
Sparkplug 
Attention: Externally visible, non-confidential 
Author: leszeks@chromium.org, verwaest@chromium.org 
Status: Draft | Final 
Created: 2021-02-02  /  Last updated: 2021-02-17 ​
Tracking Bug: https://crbug.com/v8/11420 
Link: go/v8-sparkplug 

LGTMs needed 
 

Name Write (not) LGTM in this row 

hpayer LGTM 

rmcilroy LGTM 

mvstanton LGTM 

machenbach LGTM 

<your name here>  

TL;DR 
Let’s add a baseline compiler. 

Overview 
There is a trade-off space for compilers which balances compilation time and compiled 
code quality. The Ignition interpreter and the TurboFan optimising compiler are at two 
ends of this spectrum. However, there is a big performance cliff between the two; 
staying too long in the interpreter means we don’t take advantage of optimisation, but 
calling TurboFan too early might mean we “waste” time optimising functions that aren’t 
actually hot -- or worse, it means we deopt. 
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We can reduce this gap with a simple, fast, non-optimising compiler, that can quickly 
and cheaply tier-up from the interpreter by linearly walking the bytecode and spitting out 
machine code. We call this compiler Sparkplug. 

The main properties of Sparkplug are: 

●​ Fast to compile 
○​ No more than one or two passes over bytecode. 
○​ No intermediate representation -- machine code is dumped directly. 
○​ Fast enough compilation could mean we can flush Sparkplug code 

aggressively. 
●​ Safe to compile early 

○​ No speculation, and therefore no deopts. 
●​ Context independent 

○​ Therefore cacheable, both in-memory and on-disk. 
○​ Also shareable across navigations. 

●​ Minimal complexity 
○​ Reuse as much existing machinery as possible (builtins, macro-assembler, 

stack frames). 
○​ Minimise architecture-specific code. 

●​ Generates half decent code. 
○​ This is at the end, because while we do want to generate code that is 

efficient to run, we do not want to compromise on the above properties to 
do so. 

○​ Should “pay for itself” in CPU cycles, i.e. compilation (concurrent or not) 
should take less time than time saved by having better code. 

Design 

Overview 
Sparkplug compiles bytecode to machine code. It can be thought of as an “interpreter 
accelerator”, which compiles bytecode in the most naïve way possible: into (effectively) 
a series of builtin calls interspersed with control flow. 

More specifically, Sparkplug compiles from bytecode, by iterating the bytecode and 
emitting machine code for each bytecode as it is visited. Control flow is done in the 
obvious way; very simple operations, like reference equality or typeof tests, can be 



emitted directly; and more complex operations, like named loads or arithmetic, are 
punted to builtins. 

Stack frames 
Sparkplug avoids having to do any register allocation by re-using the interpreter’s 
register frame, where bytecodes that load/store registers are compiled to direct 
loads/stores to the appropriate register frame stack slot. In fact, Sparkplug’s stack 
frames are almost 1:1 compatible with Ignition stack frames: 

 

The one difference is that it overwrites the bytecode offset slot (which is not needed) 
with a cached feedback vector. 

This stack-level compatibility means that it is very cheap to OSR between the interpreter 
and Sparkplug, and the majority of frame inspection code (such as the stack frame 
printing or the GC’s stack walk) can treat Sparkplug frames as interpreter frames. 
Similarly, Sparkplug can OSR up to the same TurboFan code as the interpreter does, 



using existing mechanisms, and TurboFan can deopt down to Sparkplug by synthesising 
almost exactly the same frame as it does for the interpreter. 

Sparkplug’s frame is initialised by a baseline prologue builtin, which sets up the fixed 
part of the frame, followed by an register frame fill which is inlined into the Sparkplug 
code. The inlining of the frame fill allows us to emit the exact number of pushes needed 
to fill the frame; if there are a lot of registers (>16) this is replaced by an unrolled loop 
pushing 8 registers at a time. 

Sparkplug PC ↔ bytecode offset mapping 
Since Sparkplug does not maintain a bytecode offset slot, we need another way of 
mapping sparkplug PCs to bytecode offsets (for frame walks, source positions, 
exceptions, OSR, etc.). 

