. PYTORCH
CONFERENCE

2022
AGENDA Friday, Dec 2, 2022

View Bios | Website

8:00 - 9:00 am CST
Registration & Check In

9:00 - 10:20 am CST

Welcome, Keynote & Technical Talks
Host: Christian Keller

9:00-9:10 am Aparna Ramani | Meta Al Welcome & Opening Remarks
9:10-9:20 am Soumith Chintala | Meta AI Keynote
9:20-9:30 am Peng Wu | Meta AI
9:30-9:40 am Jason Ansel | Meta AI

PyTorch Core: Technical Talks
9:40-9:50 am Michael Suo | Meta Al
9:50-10:00 am Horace He | Meta Al

10:00-10:10 am

Anjali Sridhar | Meta Al

PyTorch Distributed: Towards
Large-scale Distributed Training

10:10-10:20 am

Dennis van der Staay | Meta Al

TorchRec: PyTorch Domain Library for
Recommendation Systems

10:20 - 10:30 am

Break

10:30-10:40 am

Tristan Rice | Meta Al

MultiPy: Python Models Scaled in C++
Services

10:40-10:50 am

Ankita De | Meta Al

Introduction to TorchMultimodal

10:50-11:00 am

Vincent Moens | Meta Al

Introduction to TorchRL

11:00-11:10 am

Raziel Alvarez Guevara | Meta Al

PyTorch Mobile: Past, Present, & Future

https://drive.google.com/file/d/1ilawkiueYs6nw3mDg3zriR8SJ_W2yfpy/view
https://pytorchconference22.splashthat.com/

11:30 - 12:30 pm
Lunch
Virtual Lunch Livestream Talks*

12:30 - 3:00 pm

Networking & Posters

1:00 - 3:00 pm
Breakout Sessions

Joe Bowser | Adobe
PyTorch Mobile on Android using C++

1:00-1:30 pm
Nikita Namioshi & Eric [| Google Cloud
Operationalize Distributed Training with PyTorch on Google Cloud

Raghu Ganti | IBM
Scaling PyTorch FSDP for Training Foundation Models on IBM Cloud
1:30-2:00 pm

Kiuk Chung & Pooja Maknikar | Amazon
Research to Production at Amazon Scale With PyTorch

Thomas Chaton | Lightning Al
Lightning: From Models to Production AI Applications

2:00-2:30 pm Parinita Rahi & Razvan Tanase | Microsoft

Azure Container for PyTorch: An Optimized Container for Large Scale
Distributed Training Workloads

Jiong Gon Intel

2:30-3:00 pm What is New in Intel Extension for PyTorch

3:00 - 4:10 pm

Community & Partner Talks

Joe Isaacson | Meta Al

3:00-3:10
pm Geeta Chauhan | Meta Al

State of PyTorch

Getting Started With PyTorch on AMD

3:10-3:20 pm Jeff Daily | AMD
P GPUs

Scaling Models With PyTorch on AWS

3:20-3:30 pm Uros Lipovsek | Amazon .
Trainium
_ Supercharge Your Model Training With
3:30-3:40 pm Hagay Lupesko | MosaicML .
MosaicML Composer
3-40-3:50 b Kulin Seth | Apple Accelerate PyTorch Training on Mac
. -J. | QQ .
P Platforms Using MPS backend
) Run Very Large Models With Consumer
Lysandre Debut & Sylvain . -
3:50-4:00 pm) Hardware Using & Transformers and &
Gugger | Hugging Face
Accelerate
o How and why to Become a Contributor
4:00-4:10 pm Zain Rizvi | Meta Al

to PyTorch

4:10 - 4:20 pm
Break

4:20 - 5:00 pm
PyTorch Future & Closing

4:20-4:25 pm Chris Mattman | NASA JPL PyTorch on Mars

4:25-4:50 pm PyTorch .& The Linux Panel Discussion: Maintainers & LF
Foundation

4:50-4:53 pm Video PyTorch: A Look Back
Refik Anadol & Christian . . .

