolated from each other
Unit of behavior, not unit of code
Only shared dependencies should be replaced with test doubles
- Shared dependencies affect other’s flow

Client (Ch 5)
- Overloaded, can mean different things depending on where the code
resides
- Common examples: client code from same code base, an external
app, or user interface

Code Complexity (Ch 7)
- The number of decision-making (branching) points in the code
- The greater this number, the higher the complexity
- Cyclomatic Complexity
- Computer Science term
- Indicates the number of branches in a given program or
method, calculated by
- T+ <number of branching points>
- Method with no control flow statements (if statements /
conditional loops) has cyclomatic complexity of 1+0 =2
- Can think of it in terms of the number of independent paths
through the method from an entry to an exit, or the number of
tests needed to get 100% branch coverage
- Number of branching points is counted as the number of
simplest predicates involved
- A stotement like IF condition1 AND condition2 THEN ... is
equivalent to IF condition1 THEN IF condition2 THEN...
- complexity would be 1+2=3
- We're interested in the separation of business logic & orchestration
- These 2 responsibilities can be analyzed through code depth
vs code width
- Your code can either be deep (complex or important) or
wide (work with many colloborators), but never both

Code Pollution (Ch 6, 1)
- Anti-pattern that mixes test & prod code, increases maintenance
costs
- Process of adding code whose sole purpose is to enable or simplify
unit testing
- A pattern that highlights the complexity of a code in specific
unit testing
- Takes place when devs include more code in their DB to make
unit testing work

- Solution: Do not introduce additional code production

Communication-Based Testing (Ch §)
- Uses mocks to verify communications between the system
under test & its collaborators
- Output-Based Testing
- Verify the output the system generates
- State-Based Testing
- Verify state of the system after an operation is complete

Output-Based Stote-Based Communication-

Based

Due diligence to Low Medium Medium

maintain

resistance to

refactoring

Maintainability Low Medium High

costs

Concrete Class (Ch 8)
- A class that we can create an instance of, using the new keyword
- An abstract class can be instantiaoted either by a concrete subclass
or by defining all the abstract method along with the new statement

Controllers (Ch 7)

- Code that doesn't do complex / business critical work by itself, but
coordinates the work of other components like domain classes &
external applications

- Overcomplicated Code
- Lots of collaborators, complex & important, like a fat
controller
- Controllers that don't delegate complex work
anywhere & do everything themselves

Cost component (Ch 1)
- A metric that describes how much labor is required for maintenance,

usually time
- How much time spent on:

- Refactoring test & underlying code

- Running test on each change

- Dealing with false alarms raised by the test

- Spending time reading the test when you're trying to
understand how the underlying code behaves

Coverage metric (Ch 1)
- Shows how much source code a test suite executes (none/0%-100%)
Code coverage (test coverage) =
Lines of code executed / Total number of lines

CQS (Command Query Separation) Principle (Ch 5)
- Every method should be either be o command or a query, but not
both
- Commands are methods that produce side effects & don't
return any value (return void)
- Side effects: mutating an object’s state, changing file in
the file system
- Queries are the opposite
- Side-effect free
- Return avalue
- Test doubles that substitute commands are mocks
- Test doubles that substitute queries are stubs

D

Database Schema (Ch 10)
- Tables, views, indexes, stored procedures & anything else that forms
a blueprint of how the DB is constructed
- Reference Data:
- Part of the DB Schema
- Data that must be pre-populated in order for the app to
operate properly
- Regular Data: your app can modify that data, while reference
data is the opposite

Data Motion (Ch 10)
- The process of changing the shape of existing data so that it
conforms to the new database schema

Dead Code (Ch 1)
- Code that's not being used
- Extraneous code left after a refactoring - delete if possible
- Code Graveyard: Dead project that no one has proper knowledge to
fix
- A project is dead when there is no intent on reviving it

Diagnostic Logging (Ch 8)
- Helps devs understand what's going on inside the app
- Support Logging produces messages that are intended to be
tracked by support staff or system administrators
- Structured Logging is a logging technique where capturing log data
is decoupled from the rendering of that data

Domain Event (Ch 7)

- Describes an event in the application that is meaningful to domain

experts
- The meaningfulness for domain experts is what differentiates
domain events from regular events (such as button clicks)

- These are often used to inform external applications about
important changes that have happened in your system

- Should always be named in the past tense bc they represent things
that already happened

- These are values - they're immutable & interchangeable

Domain Model (Ch 8)
- The collection of domain knowledge about the problem your project
is meant to solve
- A domain model is a conceptual model of the domain that
incorporates both behavior and data.

