
 
AGENDA  Friday, Dec 2, 2022​
View Bios | Website​
  

8:00 - 9:00 am CST  
Registration & Check In 

9:00 - 10:20 am CST 
Welcome, Keynote & Technical Talks 

Host: Christian Keller 

9:00-9:10 am Aparna Ramani | Meta AI Welcome & Opening Remarks 

9:10-9:20 am Soumith Chintala | Meta AI Keynote 

9:20-9:30 am Peng Wu | Meta AI 

PyTorch Core: Technical Talks 
9:30-9:40 am Jason Ansel | Meta AI 

9:40-9:50 am Michael Suo | Meta AI 

9:50-10:00 am Horace He | Meta AI 

10:00-10:10 am Anjali Sridhar | Meta AI 
PyTorch Distributed: Towards 
Large-scale Distributed Training 

10:10-10:20 am Dennis van der Staay | Meta AI 
TorchRec: PyTorch Domain Library for 
Recommendation Systems 

10:20 - 10:30 am  
Break 

10:30-10:40 am Tristan Rice | Meta AI 
MultiPy: Python Models Scaled in C++ 
Services 

10:40-10:50 am Ankita De | Meta AI Introduction to TorchMultimodal 

10:50-11:00 am Vincent Moens | Meta AI Introduction to TorchRL 

11:00-11:10 am Raziel Alvarez Guevara | Meta AI PyTorch Mobile: Past, Present, & Future 

   

 

https://drive.google.com/file/d/1ilawkiueYs6nw3mDg3zriR8SJ_W2yfpy/view
https://pytorchconference22.splashthat.com/


11:30 - 12:30 pm  
Lunch 

Virtual Lunch Livestream Talks* 

12:30 - 3:00 pm  
Networking & Posters 

1:00 - 3:00 pm  
Breakout Sessions 

1:00-1:30 pm 

Joe Bowser | Adobe 
PyTorch Mobile on Android using C++  

Nikita Namjoshi & Eric Dong | Google Cloud 
Operationalize Distributed Training with PyTorch on Google Cloud 

1:30-2:00 pm 

Raghu Ganti | IBM 
Scaling PyTorch FSDP for Training Foundation Models on IBM Cloud 

Kiuk Chung & Pooja Maknikar | Amazon 
Research to Production at Amazon Scale With PyTorch 

2:00-2:30 pm 

Thomas Chaton | Lightning AI 
Lightning: From Models to Production AI Applications 

Parinita Rahi & Razvan Tanase | Microsoft 
Azure Container for PyTorch: An Optimized Container for Large Scale 
Distributed Training Workloads 

2:30-3:00 pm 

Jiong Gong | Intel 
What is New in Intel Extension for PyTorch 

 

3:00 - 4:10 pm  
Community & Partner Talks 

3:00-3:10 pm Joe Isaacson | Meta AI 
Geeta Chauhan | Meta AI State of PyTorch 

3:10-3:20 pm Jeff Daily | AMD Getting Started With PyTorch on AMD 
GPUs 

 



3:20-3:30 pm Uros Lipovsek | Amazon 
Scaling Models With PyTorch on AWS 
Trainium 

3:30-3:40 pm Hagay Lupesko | MosaicML 
Supercharge Your Model Training With 
MosaicML Composer 

3:40-3:50 pm Kulin Seth | Apple 
Accelerate PyTorch Training on Mac 
Platforms Using MPS backend 

3:50-4:00 pm Lysandre Debut & Sylvain 
Gugger | Hugging Face 

Run Very Large Models With Consumer 
Hardware Using 🤗Transformers and 🤗 
Accelerate 

4:00-4:10 pm   Zain Rizvi | Meta AI 
How and why to Become a Contributor 
to PyTorch 

4:10 - 4:20 pm  
Break 

4:20 - 5:00 pm  
PyTorch Future & Closing 

4:20-4:25 pm Chris Mattman | NASA JPL PyTorch on Mars 

4:25-4:50 pm 
PyTorch & The Linux 
Foundation Panel Discussion: Maintainers & LF 

4:50-4:53 pm Video PyTorch: A Look Back 

4:53-5:00 pm 
Refik Anadol & Christian 
Burke | Refik Anadol Studio Machine Hallucinations 

5:00-5:05 pm Christian Keller | Meta AI Closing Remarks 

5:00 - 6:00 pm 
Happy Hour  

Sponsored by Google Cloud 

 

 
 

 

 



*VIRTUAL LIVESTREAM LUNCH TALKS 
 

Tal Baumel | Microsoft 

Title: Federated Multilingual Models for medical Transcript Analysis 
Abstract: Text Analytics for Health is a healthcare-oriented NLP service and a part 
of Azure Cognitive Services that enables developers to process and extract insights 
from unstructured medical data. Developing large language models in the medical 
domain surfaces several issues in data and training methodology that are unique to 
the domain. First, to ensure high quality, it is required to expose the model to 
diverse medical specialties and languages. Such data is not publicly accessible and 
owned by worldwide healthcare organizations. Second, medical data is often 
secured by many data trust boundary restrictions and cannot be transferred and 
accessed freely between organizations. Last, to avoid privacy violation and data 
leakage data must be anonymized and de-identified prior to any usage in modeling. 

 

Clément Chadebec | INRIA 

Title: Pythae: Unifying Generative Autoencoder Implementations in PyTorch 
Abstract: Pythae is a library that implements some of the most common 
(Variational) Autoencoder models under a unified implementation. In particular, it 
provides the possibility to perform benchmark experiments and comparisons by 
training the models with the same autoencoding neural network architecture. The 
feature make your own autoencoder allows you to train any of these models with 
your own data and own Encoder and Decoder neural networks. It integrates 
experiment monitoring tools such wandb and mlflow and allows model sharing and 
loading from the HuggingFace Hub in a few lines of code. 