4:53-5:00 pm Burke | Refik Anadol Studio Machine Hallucinations

5:00-5:05 pm Christian Keller | Meta AI Closing Remarks

5:00 - 6:00 pm

Happy Hour
Sponsored by Google Cloud

*VIRTUAL LIVESTREAM LUNCH TALKS

Tal Baumel | Microsoft

Title: Federated Multilingual Models for medical Transcript Analysis

Abstract: Text Analytics for Health is a healthcare-oriented NLP service and a part
of Azure Cognitive Services that enables developers to process and extract insights
from unstructured medical data. Developing large language models in the medical
domain surfaces several issues in data and training methodology that are unique to
the domain. First, to ensure high quality, it is required to expose the model to
diverse medical specialties and languages. Such data is not publicly accessible and
owned by worldwide healthcare organizations. Second, medical data is often
secured by many data trust boundary restrictions and cannot be transferred and
accessed freely between organizations. Last, to avoid privacy violation and data
leakage data must be anonymized and de-identified prior to any usage in modeling.

Clément Chadebec | INRIA

Title: Pythae: Unifying Generative Autoencoder Implementations in PyTorch
Abstract: Pythae is a library that implements some of the most common
(Variational) Autoencoder models under a unified implementation. In particular, it
provides the possibility to perform benchmark experiments and comparisons by
training the models with the same autoencoding neural network architecture. The
feature make your own autoencoder allows you to train any of these models with
your own data and own Encoder and Decoder neural networks. It integrates
experiment monitoring tools such wandb and miflow and allows model sharing and
loading from the HuggingFace Hub in a few lines of code.

Min Jean Cho | Intel

Title: Scaling inference on CPUs with TorchServe

Abstract: We will introduce key optimizations to boosting out-of-box performance
on CPUs with TorchServe, showcase performance boost via Intel® Extension for
PyTorch with performance numbers and profiling, and how to enable key
optimizations to TorchServe with easy-to-use API.

Robin Lobel | TorchStudio

Title: TorchStudio, an Al training assistant for PyTorch

Abstract: TorchStudio is an open source training assistant for PyTorch.

It can be used as a standalone software or connect to any Python IDE.

Easily explore, visualize, build, format, analyze datasets and models from the
PyTorch ecosystem or your own, using a graphical interface providing realtime
visual feedback at every step.

Train, monitor and compare performances using local hardware or any remote
server in a couple clicks.

Li Ning | AWS

Title: TorchServe CPP Backend

Abstract: TorchServe is a PyTorch model serving solution. Internally, it is divided
into two parts: frontend for model management, and backend for model loading
and prediction. TorchServe’s default Python backend allows users to easily plug in a
model’s pre and post processing, and also serves PyTorch’s eager mode and
torchscripted models. However, this backend limits TorchServe to further
performance optimizations due to Python’s restrictions. TorchServe’s CPP backend is
a new feature implemented in C++. It not only allows users to plug in model pre
and post processing as Python backend does, but also builds the foundation for GPU
utilization and concurrency optimization, even providing the flexibility to be
embedded in an edge device.

Jimmy Whitaker | Pachyderm

Title: Automating PyTorch: Using TorchX to Make Data Centric ML Workflows

Abstract: TorchX makes running PyTorch on different platforms trivial. But when
looking to automate jobs when new data comes in, the process becomes more
tedious. In this talk, we,Adll show you how to connect model training to a versioned
data source, making data changes the driving force in your ML development.

PRESENTATION ABSTRACTS

Breakout Sessions

Joe Bowser | Adobe

Title: PyTorch Mobile on Android using C++

Abstract: This talk will be about some of the explorations that Adobe conducted
with bringing existing and new ML features in our products to the Android platform
using PyTorch Mobile. This talk will briefly touch on the challenges of porting
models, why we choose to use C++ instead of Java or Kotlin on Android, the
reasons we decided to investigate PyTorch Mobile, and the lessons learned when
comparing the framework against competitors.