Domain Significance (Ch 7)
- Shows how significant the code is for the problem domain of your
project
- Normally, all code in the domain layer has a direct connection to the
end users' goals & thus exhibits a high domain significance while
utility code doesn’'t have a connection

E

Encapsulation (Ch 5)
- Act of protecting code against invariant violations
- Invariant: a condition that should be held true at all times

Enterprise application (Ch 1)
- App that aims at automating or assisting an org’'s inner processes
- Can take many forms, but usual characteristics include:
- High business logic complexity
Long project lifespan
Moderate amounts of data
Low or moderate performance requirements

F-G

Fail Fast Principle (Ch 8)
- Advocates for making bugs manifest themselves quickly & is a viable
alternative to integration testing
- Process of stopping current operation as soon as any unexpected
error occurs
- Makes your app more stable by:
- Shortening the Feedback Loop
- Sooner you detect a bug, the easier it is to fix
- Abug that's already in prod is orders of magnitude more
expensive to fix compared to a bug found during
development
- Protecting the Persistence State
- Bugs lead to corruption of the app's state
- Once that state penetrates into the DB, it becomes much
harder to fix
- Failing fast helps you prevent the corruption from
spreading
- Stopping the current operation is normally done by throwing
exceptions bc exceptions have semantics that are perfectly suited for
the FFP: they interrupt the prograom flow & pop-up to the highest level

of the execution stack, where you can log them & shut down or
restart the operation

- A failing precondition signifies an incorrect assumption made about
the app state, which is always a bug

- Reading data from a config file - can arrange the reading logic such
that it will throw an exception if the data in the config is incomplete
or incorrect; can also put this logic close to the app startup, so that
the app doesn’t launch if there's a problem with it's configuration

Functional Programming (Ch 4)
- Progromming with mathematical functions (aka pure function)
- Function or method that doesn’t have any hidden inputs or
outputs
- Side effects (most prevalent type)
- An output that isn't expressed in the method
signature, therefore, hidden
- An operation creates a side effect when it mutates
the state of a class instance, updates a file on the
disk, etc
- Exceptions
- When a method throws an exception, it creates a
path in the progrom flow that bypasses the
contract established by the method's signature
- The thrown exception can be taught anywhere in
the call stack, thus introducing an additional
output that the method signature doesn’t convey
- A reference to an internal or external state is a hidden
output
- Method that gets current time & time
- Can query data from the db, refer to a private
mutable field
- These are all inputs to the exception flow that aren't
present in the method signature & therefore,
hidden
- Allinputs & outputs of a mathematical function must be
explicitly expressed in its method signature (method's name,
arguments & return type)
- Produces the same output for a given input regardless of how
many times it is called
- Being explicit makes them extremely testable
- In mathematics, a function:

H

- Relationship between 2 sets that for each element in the
1st set, finds exactly 1 element in the 2nd set
Functional Architecture (hexagonal architecture taken to an
extreme):

- Maximizes the amount of code written in o purely functional
(immutable) way, while minimizing code that deals with side
effects

- Immutable:
- Unchangeable
- Once an object is created, its state can't be
modified
- Mutable (the opposite):
- Changeable object
- Can be modified aofter it is created
- Divides all code into function core & mutable shell
- Function Core makes decisions
- Mutable Shell supplies input data to the functional core,
converts decisions the core makes into side effects

Happy Path (Ch 8)

Successful execution of a business scenario
Edge Case: When the business scenario execution results in an error

Hexagonal architecture (Ch 5)

Set of interacting apps represented as hexagons

Each hexagon consists of 2 layers: domain & app services

Each layer in a hexagon exhibits observable behavior & contains its
own set of implementation details

Emphasizes separation of concerns between layers, 1-way flow of
dependencies from app to domain layer & no direct access to the
domain layer