This is currently implemented as a “good enough” solution, which attaches a table to the 
Sparkplug Code object that encodes, linearly, pairs of diffs from the previous PC and 
bytecode offset. For example, the table 

PC Offset 
20 0 
30 3 
50 5 

​

is encoded as 

PC Offset 
20 0 
10 3 
20 2 

​

These diffs are then compressed with a variable-width integer encoding (specifically, 
VLQ) to minimise the table size. The pairs are recorded “wherever they are needed” -- 
practically, this means at loop headers (for OSR), immediately after calls (for 
exceptions), and at deopt points. Note that this diff-based encoding works because the 
Sparkplug PC increases monotonically with bytecode offset 

This has the advantage of being simple, relatively compact, and two-way, but 

●​ It requires a linear walk of the table to get the mapping, 

https://en.wikipedia.org/wiki/Variable-length_quantity


●​ It “wastes space” on bytecode offsets which could instead be recovered from the 
BytecodeArray, 

●​ We currently don’t get detailed line information when profiling Sparkplug 

There are several potential improvements to this encoding, depending on the trade-offs 
we want to make: 

●​ Performance: Encode the full PC and offset with a fixed size encoding, to make it 
binary searchable 

●​ Performance: Add “checkpoints” to make it at least somewhat binary searchable 
●​ Memory: Don’t encode bytecode offsets, but instead iterate the bytecode array 

while iterating PCs 
●​ Memory: Generate this table lazily, similar to lazy bytecode source positions 
●​ Memory: Have a PC “predictor” and encode the PC as an error from that 

prediction rather than a diff from the previous PC 
●​ Memory: Compress the table and decompress on each use 
●​ Profiling/Memory: Create full mapping only when profiling is enabled 
●​ Profiling/Memory: Ensure at least one entry per basic block 

Exceptions 
Ignition implements exceptions as a handler table on the bytecode, mapping a bytecode 
offset range to the bytecode offset of the handler. TurboFan implements exceptions as 
a table from call return PC to handler PC. 

Sparkplug takes a hybrid approach to the two, which uses the PC↔offset mapping 
above. When an exception is being processed, the stack walk finds the Sparkplug frame, 
and reads off the PC (which is necessarily a call return PC as Sparkplug can’t throw 
directly). It converts this PC to a bytecode offset, looks up that offset in the bytecode’s 
handler table, finds the handler offset, and converts that back into a Sparkplug PC, that 
it can then jump to. 

This allows us to reuse the existing Ignition handler table with low additional memory 
cost (the cost of encoding the PC↔offset mapping). The remaining code (e.g. for 
handler lookup) stays the same as for interpreted frames. 

Tier-up and interrupts 
Sparkplug uses the same interrupt budget/interrupt mechanism as Ignition, Turboprop 
and NCI; that is, updating the interrupt budget by a fixed, bytecode-dependent amount 
on jumps and returns, and potentially calling a runtime interrupt on backward jumps and 



returns. Currently this interrupt budget update and check is inlined into the Sparkplug 
code; for code-size and compile-time reasons, we may move it to a (frameless) builtin 
call. 

The tier-up from Ignition to Sparkplug is currently bolted onto lazy feedback vector 
allocation, and Sparkplug code is stored on the data field of the SharedFunctionInfo as a 
(Code, BytecodeArray) pair. This means that we do have to adapt some of the 
interpreter entries (in particular, the InterpreterEntryTrampoline) to check for Sparkplug 
code, and tail-call it if it exists. This is folded relatively simply into the existing 
BytecodeArray load from the SharedFunctionInfo. 

Note: for Sparkplug we changed the lazy feedback vector allocation heuristics to be in 
relation to the size of the function rather than a constant budget. The cost of compilation 
is in relation to the function size for both, and this modification helps both reduce the 
number of IC misses and allows Sparkplug to benefit earlier and more. 

Feedback vectors 
Sparkplug requires the function’s feedback vector to be allocated, to be able to remove 
feedback cell checks, or indeed indirect access to the feedback vector through the 
feedback cell. This is ensured at tier-up time, both as part of Sparkplug compilation, and 
in the Interpreter→Sparkplug tier-up in the InterpreterEntryTrampoline. 

Sparkplug maintains the same feedback as Ignition, so most builtins called from 
Sparkplug require a feedback vector (ICs, Call trampolines, arithmetic, etc.). We 
currently re-use the “_WithFeedback” builtins originally created for NCI, however this 
requires us to emit code which loads the feedback vector inline in the Sparkplug code. 
The plan is to move Sparkplug to call specific “Baseline” trampoline builtins, which load 
the feedback vector from the stack themselves. This is already done for “hot” builtins, 
like LoadIC, Call, and Construct. 

Loops / OSR 
Sparkplug is currently a two-pass compiler; the reason for the first pass is loops. 
Specifically, a first walk over the bytecode is needed to discover JumpLoop bytecodes, 
and thus find loop headers. If we wanted, we could skip this pass by emitting a Label for 
every bytecode. However, we may want to have a two-pass compiler for other reasons 
too, e.g. liveness estimates. 

https://docs.google.com/document/d/18w1U5V0E7WOgZaSo-bJPan0syEbPdKfLoqmAelyRUnU/edit?ts=5e417ec3


OSR in loops is performed exactly the same as in the interpreter; it checks whether OSR 
is armed on the bytecode, and tail-calls the OSR trampoline if yes. 