Nikita Namjoshi & Eric Dong | Google

Title: Operationalize Distributed Training with PyTorch on Google Cloud

Abstract: Training time is a key bottleneck for machine learning development. To
speed up training of large models, many engineering teams are adopting distributed
training using scale-out clusters of accelerators. However, distributed training at
scale brings its own set of challenges. As a result, there’s a demand for tools and
frameworks to help scale large ML models, and take them to production in a reliable
and repeatable way. In this session, we show how to run distributed training of
PyTorch models on Google Cloud with Vertex AI. Along the way, we’ll also explore
how to introduce MLOps practices to improve the velocity and reliability of training
these models in production.

Raghu Ganti | IBM

Title: Scaling PyTorch FSDP for Training Foundation Models on IBM Cloud
Abstract: IBM Research kicked off a strategic initiative for Al in 2022 for
frictionless development and deployment of foundation models for enterprise use
cases in Hybrid Cloud. These use-cases target multiple modalities such as NLP,
timeseries, weather, chemistry, tabular data, cybersecurity with model sizes from
100s of millions to 100s of billions of parameters. This talk will present results from
our joint work with PyTorch Distributed team on scaling training using FSDP on
commodity Ethernet, which demonstrates 90% GPU efficiency across 100s of GPUs
for 10B+ parameter models. The Research infrastructure in IBM Cloud houses

1400+ state of the art 80GB A100 GPUs (8 per node) with multiple 100G
ethernet-based network interfaces per node which are managed by Kubernetes. We
will also touch on our extensions to K8s with MCAD scheduler that provides job
queuing, gang scheduling, prioritization, and quota management
(https://github.com/IBM/multi-cluster-app-dispatcher) and integrate it with TorchX
for seamless launching of jobs using Python APIs. We developed a multi NIC CNI
(https://github.com/foundation-model-stack/multi-nic-cni) that discovers all
available network interfaces and handles them as a single NIC pool. We support a
single pane observability for the full stack using a desktop CLI
(https://github.com/project-codeflare/codeflare-cli).

Thomas Chaton | Lightning AI

Title: Lightning: From Models to Production AI Applications

Abstract: In this presentation, we'll explore the process of going from building and
training PyTorch models to embedding those models in fully-functional Al apps and
products. The Lightning framework allows you to do this without handling DIY
infrastructure, cost management, scale, and other common issues. We'll explore
how to organize PyTorch code into standard, interoperable components using the
Lightning Trainer and Lightning Module. Then, we'll go over the key components of
building tailored AI apps with PyTorch: Lightning Flow and Works.

Parinita Rahi & Razvan Tanase | Microsoft

Title: Azure Container for PyTorch: An Optimized Container for Large Scale
Distributed Training Workloads

Abstract: PyTorch is a popular open source machine learning framework. AzureML
has launched a new container for simplifying set up and ease of acceleration of
deep learning jobs with PyTorch. This container brings together PyTorch and
Microsoft technologies for large scale distributed training and is used by many
teams at Microsoft to develop the models used in Office, Bing, Dynamics, etc. In
this talk we will share details of the container and show you how easy it is to get
started with your PyTorch training workflows in Azure.

Jiong Gong | Intel

Title: What is new in Intel Extension for PyTorch

Abstract: We will show the new features and optimizations in Intel Extension for
PyTorch, including into quantization, ease-of-use APIs, and ecosystem integration
(such as Hugging Face).

https://github.com/IBM/multi-cluster-app-dispatcher
https://github.com/foundation-model-stack/multi-nic-cni
https://github.com/project-codeflare/codeflare-cli

Kiuk Chung & Pooja Maknikar | Amazon

Title: Research to Production at Amazon Scale With PyTorch

Abstract: The M5 team at Amazon builds state-of-the-art semantic representations
of Amazon-specific entities such as products, shopping sessions, and reviews which
are used by various machine learning systems across Amazon. Due to the scale,
dynamic, and diverse nature of Amazon’s Al use-cases, M5’s Al platform was
designed to enable high velocity research and experimentation paired with
low-friction productization. With PyTorch being the deep learning library of choice,
we've built a Research to Production (R2P) stack servicing over a hundred teams at
Amazon. In this session we dive into the journey of M5 from zero to success and
discuss the challenges of using PyTorch on our infrastructure, the solutions we came
up with, and lessons learned.