Humble Object Design Pattern (Ch 7)

Introduced by Gerard Meszaros in xUnit Test Patterns: Refactoring

Test Code
1 of the ways to battle code coupling

- Process of decoupling code from a difficult dependency by
bringing logic of this code under test & extracting testable part
out of it

- Theresult is the code becoming a thin, humble wropper
around that testable part: it glues the hard-to-test
dependency & the newly extracted component together,
but itself contains little or no logic, thus doesn't need to
be tested

- A way to implement the Single Responsibility Principle

- Each class should have only 1 single responsibility - one
such responsibility is always business logic; this pattern
can be applied to segregate the logic from pretty much
anything

- .every class should have only one reason to change”

l-L

Incoming Interactions (Ch 9)
- Calls the SUT makes to its dependencies to get input data
- Outcoming Interactions
- Calls from the SUT to its dependencies that change the state
of those dependencies

Integration Test (Ch 2, 8)
- Verifies 2 or more units of behavior
- Often aresult of trying to optimize speed
- Plays a significant part in contributing to software quality by
verifying the system as a whole
- Verifies that your code works in integration with shared
dependencies, out-of-process dependencies, or code
developed by other teams in the organization
- Provide better protection against regressions & resistance to
refactoring while unit tests have better maintainability &
feedback speed
- End-to-end (E2E) tests are a subset of integration tests
- Includes more out-of-process dependencies
- Test verifies the system from the end user’s POV,
including all the external apps this system integrates with

- There may be no test version of some dependencies, or it
may be impossible to bring those dependencies to the
required state automatically

- May need to still use a test double, meaning there isn't a
distinct line between integration & E2E tests

Inter-system Communication (Ch 5)
- Communication between app & external apps
- Part of observable behavior, with the exception of external systems
that are accessible only thru your app, but also implementation
details bc the resulting side effects aren't observed externally
Intra-system Communication
- Communication between classes inside app
- Are implementation details

M-N

Managed Dependencies (Ch 8)
- Out-of-process that are only accessible through your app
- Interactions with them aren’t observable externally
- Typical example is app database: external systems don't access your
DB directly, but do that through your APl your app provides
- Unmaonaged Dependencies
- The opposite; other apps have access to it; you don’t have full
control over these
- Interactions are observable externally / are visible to the
external world
- Exaomple: SMTP server, message bus
- Both produce side effects visible to other apps

Message Bus (Ch 8)
- aka Service Bus, provides a way for one (or more) application to
communicate messages to one or more other applications
- An unmanaged dependency bc sole purpose is to enable
communications with other systems

Mock (Ch 2, 9)

- Subset of test doubles, used synonymously although they're
technically not
- Test double is general, overarching term that describes all kind
of non-production-ready, foke dependencies in a test while
mock is just 1 kind of such dependencies
- Special kind of test double that allows you to examine interactions
between the SUT & its collaborators

Mock chain (Ch 6)
- Mocks or stubs returning other mocks, which also return mocks & so
on, several layers deep

Mockist (London) School (Ch 2)
- “London" bc geographical location of popularity
- Units should be isolated
- Unitis usually a class
- All dependencies (except immutables) should be test doubles in tests
- Benefits
- Better granularity
- Ease of testing interconnected classes
- Ease of debugging
- lIssues
- Focus on classes misplaced, as tests should verify units of
behavior & not exactly units of code & test doubles doesn't fix
this problem (just hides it)
- Ease of debugging might not be significant if your process is
just about what you edited last
- Overspecificiation & coupling to the SUT(system under test)
implementation details

Model Database (Ch 10)

- A dedicated DB instance

- Serves as a reference point

- During development, all schema changes accumulated in this
instance

- Upon production deployments, compare the prod & model
databases, use a special tool to generate upgrade scripts & run
those scripts in prod

Model-View-Presenter Design Pattern, (MVP), Model-View-Controller Design
Pattern (MVC) (Ch 7)
- Help decouple business logic (Model), Ul concerns (View) & the
coordination between them (Presenter or Controller)
- The Presenter & Controller components are humble objects
- They glue the View & the Model together

MUT (Method Under Test) / SUT (System Under Test)
- Method in the SUT called by the test
- MUT/SUT often synonyms, but normally MUT refers to a method
while SUT refers to the whole class