Debugger 
The plan for the debugger is, like TurboProp/TurboFan, to discard the optimized code 
and fall back to the interpreter. This means a relatively trivial OSR fixup of any on-stack 
Sparkplug frames. 

Cross-arch code 
The Sparkplug compiler uses a “BaselineAssembler” which wraps the MacroAssembler. 
This BaselineAssembler provides an architecture-independent interface for performing 
common Sparkplug operations, like calling builtins, loading/storing registers, comparing 
values, doing jumps, and so on. The majority of the implementation of the 
BaselineAssembler can also be written in a (syntactically) cross-arch method, relying on 
the different MacroAssembler implementations having the same syntactic API. 

Code that _has_ to be architecture specific, like pushing arguments for a call (thanks, 
Arm64 stack alignment), or the actual operation of loading a value at an offset from the 
stack frame, lives in architecture-specific -inl.h files. The aim is to keep these below 1k 
LoC. 

Performance 
We have an initial prototype, which can be used to gather some preliminary data. Our 
current prototype has the following performance characteristics: 

Compile time 
Based on tracing compilation time in Octane, on a powerful workstation compile time is, 
roughly, 100-1000× faster than TurboFan/TurboProp’s total execution time (including 
background-thread), and, roughly, 10-100× faster than their (current) main-thread time 
(note: this was measured without “concurrent inlining” or “direct heap access”). As a 
comparison, Sparkplug compilation time is on a similar order of magnitude to bytecode 
compilation (which excludes parsing time). 



 

On Facebook we see a similar distribution, albeit with bytecode compilation being 
slightly faster than Sparkplug compilation: 

 



Note: These numbers were collected with a PGO-enabled build of Chromium, but without 
training PGO on Sparkplug. This likely biases the numbers against Sparkplug compilation 
time. 

Real-world (system_health RuntimeCallStats) 
We ran Sparkplug on the system_health loading stories, with RCS, to see its effect on 
both compile time and javascript execution time. For comparison, we also ran the 
current default configuration, TurboProp, and a combination of both Sparkplug and 
TurboProp. 

Running on a Mac, 6×2 CPUs, with 3× repetitions, the relevant parts of main-thread time 
look like this: 

 

If we include time spent optimizing on the background, we see this: 

 

Note: Both Interpreter and Sparkplug compile time are bucketed under “Compile”, 
Turboprop compile time is bucketed under “Optimize” for the main-thread part, and 
“Optimize-Background” for the background thread part. 

Notable here is that: 

●​ Sparkplug already “pays for itself”, in terms of the sum of compile time and 
JavaScript execution time. This is expected to improve as we improve both its 
compile time and the quality of generated code. 



●​ Sparkplug doesn’t increase total compile time that much, on top of existing 
interpreter compile time; indeed, looking at compile counts, the default 
configuration has 35,971 compiles while Sparkplug has 42,020, indicating that 
with the current heuristic, ~20% of functions are compiled. 

●​ Sparkplug by itself (without even TurboFan) has the lowest total CPU usage, 
which is valuable on pay-per-cycle servers and battery-powered devices. 

●​ Turboprop pairs well with Sparkplug to give the lowest JS execution time 

Real-world memory (system_health) 
Sparkplug code is approximately 5-6× larger than the corresponding bytecode, but with 
the current tier-up heuristic we compile ~20% of functions, so overall it regresses ~2× 
relative to bytecode memory (excluding flushing). Measurements on Pinpoint don’t 
report statistically significant increases in V8 heap memory or malloc memory; 
presumably we’d see regressions with stronger statistical testing, but it seems low 
enough to not be immediately obvious. 

Security 

Sparkplug generates machine code, but isn’t especially creative about it; most of the 
code it generates is stack access and calls, and the generation code is short enough to 
manually verify. So, there are unlikely to be security issues in the generated code itself. 

Interaction with the rest of the system is the larger risk. Having a similar (but not quite 
the same) layout as interpreted frames means that potentially we could get type 
confusion on the mismatches (either the feedback vector or the bytecode offset). This 
is somewhat unavoidable (since we cannot maintain the invariant that frames are valid 
in both), so we rely on DCHECKs around the frame type and fuzzing to flush out issues 
here. 

The other concern is W^X. Flipping the write/execution bits is a small percentage of 
TurboFan compile time, but dominates Sparkplug compile time due to Sparkplug 
compiling faster (flipping bits roughly doubles Sparkplug compilation time on 
Speedometer). A major source for performance issues on at least Intel CPUs seems to 
originate from micro-architectural SMC (self-modifying code) snooping optimisations 
(fast path from the dcache to the icache) that only kick in when the written-to code 
memory is actually executable. Flipping between RX (execute) and RWX (write) instead 
of RW seems to recover ~70% of the overhead. While this might be enough to recover 
lost performance on higher-end machines, on lower-end we likely need a 



performance-friendlier way to implement W^X (likely some sort of concurrency and/or 
batching) as we may want to age code aggressively to reduce memory overhead. 