Community and Partner Talks
Joe Isaacson & Geeta Chauhan | Meta Al

Title: State of PyTorch

Abstract: It takes a village to build an open-source framework. PyTorch has added
many great features and has seen explosive growth in 2022, all thanks to our awesome
community of contributors. This talk gives a run through of who builds PyTorch, ways to
get involved in the development, and examples of it being used in industry.

Jeff Daily | AMD

Title: Getting Started With PyTorch on AMD GPUs

Abstract: This talk will cover everything a developer would need to know to get
started quickly using PyTorch on AMD GPUs. The presentation will lay the
foundation by introducing the ROCm open software platform as well as HIP
(Heterogeneous Interface for Portability), AMD’s dedicated GPU programming
environment. Next, we will cover building and installing ROCm PyTorch from source
or wheels and how to port existing PyTorch applications and workloads to AMD
GPUs. Lastly, we will conclude with recent performance results.

Uros Lipovsek | Amazon

Title: Scaling Models With PyTorch on AWS Trainium

Abstract: The trend of increasing model size brings new challenges from model,
software and hardware perspective. AWS released the Trainium chip to address this
opportunity, aided by PyTorch and distributed training algorithms such as Fully

sharded data parallel. Trainium offers high network bandwidth and accelerator
memory, common bottlenecks for large models.

Hagay Lupesko | MosaicML

Title: Supercharge Your Model Training With MosaicML Composer

Abstract: Learn how to make your PyTorch model training faster and more efficient
by easily leveraging dozens of algorithmic optimization methods available within
MosaicML Composer. In this session, we will go through recipes for training
canonical CV and NLP models with 4x speedups, dive in to understand specific
algorithmic optimizations, and showcase how you can apply these methods to
optimize your PyTorch training workflows.

Kulin Seth | Apple

Title: Accelerate PyTorch Training on Mac Platforms Using MPS Backend

Abstract: With PyTorch v1.12 we introduced GPU-accelerated Machine Learning
training on Mac platforms using the Metal Performance Shaders (MPS) backend. We
will provide details about the MPS backend architecture, and how current operations
are accelerated on the GPU using Metal. We will also discuss how developers can
accelerate their own operations by targeting the MPS backend, as well as debugging
tools & tricks for Mac. Finally we will discuss advantages of training on Apple Silicon
and conclude with performance results on popular benchmarks.

Lysandre Debut & Sylvain Gugger | Hugging Face

Title: Run Very Large Models With Consumer Hardware Using & Transformers and
= Accelerate

Abstract: Come and deep dive with Hugging Face maintainers into the inner
workings of Transformers and Accelerate to run very large PyTorch models such as
BLOOM and OPT-176B on accessible hardware. We'll understand how to efficiently
load big models without maxing out your RAM and GPU memory, take advantage of
various numerical precision types, and perform inference even if the model is
distributed across GPUs, CPUs, or even with some weights offloaded onto the disk.
We think that very large models shouldn't be constrained to clusters and believe
that PyTorch can be leveraged efficiently to make them accessible to anyone.

Zain Rizvi | Meta AI

Title: How and why to Become a Contributor to PyTorch

Abstract: We'll discuss the process of contributing to PyTorch. Starting with the
benefits of contributing, for both business and individuals, we’ll move on to how you
propose ideas and get your changes reviewed, and how to ask for help if you get
stuck. We'll finally cover tips for advanced contributors and describe custom tools
we’ve built in-house to make contributor's lives easier.