O-Q

Object graph (Ch 2)

- The web of communicating classes solving the same problem

- This web might become quite complicated: every class in it may have
several immediate dependencies, each of which relies on
dependencies of their own & so on, or

- Circular dependencies
- Where the chain of dependency eventually comes back
to where it started

Object Mother Pattern (Ch 10)
- Acloss or method that helps create test fixtures (objects that test
runs against)

- Test Builder Pattern

- Helps achieve the same goal of reusing code in arrange
sections

- Exposes a fluent interface instead of plain methods
- Can improve readability, but requires boilerplate

Open-Closed Principle (OCP) (Ch 8)
- SOLID Principle
- Objects or entities should be open for extension but closed for
modification
- A class should be extendable without modifying the class itself

- Can extend a class’ behavior without changing the source code itself

Operation (Ch 95)
- A method that performs a calculation or incurs a side effect

Out-of-process dependency (Ch 2)

- Runs outside the app’s execution process

- Proxy to data that is not yet in the memory

- Corresponds to shared dependency in vast majority of cases, but not
always, a db (database) is both out-of-process & shared, while
read-only db is also out-of-process but not shared

- Tests can't mutate data in such a db & can't affect each other’s
outcome

Overspecification (Ch 5)
- Practice of verifying things that aren’t part of the end result
- Commonly take place when examining interactions

Parameterized tests (Ch 2)
- Type of data-driven testing that allows you to execute the same test,
multiple times using different parameters
- Help reduce amount of code needed for similar tests
- Drawback: sacrifice readability as they become more generic

R

Read Operation (Ch 10)
- Example: Returning user info to the external client
- Write Operation
- An operation that leaves a side effect in the DB & other
out-of-process dependencies
- Example: Changing a user email

Refactoring (Ch 4)
- Changing existing code without modifying its observable behavior
- Intention is usually improvement to code’s nonfunctional
characteristics
- Increase readability
- Reduce complexity

- Examples: renaming a methoo, extracting a piece of code into a new
class

Referential Transparency (Ch 6)
- The ability to replace a method call with the corresponding value
- If a method call can be replaced, it's likely o mathematical function

Regresswn (Ch1,4)
aka software bug (synonymous, can be used interchangeably)
- When a feature stops working as intended aofter a certain event
(usually a code modification, roll-out new functionality)
- The author is using this as a general, umbrella term to reference
bugs, they're not referring to regression testing:
- Atype of software testing to confirm that a recent program or
code change has not adversely affected existing features
- A full or partial selection of already executed test cases that
are re-executed to ensure existing functionalities work fine
- Done to ensure that new code changes do not have side
effects on the existing functionalities
- Ensures that the old code still works once the latest code
changes are done
- Includes re-running functional & non-functional tests to ensure
that previously developed & tested software still performs as
expected ofter a change
- If not, that would be called a regression

Repochory (Ch 10)
A class that enable access to & modification of the data in the DB
- Lifecycle: short-lived; can dispose of a repository as soon as the call
to the DB is completed; always work on top of the current transaction
- When connecting to the DB, a repository enlists itself into the
transaction so that any data modifications made during that
connection can later be rolled back by the transaction

S

Shared dependency (Ch 2)
- Shared between tests & provides means for those tests to affect each
other's outcome, like a static mutable field or database/db

- A change to a mutable field is visible across all unit tests running
within the some process

- While a private dependency is not shared

Signal-to-noise ratio (Ch 4)
- Signal is the number of bugs found
- Noise is the number of false alarms raised
- Test accuracy = Signal / Noise

Slngle Responsibility Principle (Ch 11)
SOLID Principles of OOP
- Every class, module, or function in a program should have T
responsibility/purpose in a program
- As a commonly used definition, "every class should have only one
reason to change'

Software entropy (Ch 1)

- Phenomenon of quickly decreasing development speed
- Process in which code base becomes unreliable
- Without proper care (cleaning, refactoring)
- Complexity, disorganization
- Bugs that introduce other bugs, domino-effect type of break
- Entropy
- A metric that describes the amount of disorder in a
system
- Mathematical & scientific concept that can also be
applied to software systems