 

Min Jean Cho | Intel 

Title: Scaling inference on CPUs with TorchServe  
Abstract: We will introduce key optimizations to boosting out-of-box performance 
on CPUs with TorchServe, showcase performance boost via Intel® Extension for 
PyTorch with performance numbers and profiling, and how to enable key 
optimizations to TorchServe with easy-to-use API. 

 



 

Robin Lobel | TorchStudio 

Title: TorchStudio, an AI training assistant for PyTorch 
Abstract: TorchStudio is an open source training assistant for PyTorch. 
It can be used as a standalone software or connect to any Python IDE. 
Easily explore, visualize, build, format, analyze datasets and models from the 
PyTorch ecosystem or your own, using a graphical interface providing realtime 
visual feedback at every step. 
Train, monitor and compare performances using local hardware or any remote 
server in a couple clicks.​​ 

 
Li Ning | AWS 

Title: TorchServe CPP Backend 
Abstract: TorchServe is a PyTorch model serving solution. Internally, it is divided 
into two parts: frontend for model management, and backend for model loading 
and prediction. TorchServe’s default Python backend allows users to easily plug in a 
model’s pre and post processing, and also serves PyTorch’s eager mode and 
torchscripted models. However, this backend limits TorchServe to further 
performance optimizations due to Python’s restrictions. TorchServe’s CPP backend is 
a new feature implemented in C++. It not only allows users to plug in model pre 
and post processing as Python backend does, but also builds the foundation for GPU 
utilization and concurrency optimization, even providing the flexibility to be 
embedded in an edge device. 

 
Jimmy Whitaker | Pachyderm 

Title: Automating PyTorch: Using TorchX to Make Data Centric ML Workflows 
Abstract: TorchX makes running PyTorch on different platforms trivial. But when 
looking to automate jobs when new data comes in, the process becomes more 
tedious. In this talk, we‚Äôll show you how to connect model training to a versioned 
data source, making data changes the driving force in your ML development. 

 

 



PRESENTATION ABSTRACTS 

 

Breakout Sessions 
 

Joe Bowser | Adobe  

Title: PyTorch Mobile on Android using C++  
Abstract: This talk will be about some of the explorations that Adobe conducted 
with bringing existing and new ML features in our products to the Android platform 
using PyTorch Mobile. This talk will briefly touch on the challenges of porting 
models, why we choose to use C++ instead of Java or Kotlin on Android, the 
reasons we decided to investigate PyTorch Mobile, and the lessons learned when 
comparing the framework against competitors. 

 

Nikita Namjoshi & Eric Dong  | Google 

Title: Operationalize Distributed Training with PyTorch on Google Cloud 
Abstract: Training time is a key bottleneck for machine learning development. To 
speed up training of large models, many engineering teams are adopting distributed 
training using scale-out clusters of accelerators. However, distributed training at 
scale brings its own set of challenges.  As a result, there’s a demand for tools and 
frameworks to help scale large ML models, and take them to production in a reliable 
and repeatable way. In this session, we show how to run distributed training of 
PyTorch models on Google Cloud with Vertex AI.  Along the way, we’ll also explore 
how to introduce MLOps practices to improve the velocity and reliability of training 
these models in production. 

 

Raghu Ganti | IBM 

Title: Scaling PyTorch FSDP for Training Foundation Models on IBM Cloud 
Abstract: IBM Research kicked off a strategic initiative for AI in 2022 for 
frictionless development and deployment of foundation models for enterprise use 
cases in Hybrid Cloud. These use-cases target multiple modalities such as NLP, 
timeseries, weather, chemistry, tabular data, cybersecurity with model sizes from 
100s of millions to 100s of billions of parameters. This talk will present results from 
our joint work with PyTorch Distributed team on scaling training using FSDP on 
commodity Ethernet, which demonstrates 90% GPU efficiency across 100s of GPUs 
for 10B+ parameter models. The Research infrastructure in IBM Cloud houses 

 



1400+ state of the art 80GB A100 GPUs (8 per node) with multiple 100G 
ethernet-based network interfaces per node which are managed by Kubernetes. We 
will also touch on our extensions to K8s with MCAD scheduler that provides job 
queuing, gang scheduling, prioritization, and quota management 
(https://github.com/IBM/multi-cluster-app-dispatcher) and integrate it with TorchX 
for seamless launching of jobs using Python APIs. We developed a multi NIC CNI 
(https://github.com/foundation-model-stack/multi-nic-cni) that discovers all 
available network interfaces and handles them as a single NIC pool. We support a 
single pane observability for the full stack using a desktop CLI 
(https://github.com/project-codeflare/codeflare-cli). 
 

Thomas Chaton | Lightning AI 

Title: Lightning: From Models to Production AI Applications 
Abstract: In this presentation, we'll explore the process of going from building and 
training PyTorch models to embedding those models in fully-functional AI apps and 
products. The Lightning framework allows you to do this without handling DIY 
infrastructure, cost management, scale, and other common issues. We'll explore 
how to organize PyTorch code into standard, interoperable components using the 
Lightning Trainer and Lightning Module. Then, we'll go over the key components of 
building tailored AI apps with PyTorch: Lightning Flow and Works. 

 

Parinita Rahi & Razvan Tanase | Microsoft 

Title: Azure Container for PyTorch: An Optimized Container for Large Scale 
Distributed Training Workloads 
Abstract: PyTorch is a popular open source machine learning framework. AzureML 
has launched a new container for simplifying set up and ease of acceleration of 
deep learning jobs with PyTorch. This container brings together PyTorch and 
Microsoft technologies for large scale distributed training and is used by many 
teams at Microsoft to develop the models used in Office, Bing, Dynamics, etc. In 
this talk we will share details of the container and show you how easy it is to get 
started with your PyTorch training workflows in Azure. 

Jiong Gong | Intel 

Title: What is new in Intel Extension for PyTorch 
Abstract: We will show the new features and optimizations in Intel Extension for 
PyTorch, including into quantization, ease-of-use APIs, and ecosystem integration 
(such as Hugging Face). 