POSTER DIRECTORY
POSTER DIRECTORY

12:30-1:45 pm Group 1
1:45-3:00 pm Group 2

COMPUTER VISION

(GROUP 1)
|

Al Enabling State-of-the-art Interpretability for Medical Imaging Using PyTorch

LIBRARIES

(GROUP 1)
1
TorchUnmix: Automatic Stain Unmixing and Augmentation for Histopathology

Bl Images in PyTorch
B2 lable Training and Inference With Ray AIR
B3 AutoMAD: Mixed Mode Autodiff for PyTorch Models

B4 xFormers: Building Blocks for Efficient Transformers

B5

! s L Algebra in PyTord]

Declarative Machine Learning with Ludwig: End-to-end Machine Learning Pipelines

56 ing Simple and Flexible Data-driven Configuration

B7 Generalized Shapes: Block Sparsity, MaskedTensor, NestedTensor
B8 Betty: An Automatic Differentiation Library for Generalized Meta Learning
B9 Functorch: Composable Function Transforms in Pytorch

B10 Large-Scale Neural Solvers for Partial Differential Equations

B11l PyTorch Video: A Deep Learning Library for Video Understanding
B12 Model Preparation for Federated Learning and Device Computation
B13 : ined Optimization in PyTorch With C

B14 Two Di ional Parallelism Using Distributed T

B15 PyTorch Tabular: A Framework for Deep Learning With Tabular Data
B17 Better Transformer: Accelerating Transformer Inference in PyTorch
B18 PiPPy: Automated Pipeline Parallelism for PyTorch

OPTIMIZATION

(G1 GROUP 1)

(C1 - C4 GROUP 2)
|

Ci Practical i n_PyTorch Inferen ing AWS Inferenti

Cc2 PyG Performance Optimization for CPU

C3 Quantization in PyTorch 2.0 Export

c4 Torch-TensorRT: A Compiler for Accelerating PyTorch Inference Using TensorRT

Gl Accelerating Inference with PyTorch by Leveraging Graph Fusions With oneDNN
Graph (GROUP 1)

OTHER

(GROUP 2)

D1 Back to Python: Extending PyTorch without touching C++
D2 Functionalization in PyTorch

D3 Walm rch: rving M | le on TorchServ
PRODUCTION

(H1 GROUP 1)
(E1 - E4 GROUP 2)

E1l TorchX: From Local Development to Kubernetes and Back

E2 Training at Scale using Fully Sharded Data Parallel (FSDP) with PyTorch/XLA

E3 FSDP Production Readiness

E4 Orchestrating Pytorch Workflows With Kubeflow Pipelines and TorchX

Hi1 A Community- led and OSS Ecosystem of ML Compiler and Infrastructure Projects
TOOLS

(GROUP 2)

[
F1 Squeezing GPU Memory Usage in PyTorch

F2 “Brainchop”: In Browser MRI Volumetric Segmentation and Rendering

F3 TorchBench: Quantifying PyTorch Performance During the Development Loop

F4 Democratizing Al for Biol with nFol

POSTER ABSTRACTS

COMPUTER VISION

Dinkar Juyal, Syed Asher Javed, Harshith Padigela, Amaro Taylor-Weiner, Limin
Yu, Aaditya Prakash, Logan Kilpatrick, Anand Sampat | PathAIl

Enabling State-of-the-art Interpretability for Medical Imaging Using PyTorch

PathAl is a Boston based company focussed on improving patient care using Al powered
pathology. We heavily use PyTorch for building our ML systems, specifically training and
deploying models on large gigapixel pathology images. In this case study, we highlight our
use of PyTorch to build, experiment and deploy Additive Multiple Instance Learning (MIL)
models. Additive MIL is a novel MIL technique built using PyTorch Lightning which allows
end-to-end learning from millions of pixels while providing granular interpretability of spatial
heatmaps. These models allow for the exact computation of the extent to which each
smaller region in the gigapixel-sized image contributes to the final model prediction. This
enables class-wise excitatory and inhibitory contributions to be visualized on top of the
pathology image. This informs the practitioners of model failures and guides the
pathologists to areas of interest. All this is made possible due to PyTorch's rapid
research-to-prototype-to-deployment iteration cycle.

