Using Bayesian Inference to Understand Inductive Biases in Deep Neural
Networks

Abstract

Human-like intelligence in machines has been of interest to philosophers and engineers for
centuries. Today’s deep learning allows computational models to obtain meaningful
representations on high-dimensional inputs such as text and images. However, understanding
these representations is challenging and why they work remains opaque. Our aim goes in two
directions: 1) using computational foundations of human cognition to understand and to improve
deep neural networks; 2) reverse-engineering the mind by using success in deep neural
networks to understand human cognitive processes. In both directions, Bayesian inference
serves as a bridge between the two fields. In the first goal, we present a Bayesian interpretation
of the autoregressive objective under several distributional assumptions to show where the
optimal content of language model embeddings can be identified. In the second goal, we show
how variants of prior distributions in variational auto-encoders, a probabilistic generative model,
explain how forming prototypes contributes to semi-supervised categorization.
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