 

https://github.com/IBM/multi-cluster-app-dispatcher
https://github.com/foundation-model-stack/multi-nic-cni
https://github.com/project-codeflare/codeflare-cli


Kiuk Chung & Pooja Maknikar | Amazon 

Title: Research to Production at Amazon Scale With PyTorch 
Abstract: The M5 team at Amazon builds state-of-the-art semantic representations 
of Amazon-specific entities such as products, shopping sessions, and reviews which 
are used by various machine learning systems across Amazon. Due to the scale, 
dynamic, and diverse nature of Amazon’s AI use-cases, M5’s AI platform was 
designed to enable high velocity research and experimentation paired with 
low-friction productization. With PyTorch being the deep learning library of choice, 
we’ve built a Research to Production (R2P) stack servicing over a hundred teams at 
Amazon. In this session we dive into the journey of M5 from zero to success and 
discuss the challenges of using PyTorch on our infrastructure, the solutions we came 
up with, and lessons learned. 

 
 

Community and Partner Talks 

Joe Isaacson & Geeta Chauhan | Meta AI  

Title: State of PyTorch 
Abstract: It takes a village to build an open-source framework. PyTorch has added 
many great features and has seen explosive growth in 2022, all thanks to our awesome 
community of contributors. This talk gives a run through of who builds PyTorch, ways to 
get involved in the development, and examples of it being used in industry. 
 

Jeff Daily | AMD 

Title: Getting Started With PyTorch on AMD GPUs 
Abstract: This talk will cover everything a developer would need to know to get 
started quickly using PyTorch on AMD GPUs. The presentation will lay the 
foundation by introducing the ROCm open software platform as well as HIP 
(Heterogeneous Interface for Portability), AMD’s dedicated GPU programming 
environment. Next, we will cover building and installing ROCm PyTorch from source 
or wheels and how to port existing PyTorch applications and workloads to AMD 
GPUs. Lastly, we will conclude with recent performance results. 

 

Uros Lipovsek | Amazon 

Title: Scaling Models With PyTorch on AWS Trainium 
Abstract: The trend of increasing model size brings new challenges from model, 
software and hardware perspective. AWS released the Trainium chip to address this 
opportunity, aided by PyTorch and distributed training algorithms such as Fully 

 



sharded data parallel. Trainium offers high network bandwidth and accelerator 
memory, common bottlenecks for large models. 

 

Hagay Lupesko | MosaicML 

Title: Supercharge Your Model Training With MosaicML Composer 
Abstract: Learn how to make your PyTorch model training faster and more efficient 
by easily leveraging dozens of algorithmic optimization methods available within 
MosaicML Composer. In this session, we will go through recipes for training 
canonical CV and NLP models with 4x speedups, dive in to understand specific 
algorithmic optimizations, and showcase how you can apply these methods to 
optimize your PyTorch training workflows. 

 

Kulin Seth | Apple 

Title: Accelerate PyTorch Training on Mac Platforms Using MPS Backend 
Abstract: With PyTorch v1.12 we introduced GPU-accelerated Machine Learning 
training on Mac platforms using the Metal Performance Shaders (MPS) backend. We 
will provide details about the MPS backend architecture, and how current operations 
are accelerated on the GPU using Metal. We will also discuss how developers can 
accelerate their own operations by targeting the MPS backend, as well as debugging 
tools & tricks for Mac. Finally we will discuss advantages of training on Apple Silicon 
and conclude with performance results on popular benchmarks. 

 

Lysandre Debut & Sylvain Gugger | Hugging Face 

Title: Run Very Large Models With Consumer Hardware Using 🤗 Transformers and 
🤗 Accelerate 
Abstract: Come and deep dive with Hugging Face maintainers into the inner 
workings of Transformers and Accelerate to run very large PyTorch models such as 
BLOOM and OPT-176B on accessible hardware. We'll understand how to efficiently 
load big models without maxing out your RAM and GPU memory, take advantage of 
various numerical precision types, and perform inference even if the model is 
distributed across GPUs, CPUs, or even with some weights offloaded onto the disk. 
We think that very large models shouldn't be constrained to clusters and believe 
that PyTorch can be leveraged efficiently to make them accessible to anyone. 
 

 



Zain Rizvi | Meta AI 

Title: How and why to Become a Contributor to PyTorch 
Abstract: We’ll discuss the process of contributing to PyTorch. Starting with the 
benefits of contributing, for both business and individuals, we’ll move on to how you 
propose ideas and get your changes reviewed, and how to ask for help if you get 
stuck. We’ll finally cover tips for advanced contributors and describe custom tools 
we’ve built in-house to make contributor's lives easier. 
 
 
 
 
 
 
POSTER DIRECTORY 
POSTER DIRECTORY 
12:30-1:45 pm​​ Group 1 

1:45-3:00 pm​ ​ Group 2   ​ ​ ​ ​        
 

COMPUTER VISION  

(GROUP 1) 

A1  Enabling State-of-the-art Interpretability for Medical Imaging Using PyTorch 

  

 

LIBRARIES  

(GROUP 1) 

B1 
TorchUnmix: Automatic Stain Unmixing and Augmentation for Histopathology 
Images in PyTorch 

B2 Scalable Training and Inference With Ray AIR 

B3 AutoMAD: Mixed Mode Autodiff for PyTorch Models 

B4 xFormers: Building Blocks for Efficient Transformers 

 



B5 linear_operator - Structured Linear Algebra in PyTorch 

B6 
Declarative Machine Learning with Ludwig: End-to-end Machine Learning Pipelines 
Using Simple and Flexible Data-driven Configurations 

B7 Generalized Shapes: Block Sparsity, MaskedTensor, NestedTensor 

B8 Betty: An Automatic Differentiation Library for Generalized Meta Learning 

B9 Functorch: Composable Function Transforms in Pytorch 

B10 Large-Scale Neural Solvers for Partial Differential Equations 

B11 PyTorch Video: A Deep Learning Library for Video Understanding 

B12 Model Preparation for Federated Learning and Device Computation 

B13 Constrained Optimization in PyTorch With Cooper 

B14 Two Dimensional Parallelism Using Distributed Tensors 

B15 PyTorch Tabular: A Framework for Deep Learning With Tabular Data 

B17 Better Transformer: Accelerating Transformer Inference in PyTorch  

B18 PiPPy: Automated Pipeline Parallelism for PyTorch 

 