LIBRARIES

Erik Hagendorn | AbbVie

TorchUnmix: Automatic Stain Unmixing and Augmentation for Histopathology
Images in PyTorch

TorchUnmix is a library which aims to provide automatic stain unmixing and augmentation
for histopathology whole slide images. Separation of histochemical stains (unmixing) is
performed by orthonormal transformation of the RGB pixel data from predefined light
absorption coefficients called stain vectors [1]. Precomputed publicly available stain vector
definitions are often used, but inter-laboratory variation due to the histology and/or image
acquisition process is common, yielding suboptimal unmixing results. Classical stain vector
estimation methods rely on abundant distribution of stains, making them less practical for
sparser distributions as observed from immunohistochemical stains. Geis et al. proposed a
method based on k-means clustering of pixel values in the hue-saturation-density color
space to determine optimal stain vectors which has been used in this work [2]. While stain
vectors may be used for quantification of individual stains, TorchUnmix also provides
functionalities to perform stain augmentation. Stain augmentation is a method used during
the training process of deep learning models to improve generalization by unmixing the
image, stochastically modifying the individual stains, and then compositing the stains into
the final augmented image [3]. To our knowledge, no other libraries fully implement the
above methods in PyTorch, utilizing GPU-acceleration. Additionally, TorchUnmix has
extended all calculations used to perform the automatic stain unmixing and augmentation to
operate on batches of images, drastically accelerating execution performance speeds in
comparison to other libraries.

Kai Fricke & Balaji Veeramani| Anyscale

Scalable Training and Inference With Ray AIR

Scaling machine learning is hard: Cloud platform solutions like SageMaker can limit
flexibility, but a custom distributed framework is often too hard to implement. In effect, ML
engineers struggle to scale their workloads from local prototyping to the cloud.

The Ray AI Runtime ("Ray AIR") is an integrated collection of machine learning libraries built
around distributed computing framework Ray. It provides an easy to use interface for
scalable data processing, training, tuning, batch prediction, and online serving. Adapting
existing PyTorch training loops to Ray AIR's PyTorch integration needs as little as 10 lines of
code changes. And scaling from local development to the cloud needs no code changes at
all.

Jan Hiickelheim| Argonne National Laboratory

AutoMAD: Mixed Mode Autodiff for PyTorch Models

Mixed Mode autodiff combines back-propagation and forward differentiation. Both modes
have pros and cons: Back-propagation is efficient for scalar functions with many trainable
parameters. Back-propagation uses memory for intermediate results, requires data flow
reversal, scales poorly for many output variables. Forward differentiation is straightforward
to implement, memory-efficient, and easy to vectorize/parallelize or port to new hardware.
Forward mode scales poorly with large number of trainable parameters. AutoMAD makes it
possible to combine both modes. Use forward differentiation for some layers, while using
back-prop for others.

Daniel Haziza, Francisco Massa, Jeremy Reizenstein, Patrick Labatut, & Diana
Liskovich| Meta Al

xFormers: Building Blocks for Efficient Transformers

We present xFormers, a toolbox to accelerate research on Transformers. It contains efficient
components, like an exact memory-efficient multi-head attention that can accelerate
trainings 2x while using a fraction of the memory. xFormers components are also
customizable and can be combined together to build variations of Transformers. Our hope is
to enable the next generation of research based on Transformers.

