
Creating New Env in Multigrid

Step 1: Create new world
agents.py
constants.py
object.py
world.py
grid.py

Step 2: Create env
__init__
_gen_grid
_reward
step
reset
state/obs encoding

Step 3: Register env
Step 4: Write tests

Step 1: Create new world

agents.py

●​ If existing action classes don’t suffice, add a new world’s action class

constants.py

●​ If there are object-specific states, define a state_to_idx_{yourChosenName}
dictionary

●​ If your env requires objects not yet defined, add an entry for the new object to the
dictionary OBJECT_TO_STR

object.py

●​ Define a class for the new object(s), if any
●​ Objects require: type, colour, position, encode, decode, render
●​ Object attributes are defined through: can_overlap, can_pickup, can_contain,

see_behind
●​ Objects can have: contains, toggle

world.py

●​ Add a new world if existing worlds don’t suffice
●​ A world defines the objects, colours, and encoding size
●​ Note: Encode layers are to capture different things. Layer 1 is for the type of object

in the cell, layer 2 is for color, and 3 is for agent orientation. We haven’t used 4, 5,
and 6 but can be used for more characteristics if needed.

grid.py

●​ This is the underlying structure of the new env
●​ Methods include: copy, get, set, rotate, slice, render, encode
●​ Also have: horz_wall, vert_wall, wall_rect

Step 2: Create env
Create a file {yourChosenName}.py at gym_multigrid/gym_multigrid/envs/. Write a class for
your environment that inherits from MultigridEnv.

__init__
When calling super’s init, you should specify:

●​ the list of agents
●​ grid dimensions
●​ whether you are using full or partial observability
●​ the number of timesteps per episode
●​ the actions and world classes defined above

You likely will want to initialize/define other private variables relevant to your env. For
example, in the collect game we need to keep track of the following:

_gen_grid

You must implement this method as it is not defined by the MultiGridEnv parent class. This
method gets called by default during env.reset(). Here, you need to place all objects and agents
present in the gridworld.

For example, in collect game we define the four boundary walls, place the balls, and then place
the agents.

The place_obj() method is defined by the parent class and has the following parameters:

By default, the method tries to place the object in the grid by sampling locations uniformly at
random repeatedly until a free grid cell is found.

If you know the coordinates for the object’s location, you should instead use this method:

For placing agents, the above two methods are called as appropriate using this method:

_reward
The default reward function defined is as follows:

This gets called when a goal state is reached. current_agent specifies which agent receives the
reward.

You should override this if your env has a different reward structure.

step
This method is crucial to the dynamics of your env. You should define this and can call the
MultiGridEnv’s step method as well if it handles the execution of actions the way you need for
your env.

The only required parameter to the step method is the list of actions to execute. By default,
these are executed in random order:

If your agent action class has actions that are not movement-related, this is where you would
call methods such as _handle_pickup, _handle_build, _handle_drop, _handle_switch, and
_handle_special_moves as necessary. None of those methods have a default implementation,
so you must implement them yourself. For example, to collect the ball object:

The step method is also where the done flag is typically set to true as appropriate. This can be
used for early termination:

or otherwise to end the episode when the maximum number of timesteps has been reached:

reset
As with the step method, you should implement one for your env and can call MultiGridEnv’s
reset method as well since it resets other variables.

For example, in the collect game we reset the number of collected_balls and the info dictionary:

state/obs encoding
The default grid encoding is a numpy array of shape height x width x encode_dim. The method
also accounts for partial observability. You may want to write a method to transform this default
encoding into a format that works best for your env and agent algorithm.

Step 3: Register env
Add a line to gym_multigrid/gym_multigrid/__init.py__ to register the newly created env on
gymnasium

Step 4: Write tests
It’s a good idea to test the new env for bugs continuously as you make updates.

Here is an example of how to write a pytest to run through the env steps until an episode
terminates by using random actions.

	Creating New Env in Multigrid
	
	Step 1: Create new world
	agents.py
	constants.py
	object.py
	world.py
	grid.py

	Step 2: Create env
	__init__
	
	_gen_grid
	
	
	_reward
	
	step
	
	reset
	
	
	state/obs encoding

	Step 3: Register env
	Step 4: Write tests