 OPTIMIZATION 

(G1 GROUP 1)  
(C1 - C4 GROUP 2) 

C1 Practical Guide on PyTorch Inference Using AWS Inferentia 

C2 PyG Performance Optimization for CPU 

C3 Quantization in PyTorch 2.0 Export 

C4 Torch-TensorRT: A Compiler for Accelerating PyTorch Inference Using TensorRT 

G1 
Accelerating Inference with PyTorch by Leveraging Graph Fusions With oneDNN 
Graph (GROUP 1) 

 

OTHER  

(GROUP 2) 

 



D1 Back to Python: Extending PyTorch without touching C++ 

D2 Functionalization in PyTorch 

D3 Walmart Search: Serving Models at a Scale on TorchServe 

 

PRODUCTION  

(H1 GROUP 1)  
(E1 - E4 GROUP 2)  

E1 TorchX: From Local Development to Kubernetes and Back  

E2 Training at Scale using Fully Sharded Data Parallel (FSDP) with PyTorch/XLA 

E3 FSDP Production Readiness 

E4 Orchestrating Pytorch Workflows With Kubeflow Pipelines and TorchX 

H1 A Community- led and OSS Ecosystem of ML Compiler and Infrastructure Projects  

 

TOOLS 

(GROUP 2) 

F1 Squeezing GPU Memory Usage in PyTorch 

F2 “Brainchop”: In Browser MRI Volumetric Segmentation and Rendering 

F3 TorchBench: Quantifying PyTorch Performance During the Development Loop 

F4 Democratizing AI for Biology with OpenFold 

 
POSTER ABSTRACTS 
 

COMPUTER VISION 

 

Dinkar Juyal, Syed Asher Javed, Harshith Padigela, Amaro Taylor-Weiner, Limin 
Yu, Aaditya Prakash, Logan Kilpatrick, Anand Sampat | PathAI 

Enabling State-of-the-art Interpretability for Medical Imaging Using PyTorch 

 



PathAI is a Boston based company focussed on improving patient care using AI powered 
pathology. We heavily use PyTorch for building our ML systems, specifically training and 
deploying models on large gigapixel pathology images. In this case study, we highlight our 
use of PyTorch to build, experiment and deploy Additive Multiple Instance Learning (MIL) 
models. Additive MIL is a novel MIL technique built using PyTorch Lightning which allows 
end-to-end learning from millions of pixels while providing granular interpretability of spatial 
heatmaps. These models allow for the exact computation of the extent to which each 
smaller region in the gigapixel-sized image contributes to the final model prediction. This 
enables class-wise excitatory and inhibitory contributions to be visualized on top of the 
pathology image. This informs the practitioners of model failures and guides the 
pathologists to areas of interest. All this is made possible due to PyTorch's rapid 
research-to-prototype-to-deployment iteration cycle. 

 

LIBRARIES 

 

Erik Hagendorn | AbbVie 

TorchUnmix: Automatic Stain Unmixing and Augmentation for Histopathology 
Images in PyTorch 
TorchUnmix is a library which aims to provide automatic stain unmixing and augmentation 
for histopathology whole slide images. Separation of histochemical stains (unmixing) is 
performed by orthonormal transformation of the RGB pixel data from predefined light 
absorption coefficients called stain vectors [1]. Precomputed publicly available stain vector 
definitions are often used, but inter-laboratory variation due to the histology and/or image 
acquisition process is common, yielding suboptimal unmixing results. Classical stain vector 
estimation methods rely on abundant distribution of stains, making them less practical for 
sparser distributions as observed from immunohistochemical stains. Geis et al. proposed a 
method based on k-means clustering of pixel values in the hue-saturation-density color 
space to determine optimal stain vectors which has been used in this work [2]. While stain 
vectors may be used for quantification of individual stains, TorchUnmix also provides 
functionalities to perform stain augmentation. Stain augmentation is a method used during 
the training process of deep learning models to improve generalization by unmixing the 
image, stochastically modifying the individual stains, and then compositing the stains into 
the final augmented image [3]. To our knowledge, no other libraries fully implement the 
above methods in PyTorch, utilizing GPU-acceleration. Additionally, TorchUnmix has 
extended all calculations used to perform the automatic stain unmixing and augmentation to 
operate on batches of images, drastically accelerating execution performance speeds in 
comparison to other libraries. 
 

Kai Fricke & Balaji Veeramani| Anyscale 

Scalable Training and Inference With Ray AIR 

 



Scaling machine learning is hard: Cloud platform solutions like SageMaker can limit 
flexibility, but a custom distributed framework is often too hard to implement. In effect, ML 
engineers struggle to scale their workloads from local prototyping to the cloud. 

The Ray AI Runtime ("Ray AIR") is an integrated collection of machine learning libraries built 
around distributed computing framework Ray. It provides an easy to use interface for 
scalable data processing, training, tuning, batch prediction, and online serving. Adapting 
existing PyTorch training loops to Ray AIR's PyTorch integration needs as little as 10 lines of 
code changes. And scaling from local development to the cloud needs no code changes at 
all. 

Jan Hückelheim| Argonne National Laboratory 

AutoMAD: Mixed Mode Autodiff for PyTorch Models 
Mixed Mode autodiff combines back-propagation and forward differentiation. Both modes 
have pros and cons: Back-propagation is efficient for scalar functions with many trainable 
parameters. Back-propagation uses memory for intermediate results, requires data flow 
reversal, scales poorly for many output variables. Forward differentiation is straightforward 
to implement, memory-efficient, and easy to vectorize/parallelize or port to new hardware. 
Forward mode scales poorly with large number of trainable parameters. AutoMAD makes it 
possible to combine both modes. Use forward differentiation for some layers, while using 
back-prop for others. 
 