Max Balandat| Meta Al

linear_operator - Structured Linear Algebra in PyTorch

linear_operator (https://github.com/cornellius-gp/linear operator) is a library for structured
linear algebra built on PyTorch. It provides a LinearOperator class that represents a tensor
that is never instantiated but is instead accessed through operations like matrix
multiplication, solves, decompositions, and indexing. These objects use custom linear
algebra operations that can exploit particular matrix structure (e.g. diagonal,
block-diagonal, triangular, Kronecker, etc.) in computations in order to achieve substantial
(many orders of magnitude) improvements in time and memory complexity. Moreover,
many efficient linear algebra operations (e.g. solves, decompositions, indexing, etc.) can be
automatically generated from the LinearOperator's matmul function. This makes it
extremely easy to compose or implement custom LinearOperators.

https://github.com/cornellius-gp/linear_operator

The key aspect that makes linear_operator easy to use in PyTorch code is its integration
with the *__ torch_function__ " interface - Common linear algebra operations (such as
matrix multiplication, solve, SVD) are mapped to the respective torch functions

(" _matmul__", “torch.linalg.solve”, "torch.linalg.svd"), so that LinearOperator objects
can be used as drop-in replacements for dense tensors even in existing code.
LinearOperator operations themselves may return LinearOperator objects, automatically
keeping track of algebraic structure after each computation. As a result, users never need to
reason about what efficient linear algebra routines to use (so long as the input elements
defined by the user encode known input structure).

Justin Zhao| Predibase

Declarative Machine Learning with Ludwig: End-to-end Machine Learning Pipelines
Using Simple and Flexible Data-driven Configurations

Ludwig is a declarative machine learning framework that makes it easy to define and
compare machine learning pipelines using a simple and flexible data-driven configuration
system. The minimal configuration declares the input and output features with their
respective data types. Users can specify additional parameters to preprocess, encode, and
decode features, load from pre-trained models, compose the internal model architecture,
set training parameters, or run hyperparameter optimization. Ludwig will build an
end-to-end machine learning pipeline automatically, using whatever is explicitly specified in
the configuration, while falling back to smart defaults for any parameters that are not.
Scientists, engineers, and researchers use Ludwig to explore state-of-the-art model
architectures, run hyperparameter search, and scale up to larger than available memory
datasets and multi-node clusters, on a variety of problems using structured and
unstructured features. Ludwig has 8.5K+ stars on Github and is built on top of PyTorch,
Horovod, and Ray.

Christian Puhrsch | Meta Al

Generalized Shapes: Block Sparsity, MaskedTensor, NestedTensor

This poster presents an overview of available and ongoing developments related to sparse
memory formats, masked computation, and support for collections of variably shaped data.
In particular it contains a case study of block sparse memory formats, MaskedTensor, and
NestedTensor.

Sang Keun Choe| Carnegie Mellon University

Betty: An Automatic Differentiation Library for Generalized Meta Learning

Betty is a simple, scalable and modular library for generalized meta-learning (GML) and
multilevel optimization (MLO), built upon PyTorch, that allows a unified programming
interface for a number of GML/MLO applications including few-shot learning,
hyperparameter optimization, neural architecture search, data reweighting, and many more.
The internal autodiff mechanism and the software design of Betty are developed by the
novel interpretation of GML/MLO as a dataflow graph.

Samantha Andow | Meta Al

Functorch: Composable Function Transforms in Pytorch

Inspired by Google JAX, functorch is a library in Pytorch that offers composable vmap
(vectorization) and autodiff transforms (grad, vjp, jvp). Since its first release alongside
Pytorch 1.11, combining these transforms has helped users develop and explore new
techniques that were previously tricky to write in Pytorch, like Neural Tangent Kernels and
non-linear optimizations (see Theseus, also from PyTorch). This will go through some basic
usages and highlight some research that leverages functorch.