Spy (Ch 9)
- aka handwritten mocks
- Variation of a test double that serves the some purpose as a mock

- Only difference is that spies are written manually, while mocks come
from frameworks

State (Ch 5)
- Current condition of the system

T

Toutology Tests (Ch 4, 9)
A tautology is “a statement that is true by necessity or by virtue of its
logical form"
- The most basic form of tautological test is when the test & the code
use the same formula
- Don't test/verify anything bc they're set-up in such a way that they
always pass or contain semantically meaningless assertions
- In away that is connected with the meaning of words;
grammatically correct / syntax correct, but meaning is
nonsensical

Test Double (Ch 2)

- Object that looks & behaves like its release-intended counterpart but
is actually a simplified version that reduces the complexity &
facilitates testing

- Term lst introduced by Gerard Meszarose (xUnit Test Patterns)

- Name itself comes from the notion of a stunt double in movies

Test-Driven Development (TDD)
- Software development process that relies on tests to drive the
project development
- Consists of 3 stages repeated for each case:
1. Write o failing test
- To indicate which functionality needs to be added & how
it should be behave
2. Make the tests pass
- Doesn’t have to be elegant or clean, but just enough to
pass the tests you just wrote
3. Refactor
- Under protection of passing test, can safely clean-up for
readability/maintainability

Text fixture (Ch 3)
- An object the test runs against
- Can be data that remains in a known, fixed state before each
test run & produces the same result, hence “fixture”

- Can be a regular dependency, an argument passed to the SUT
- Attribute from NUnit testing fromework that marks classes
continuing tests

Test isolation (Ch 5)
- Ability for tests to run in parallel, sequentially & in any order

Test Pyromld (Ch 4)
Concept that advocates for a certain ratio of different types of tests
in the test suite
- The width of the pyramid layers refers to the prevalence of a
particular type of test
- Test count is widest at bottom / horizontal, emulating user increases
vertically
- “The wider the layer, the greater the test count. The height of
the layer is a measure of how close these tests are to emulating
the end user’s behavior”(88).

Integration
tests

Unit tests

Transaction (Ch 10)
- A closs that either commits or rolls back data updates in full
- Will be a custom class relying on the underlying DB'’s transactions to
provide atomicity of data modification
- Lifecycle: Lives during the whole business operation & is disposed of
at the very end of it

Trivial Test (Ch 4, 7)
- Maximizes 2 out of 3 attributes ot the expense of the 3rd
- Runs very quickly, low chance of producing a false positive /
good resistance to refactoring, unlikely to reveal any

regressions bc there’'s not much room for a mistake in the
underlying code
- Covers a simple piece of code, something unlikely to break bc it's too
trivial
- Low complexity & domain significance, few colloborators - not worth

testing at all
- Exomples: parameterless constructors, 1-line properties

U-Z

Unit of Work Pattern (Ch 10)
- Maintains a list of objects affected by a business operation
- Once the operation is completed, the unit of work figures our all
updates that need to be done to alter the DB & executes those

updates as a single unit

Unit Test (Ch 1)
- Verifies a single unit of behavior, quickly & in isolation from other

tests

Value object (Ch 6)
- A class whose instances are compared by value & not by reference

Volatile dependency (Ch 2)
- Exhibits 1 of the following:

- Introduces requirements to set-up & config runtime
environment in addition to what's installed on a developer’s
machine by default (dbs, APIs)

- Contains nondeterministic behavior (random number
generator, class returning timestamp)

YAGNI (You Aren’t Going To Need It) Principle (Ch 8)
- Advocates against investing time in functionality that's not needed
right now
- You shouldn't develop this functionality, not should you modify your
existing code to account for the appearance of such functionality in
the future
- Opportunity Cost

- If you spend time on a feature that the business doesn't
need now, you're taking away from features needed now ->

wasteful

- It's more beneficial to implement the functionality from
scratch when the actual need for it emerges

- The less code in the project, the better

- Introducing code just in case without immediate need
increases your code base’s cost of ownership -> better to
postpone introducing new functionality until as late o
stage of your project as possible

	A
	B
	C
	
	D
	E
	F-G
	H
	I-L
	M-N
	O-Q
	R
	S
	T
	U-Z