Daniel Haziza, Francisco Massa, Jeremy Reizenstein, Patrick Labatut, & Diana 
Liskovich| Meta AI 

xFormers: Building Blocks for Efficient Transformers 
We present xFormers, a toolbox to accelerate research on Transformers. It contains efficient 
components, like an exact memory-efficient multi-head attention that can accelerate 
trainings 2x while using a fraction of the memory. xFormers components are also 
customizable and can be combined together to build variations of Transformers. Our hope is 
to enable the next generation of research based on Transformers. 
 

Max Balandat| Meta AI 

linear_operator - Structured Linear Algebra in PyTorch 
linear_operator (https://github.com/cornellius-gp/linear_operator) is a library for structured 
linear algebra built on PyTorch. It provides a LinearOperator class that represents a tensor 
that is never instantiated but is instead accessed through operations like matrix 
multiplication, solves, decompositions, and indexing. These objects use custom linear 
algebra operations that can exploit particular matrix structure (e.g. diagonal, 
block-diagonal, triangular, Kronecker, etc.) in computations in order to achieve substantial 
(many orders of magnitude) improvements in time and memory complexity. Moreover, 
many efficient linear algebra operations (e.g. solves, decompositions, indexing, etc.) can be 
automatically generated from the LinearOperator's matmul function. This makes it 
extremely easy to compose or implement custom LinearOperators. 
 

 

https://github.com/cornellius-gp/linear_operator


The key aspect that makes linear_operator easy to use in PyTorch code is its integration 
with the `__torch_function__` interface - Common linear algebra operations (such as 
matrix multiplication, solve, SVD) are mapped to the respective torch functions 
(`__matmul__`, `torch.linalg.solve`, `torch.linalg.svd`), so that LinearOperator objects 
can be used as drop-in replacements for dense tensors even in existing code. 
LinearOperator operations themselves may return LinearOperator objects, automatically 
keeping track of algebraic structure after each computation. As a result, users never need to 
reason about what efficient linear algebra routines to use (so long as the input elements 
defined by the user encode known input structure). 
 

Justin Zhao| Predibase 

Declarative Machine Learning with Ludwig: End-to-end Machine Learning Pipelines 
Using Simple and Flexible Data-driven Configurations 
Ludwig is a declarative machine learning framework that makes it easy to define and 
compare machine learning pipelines using a simple and flexible data-driven configuration 
system. The minimal configuration declares the input and output features with their 
respective data types. Users can specify additional parameters to preprocess, encode, and 
decode features, load from pre-trained models, compose the internal model architecture, 
set training parameters, or run hyperparameter optimization. Ludwig will build an 
end-to-end machine learning pipeline automatically, using whatever is explicitly specified in 
the configuration, while falling back to smart defaults for any parameters that are not. 
Scientists, engineers, and researchers use Ludwig to explore state-of-the-art model 
architectures, run hyperparameter search, and scale up to larger than available memory 
datasets and multi-node clusters, on a variety of problems using structured and 
unstructured features. Ludwig has 8.5K+ stars on Github and is built on top of PyTorch, 
Horovod, and Ray. 
 

Christian Puhrsch | Meta AI 

Generalized Shapes: Block Sparsity, MaskedTensor, NestedTensor 
This poster presents an overview of available and ongoing developments related to sparse 
memory formats, masked computation, and support for collections of variably shaped data. 
In particular it contains a case study of block sparse memory formats, MaskedTensor, and 
NestedTensor. 
 

Sang Keun Choe| Carnegie Mellon University 

Betty: An Automatic Differentiation Library for Generalized Meta Learning 
Betty is a simple, scalable and modular library for generalized meta-learning (GML) and 
multilevel optimization (MLO), built upon PyTorch, that allows a unified programming 
interface for a number of GML/MLO applications including few-shot learning, 
hyperparameter optimization, neural architecture search, data reweighting, and many more. 
The internal autodiff mechanism and the software design of Betty are developed by the 
novel interpretation of GML/MLO as a dataflow graph. 

 



 

Samantha Andow | Meta AI 

Functorch: Composable Function Transforms in Pytorch 
Inspired by Google JAX, functorch is a library in Pytorch that offers composable vmap 
(vectorization) and autodiff transforms (grad, vjp, jvp). Since its first release alongside 
Pytorch 1.11, combining these transforms has helped users develop and explore new 
techniques that were previously tricky to write in Pytorch, like Neural Tangent Kernels and 
non-linear optimizations (see Theseus, also from PyTorch). This will go through some basic 
usages and highlight some research that leverages functorch. 
 

Patrick Stiller, Jeyhun Rustamov, Friedrich Bethke, Maksim Zhdanov, Raj Sutarya, 
Mahnoor Tanveer, Karan Shah, Richard Pausch, Sunna Torge, Alexander Debus, 
Attila Cangi, Peter Steinbach, Michael Bussmann, & Nico Hoffmann | Helmholtz 
Zentrum Dresden-Rossendorf 

Large-Scale Neural Solvers for Partial Differential Equations 
Our open-source Neural Solvers framework provides data-free ML-based solvers for the 
study and analysis of phenomena in natural sciences built on top of Pytorch. We were the 
first to show that certain quantum systems modeled by the 2d Schr√∂dinger equation can 
be accurately solved while retaining strong scaling. We also developed a novel neural 
network architecture, GatedPINN [1], introducing adaptable domain decomposition into the 
training of Physics-informed Neural Networks based on the Mixture-of-Experts paradigm. 
Distributed large-scale training of our GatedPINN is facilitated by Horovod, resulting in 
excellent GPU utilization making Neural Solvers ready for the upcoming exascale era. 
Upcoming projects involve higher dimensional problems such as 3d laser systems and 
coupled models to study the Vlasov-Maxwell system. Further experiments on novel very 
scalable compute hardware paves the way for applications of high-fidelity Neural Solvers to 
real-world applications such as Inverse Scattering Problems. 
 