Testing plan 

Sparkplug is currently hidden behind two flags: --sparkplug and 
--always-sparkplug. The former adds Sparkplug with the tiering described above; 
the latter forces Sparkplug compilation immediately after bytecode compilation, to 
increase coverage. 

The testing plan is to add two variants to the test runner, enabling each of these flags. 
These variants would start as fyi/extra initially, but the --sparkplug variant should be 
added to the default set of variants run on waterfall/CQ blocking bots. One plausible 
option is to put --sparkplug behind --future. 

When --sparkplug becomes the default, we add a variant with --no-sparkplug or 
cross-combine it with an existing variant. 

We should also add the sparkplug to the fuzzer, both for “normal” fuzzing and for 
correctness fuzzing (comparing outputs against the interpreter). We enable normal 
fuzzing with trials for both flags above on Clusterfuzz and for V8’s flag fuzzer. For 
differential fuzzing we’ll add specific comparison configurations. 

To test on fuzzers before landing, we can upload a custom debug binary on Clusterfuzz 
to the linux_d8_dbg_cm job. 

FAQ 

Isn’t this just FullCodeGen? 
Kind of! It’s FullCodeGen for modern V8, and that’s not such a bad thing. This brings the 
performance benefits of FCG back to V8, but 

●​ Compiles from bytecode, so there’s no need for another AST walk, desugaring, 
etc. 

●​ Keeps bytecode as the “source of truth”, so no need to e.g. maintain consistent 
deopt IDs between bytecode and compiled code. Basically, no “Frankenpipeline”. 

●​ Uses data-driven ICs from the get-go, so no complexity around code patching. 
●​ Defers most complex work to builtins, which can be written cross-arch in 

Torque/CSA. 

https://source.chromium.org/chromium/chromium/src/+/master:v8/tools/testrunner/testproc/fuzzer.py;l=13
https://source.chromium.org/chromium/chromium/src/+/master:v8/tools/clusterfuzz/v8_foozzie.py;l=30?q=foozzie.py


●​ Maintains the interpreter’s stack layout (see Stack frames) so OSR stays easy. 

In other words: 

 

Isn’t this just TurboProp? 
TurboProp is also designed as a mid-tier compiler between the interpreter and 
TurboFan, but it approaches this middle from the TurboFan side, as a “TurboFan-lite” 
that re-uses the existing TurboFan machinery, but removes less necessary optimisation 
passes, and replaces slower-but-more-optimal passes with faster-but-less-optimal ones. 

TurboProp is faster than TurboFan, but it is still a “somewhat optimising” compiler, 
which has to set up the Sea-of-Nodes IR, schedule the graph, allocate registers etc. As 
argued in The Case For Four Tiers (Google internal), this makes it a great choice for a 
pre-TurboFan optimisation tier, but there is still room between Ignition and Turboprop 
for a non-optimising compiler, which approaches the mid-tier from the Interpreter side. 

Furthermore, the presence of Sparkplug can “take the weight” off Turboprop; if 
Turboprop isn’t the first tier after Ignition, it has a little bit more flexibility in exchanging 
compile time for performance (e.g. inlining) or being a little bit more selective in what 
functions it compiles. 

https://docs.google.com/document/u/1/d/1NeOsqjPPAcDWbuHxW5MobzVQgj9qZd6NqKUnz0h-fOw/edit
https://docs.google.com/document/d/1VNUPPb2JQh0yg8SR2Y2SAk7hPooymfaWN9UKKl8JIk4/edit#heading=h.3rsygsse7xtv


Are Sparkplug frames considered “interpreted”? 
“Jein” . At the moment, they mostly are (since the have mostly the same layout, this 1

simplifies compatibility with the rest of the system which doesn’t really care). We 
probably want to extract out a concept of an “unoptimized” JS frame, which covers both 
interpreted and sparkplug frames. 

Is Sparkplug code considered “optimized”? 
“Jein” . It’s definitely more “optimized” than the bytecode, has tier-up from bytecode and 2

even tier-down to bytecode when the debugger sets a breakpoint in the code. On the 
other hand, when we talk about “optimized” we normally really mean “speculating”, in 
the sense that e.g. changes in object shapes could cause the code to deopt. In this 
sense it is “unoptimized”. 

We’ll likely want to do a similar thing to frames; expand the definition of “unoptimized” 
to include both interpreted and sparkplug, but distinguish sparkplug from interpreted 
where it matters (e.g. tier-up). Likely this will involve sparkplug being its own thing, 
IsBaseline or similar. 

2 Still my favourite German word. 
1 My favourite German word, meaning “yes and no”. 

https://www.thelocal.de/20200217/german-word-of-the-day-jein
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