Haoqi Fan | Meta AI 

PyTorch Video: A Deep Learning Library for Video Understanding 
PyTorchVideo is the deep learning library for video understanding research in PyTorch. 
 

Jose Gallego-Posada (Juan Camilo Ramirez, co-author)| Mila, University of 
Montreal 

Constrained Optimization in PyTorch With Cooper 
Cooper (https://github.com/cooper-org/cooper) is a general-purpose, deep learning-first 
constrained optimization library in PyTorch. Cooper is (almost!) seamlessly integrated with 

PyTorch and preserves the usual loss  backward  step workflow. If you are already 
familiar with PyTorch, using Cooper will be a breeze! 

 

 

https://github.com/cooper-org/cooper


This library aims to encourage and facilitate the study of constrained optimization problems 
in deep learning. Cooper focuses on non-convex constrained optimization problems for 
which the loss or constraints are not necessarily “nicely behaved” or “theoretically 
tractable”. Moreover, Cooper has been designed to play nicely with mini-batched/stochastic 
estimates for the objective and constraint functions. 

 
Cooper implements several popular constrained optimization protocols so you can focus on 
your project, while we handle the nitty-gritty behind the scenes. 
 

Zhihan Fang | Meta AI 

Model Preparation Federated Learning and Device Computation 
Federated Learning with Differential Privacy has witnessed an increased adoption as one of 
the most promising ways to train machine learning models while preserving user privacy. 
Existing models in Meta around people attributes are mostly built on traditional centralized 
machine learning methods. Recently, due to the increasing concerns about user privacy 
internally and externally, Machine Learning teams at Meta are experiencing either signal loss 
or restriction on applying new features in models to further improve model performance. In 
this paper, we are introducing a generic framework we built for preparing and generating 
models for federated learning. The model preparation process is to utilize traditional 
machine learning to understand model structure and hyperparameters for the target 
problems including training, inference, evaluations. It also requires a simulation process to 
train the target model structure and understand the simulated environment on the server 
side to tune FL specific hyperparameters. 
The model generation process is to generate device compatible models, which can be used 
directly on users’ devices for federated learning. We applied the FL framework on our 
on-device models, and integrated with device signals to improve user experience and 
protect user privacy. 
 

Wanchao Liang & Junjie Wang | Meta AI 

Two Dimensional Parallelism Using Distributed Tensors 
This talk will introduce 2-dimensional parallelism with PyTorch (Data Parallelism + Tensor 
Parallelism) using Distributed Tensor, a fundamental distributed primitive offered by PyTorch 
Distributed that empowers Tensor Parallelism. We have proven that using FSDP + Tensor 
Parallelism together could enable us to train large models like Transformer, and increase 
training performance. We offer end to end training techniques that enable you to train 
models in 2-D parallelism fashion, and checkpoint save/load models in a distributed manner. 
 

Manu Joseph | Thoucentric 

PyTorch Tabular: A Framework for Deep Learning with Tabular Data 
In spite of showing unreasonable effectiveness in modalities like text and image, Deep 
Learning has always lagged Gradient Boosting in tabular data- both in popularity and 
performance. But recently there have been newer models created specifically for tabular 

 



data, which is pushing the performance bar. Popularity is still a challenge, however, because 
there is no easy, ready-to-use library like Sci-Kit Learn for deep learning. PyTorch Tabular 
aims to change that by being an easy-to-use and flexible framework which makes using 
SOTA model architectures in tabular data as easy as Sci-Kit Learn. 
 

Michael Gschwind, Christian Puhrsch, Driss Guessous, Rui Zhu, Daniel Haziza, & 
Francisco Massa | Meta AI 

Better Transformer: Accelerating Transformer Inference in PyTorch 
We introduce Better Transformer, the PyTorch project to accelerate Transformers for 
inference and training with out-of-the-box enablement by implementing the Better 
Transformer ‘fastpath’. Fastpath accelerates many of the most commonly executed functions 
in Transformer models. Starting with PyTorch 1.13, the PyTorch Core API is implemented 
with accelerated operations to deliver up to 2x-4x speedups on many Transformer models, 
such as BERT and XLM-R. Accelerated operations are based on (1) operator and kernel 
fusion and (2) exploiting sparsity created by variable sequence-length NLP batches. In 
addition to improving MultiHeadAttention with fastpath, the model also includes sparsity 
support for MultiHeadAttention and TransformerEncoder modules to take advantage of 
variable sequence-length information with Nested Tensors for NLP models. 
 
At present, we enable torchtext and Hugging Face domain libraries with Better Transformer, 
delivering significant speedups for text, image, and audio models. Starting with the next 
release, PyTorch core will include even faster fused kernels and training support. You can 
preview these features today with PyTorch Nightlies, the nightly preview builds of the 
upcoming PyTorch release. 
 

Ke Wen, Pavel Belevich, & Anjali Sridhar | Meta AI 

PiPPy: Automated Pipeline Parallelism for PyTorch 
PiPPy is a library that provides automated pipeline parallelism for PyTorch models. With 
compiler techniques, PiPPy splits a model into pipeline stages without requiring model 
changes. PiPPy also provides a distributed runtime that distributes the split stages to 
multiple devices and hosts and orchestrates micro-batch execution in an overlapped fashion. 
We demonstrate application of PiPPy to Hugging Face models achieving 3x speedup on cloud 
platforms. 
 

OPTIMIZATION 

 

Keita Watanabe | Amazon Webservices 

Practical Guide on PyTorch Inference Using AWS Inferentia 
In this session we will go through step-by-step how to conduct the inference process of 
machine learning models using Inferentia. In addition, we compare the inference 

 



performance with GPU and discuss the cost advantage. In the later part of the session, we 
will also cover model deployment on Kubernetes.  
 

Mingfei Ma | Intel Corporation and kumo.ai 

PyG Performance Optimization for CPU 
Accelerating PyG CPU performance with faster sparse aggregation. 
PyG is a library built upon PyTorch to easily write and train Graph Neural Networks, which 
heavily relies on the mechanism of Message Passing for information aggregation. We have 
optimized critical bottlenecks of Message Passing from PyTorch, including: 1. Scatter 
Reduce: maps to classic PyG use case when the EdgeIndex is stored in COO memory 
format. 2. SpMM Reduce: maps to the usage case when the EdgeIndex is stored in CSR 
memory format. 
 

Jerry Zhang | Meta AI 

Quantization in PyTorch 2.0 Export 
Currently, PyTorch Architecture Optimization (torch.ao) offers two quantization flow tools: 
eager mode quantization (beta) and fx graph mode quantization (prototype). With PyTorch 
2.0 coming up, we are going to redesign quantization on top of the PyTorch 2.0 export path, 
this talk will introduce our plans for supporting quantization in PyTorch 2.0 export path, its 
main advantages over the previous tools, and how modeling developers and backend 
developers will be interacting with this flow. 
 

Naren Dasan, Dheeraj Peri, Bo Wang, Apurba Bose, George Stefanakis, & Nick 
Comly | NVIDIA 

Wei Wei, Shirong Wu, Yinghai Lu | Meta 

Torch-TensorRT: A Compiler for Accelerating PyTorch Inference Using TensorRT  
Torch-TensorRT is an open-source compiler targeting NVIDIA GPUs for high-performance 
deep-learning inference in PyTorch. It combines the usability of PyTorch with the 
performance of TensorRT allowing for easy optimization of inference workloads on NVIDIA 
GPUs. Torch-TensorRT supports all classes of optimizations in TensorRT including reduced 
mixed precision down to INT8, through simple Python & C++ APIs designed to work directly 
from PyTorch. Torch-TensorRT outputs standard PyTorch modules as well as the TorchScript 
format to allow for a completely self-contained, portable, & static module with TensorRT 
engines embedded. We present recent improvements to Torch-TensorRT including the new 
FX frontend which allows developers to use a full Python workflow for optimizing models and 
extend Torch-TensorRT in Python, the unified Torch-TensorRT Runtime which enables hybrid 
FX + TorchScript workflows and discuss future work for the project.  
 

Sanchit Jain | Intel Corporation 

Accelerating Inference with PyTorch by Leveraging Graph Fusions With oneDNN 
Graph 

 



The open-source oneDNN Graph library extends oneDNN with a flexible graph API to 
maximize the optimization opportunities for generating efficient code on AI hardware 
(currently x86-64 CPUs, but GPU support is on the way). It automatically identifies the 
graph partitions to be accelerated via fusion. Its fusion patterns entail fusing 
compute-intensive operations such as convolution, matmul and their neighbor operations for 
both inference and training use cases. Since PyTorch 1.12, oneDNN Graph has been 
supported as an experimental feature to speed up inference with Float32 datatype on 
x86-64 CPUs. Support for inference with oneDNN Graph using BFloat16 datatype exists in 
the PyTorch master branch, and hence also in nightly PyTorch releases. Intel Extension for 
PyTorch is an open-source library that builds on top of PyTorch, and can be thought of as a 
"staging-ground" for optimizations in PyTorch from Intel. It leverages oneDNN Graph for 
inference with int8 datatype. This poster presents reproducible results with PyTorch’s 
TorchBench benchmarking suite to demonstrate the inference speedup achieved with 
PyTorch & oneDNN Graph using Float32, BFloat16 & int8 datatypes. 
 

OTHER 

 

Alban Desmaison | Meta AI 

Back to Python: Extending PyTorch Without Touching C++ 
This poster presents the new extension points that the PyTorch team has designed to allow 
users to extend PyTorch from Python. We will cover an introduction to Tensor Subclassing, 
Modes and torch library. We will briefly describe each extension point and talk through 
examples such as memory profiling, logging used operators, quantization and custom 
sparse kernel all in less than 100 LOC. We will also introduce the new ways you can add new 
devices and author kernels without the need to modify PyTorch directly. 
 

Brian Hirsh | Meta AI 

Functionalization in PyTorch 
Functionalization is a way to remove mutations from arbitrary PyTorch programs sent to 
downstream compilers. The PyTorch 2.0 stack is all about capturing graphs of PyTorch 
operations and sending them off to a compiler to get better performance. 
PyTorch programs can mutate and alias state, making them unfriendly to compilers. 
Functionalization is a technique to take a program full of PyTorch operators, including 
mutable and aliasing operators, and remove all mutations from the program while 
preserving semantics. 
 

 

 



Pankaj Takawale, Dagshayani Kamalaharan, Zbigniew Gasiorek, & Rahul 
Sharnagat | Walmart Labs 

Walmart Search: Serving Models at a Scale on TorchServe 
Walmart Search has embarked on the journey of adopting Deep Learning in the Search 
ecosystem for improving Search relevance in various parts. As our pilot use case, we 
wanted to serve the computationally intensive Bert Base model at runtime with an objective 
to achieve low latency and high throughput. We had JVM hosted web applications loading 
and serving multiple models. The experimental models were being loaded onto the same 
applications. These models are large in size and computation is expensive.  
We were facing the following limitations with this approach: Refreshing model with the latest 
version or adding new experimental model would need application deployment. Increased 
memory pressure on a single application. Slow startup time due to loading multiple ML 
models during startup. Concurrency was not beneficial due to limited CPU (Metrics on 
concurrent model prediction vs sequential). 

 
 

PRODUCTION 

 

Joe Doliner & Jimmy Whitaker | Pachyderm, Inc. 

TorchX: From Local Development to Kubernetes and Back 
TorchX is incredibly useful for developing PyTorch applications quickly. But when it comes to 
deployment, nothing is easy. With docker development, Kubernetes, and customer 
schedulers, there’s a lot to learn. In this talk, we’ll discuss how organizations can deploy to 
production, why TorchX is a great system for this, and lessons we learned so you can avoid 
hitting them too. 
 

Shauheen Zahirazami, Jack Cao, Blake Hechtman, Alex Wertheim | Google 

Ronghang Hu| Meta AI 

Training at Scale Using Fully Sharded Data Parallel (FSDP) with PyTorch/XLA 
PyTorch/XLA enables PyTorch users to run their models on XLA devices including Google's 
Cloud TPUs. The latest improvements in PyTorch/XLA enables training PyTorch models using 
FSDP to train very large models. In this work we present benchmarks and Hardware Flops 
Utilization of training HuggingFace GPT-2 on Cloud TPU v4. 
 

Rohan Varma & Andrew Gu | Meta AI 

FSDP Production Readiness 

 



This talk dives into recent advances in PyTorch Fully Sharded Data Parallel (FSDP) that have 
enabled better throughput, memory savings, and extensibility. These improvements have 
unblocked using FSDP for models of different modalities and for varying model and data 
sizes. We will share best practices to apply these features to specific use cases such as 
XLMR, FLAVA, ViT, DHEN, and GPT3-style models. 
 

Erwin Huizenga & Nikita Namjoshi | Google 

Orchestrating Pytorch Workflows With Kubeflow Pipelines and TorchX 
TorchX is a universal job launcher for PyTorch applications that helps ML practitioners speed 
up iteration time and support end to end production. In this talk, we show you how to build 
and run TorchX components as a pipeline using the Kubeflow Pipeline (KFL) DSL. We go into 
detail on how to use KFP and TorchX to build components and how to use KFP DSL to 
orchestrate and run ML workflows. 
 

Shauheen Zahirazami, James Rubin, Mehdi Amini, Thea Lamkin, Eugene Burmako, 
& Navid Khajouei | Google 

A Community- led and OSS Ecosystem of ML Compiler and Infrastructure Projects  
ML development is often stymied by incompatibilities between frameworks and hardware, 
forcing developers to compromise on technologies when building ML solutions. OpenXLA is a 
community-led and open-source ecosystem of ML compiler and infrastructure projects being 
co-developed by AI/ML leaders including Alibaba, Amazon Web Services, AMD, Arm, Apple, 
Google, Intel, Meta, NVIDIA, and more. It will address this challenge by letting ML 
developers build their models on leading frameworks and execute them with high 
performance across any hardware backend. This flexibility will let developers make the right 
choice for their project, rather than being locked into decisions by closed systems. Our 
community will start by collaboratively evolving the XLA compiler and StableHLO, a portable 
ML compute operation set that makes frameworks easier to deploy across different 
hardware options. 
 

TOOLS 

 

Mao Lin, Keren Zhou, & Penfei Su | UC Merced and OpenAI 

Squeezing GPU Memory Usage in PyTorch 
The limited GPU memory resources can often hinder the performance of GPU-accelerated 
applications. While PyTorch’s Caching Allocator aims to minimize the number of expensive 
memory allocations and deallocations and maximize the efficient utilization of GPU memory 
resources, our study of common deep learning models revealed significant memory 
fragmentation problems. In some cases, up to 50% of GPU memory is wasted. To better 
understand the root causes of memory fragmentation, we developed a tool that visualizes 
GPU memory usage in two ways: the allocator view and the block view. The allocator view 

 



presents memory usage with each allocation or deallocation event, and the block view 
shows the changes in specific memory blocks over time. Our analysis revealed the 
considerable potential to save GPU memory, which would relieve the bottleneck of limited 
resources. By employing strategies such as swapping, activation recomputation, and 
memory defragmentation, we were able to reduce GPU memory waste significantly. 
 

Mohamed Masoud, Farfalla Hu, & Sergey Plis | Georgia State University 
Neuroneural Trends   

“Brainchop”: In Browser MRI Volumetric Segmentation and Rendering 
In brainchop project, we bring high fidelity pre-trained deep learning models for volumetric 
analysis of structural magnetic resonance imaging (MRI) right to the browsers of scientists 
and clinicians with no requirement on their technical skills in setting up AI-solutions. All of 
this in an extensible open-source framework. Our tool is the first front-end MRI 
segmentation tool on the web that supports full brain volumetric processing in a single pass 
inside a browser. This property is powered by our lightweight and reliable deep learning 
model Meshnet that enables volumetric processing of the entire brain at once, which leads 
to increased accuracy with modest computational requirements. High-quality client-side 
processing solves the privacy problem, as the data does not need to leave the client. 
Moreover, browser-based implementation is able to take advantage of available hardware 
acceleration regardless of the brand or architecture. 

GitHub: https://github.com/neuroneural/brainchop 
 

Xu Zhao, Will Constable, David Berard, Taylor Robie, Eric Han, & Adnan Aziz | 
PyTorch Perf Infra Team - Meta   

TorchBench: Quantifying PyTorch Performance During the Development Loop  
Holding the line of performance is challenging for ML frameworks like PyTorch. The existing 
AI benchmarks like MLPerf are end-to-end, therefore require large volumes of datasets, 
at-scale GPU clusters, and long benchmarking time. We develop TorchBench, a novel AI 
benchmark suite which highlights with minimal data inputs, single GPU, and 
milliseconds-per-test latencies. TorchBench is now deployed as part of the PyTorch nightly 
release process, guarding performance/correctness regressions and testing experimental 
PyTorch features on SOTA machine learning models. 
 

Gustaf Ahdritz, Sachin Kadyan, Will Gerecke, Luna Xia, Nazim Bouatta, Mohammed 
AlQuraishi | Weights & Biases  

Democratizing AI for Biology With OpenFold 
OpenFold, developed by Columbia University, is an open-source protein structure prediction 
model implemented with PyTorch. The goal of OpenFold is to verify that AlphaFold 2 — 
DeepMind's protein structure prediction model — can be reproduced from scratch and 
beyond that, make components of the system available to like-minded researchers and 
academics so they can build on top of it. During this research, Weights & Biases was used to 
accelerate OpenFold’s reproduction of AlphaFold 2. The collaborative nature of W&B allowed 

 

https://github.com/neuroneural/brainchop


for insights to scale from a single researcher to the entire team and helped solve the 
reproducibility challenge in ML. 
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