Patrick Stiller, Jeyhun Rustamov, Friedrich Bethke, Maksim Zhdanov, Raj Sutarya,
Mahnoor Tanveer, Karan Shah, Richard Pausch, Sunna Torge, Alexander Debus,
Attila Cangi, Peter Steinbach, Michael Bussmann, & Nico Hoffmann | Helmholtz
Zentrum Dresden-Rossendorf

Large-Scale Neural Solvers for Partial Differential Equations

Our open-source Neural Solvers framework provides data-free ML-based solvers for the
study and analysis of phenomena in natural sciences built on top of Pytorch. We were the
first to show that certain quantum systems modeled by the 2d Schrvadinger equation can
be accurately solved while retaining strong scaling. We also developed a novel neural
network architecture, GatedPINN [1], introducing adaptable domain decomposition into the
training of Physics-informed Neural Networks based on the Mixture-of-Experts paradigm.
Distributed large-scale training of our GatedPINN is facilitated by Horovod, resulting in
excellent GPU utilization making Neural Solvers ready for the upcoming exascale era.
Upcoming projects involve higher dimensional problems such as 3d laser systems and
coupled models to study the Vlasov-Maxwell system. Further experiments on novel very
scalable compute hardware paves the way for applications of high-fidelity Neural Solvers to
real-world applications such as Inverse Scattering Problems.

Haoqi Fan | Meta AI

PyTorch Video: A Deep Learning Library for Video Understanding
PyTorchVideo is the deep learning library for video understanding research in PyTorch.

Jose Gallego-Posada (Juan Camilo Ramirez, co-author)| Mila, University of
Montreal

Constrained Optimization in PyTorch With Cooper
Cooper (https://github.com/cooper-org/cooper) is a general-purpose, deep learning-first
constrained optimization library in PyTorch. Cooper is (almost!) seamlessly integrated with

PyTorch and preserves the usual loss & backward -] step workflow. If you are already
familiar with PyTorch, using Cooper will be a breeze!

https://github.com/cooper-org/cooper

This library aims to encourage and facilitate the study of constrained optimization problems
in deep learning. Cooper focuses on non-convex constrained optimization problems for
which the loss or constraints are not necessarily “nicely behaved” or “theoretically
tractable”. Moreover, Cooper has been designed to play nicely with mini-batched/stochastic
estimates for the objective and constraint functions.

Cooper implements several popular constrained optimization protocols so you can focus on
your project, while we handle the nitty-gritty behind the scenes.

Zhihan Fang | Meta Al

Model Preparation Federated Learning and Device Computation

Federated Learning with Differential Privacy has witnessed an increased adoption as one of
the most promising ways to train machine learning models while preserving user privacy.
Existing models in Meta around people attributes are mostly built on traditional centralized
machine learning methods. Recently, due to the increasing concerns about user privacy
internally and externally, Machine Learning teams at Meta are experiencing either signal loss
or restriction on applying new features in models to further improve model performance. In
this paper, we are introducing a generic framework we built for preparing and generating
models for federated learning. The model preparation process is to utilize traditional
machine learning to understand model structure and hyperparameters for the target
problems including training, inference, evaluations. It also requires a simulation process to
train the target model structure and understand the simulated environment on the server
side to tune FL specific hyperparameters.

The model generation process is to generate device compatible models, which can be used
directly on users’ devices for federated learning. We applied the FL framework on our
on-device models, and integrated with device signals to improve user experience and
protect user privacy.

Wanchao Liang & Junjie Wang | Meta Al

Two Dimensional Parallelism Using Distributed Tensors

This talk will introduce 2-dimensional parallelism with PyTorch (Data Parallelism + Tensor
Parallelism) using Distributed Tensor, a fundamental distributed primitive offered by PyTorch
Distributed that empowers Tensor Parallelism. We have proven that using FSDP + Tensor
Parallelism together could enable us to train large models like Transformer, and increase
training performance. We offer end to end training techniques that enable you to train
models in 2-D parallelism fashion, and checkpoint save/load models in a distributed manner.

Manu Joseph | Thoucentric

PyTorch Tabular: A Framework for Deep Learning with Tabular Data

In spite of showing unreasonable effectiveness in modalities like text and image, Deep
Learning has always lagged Gradient Boosting in tabular data- both in popularity and
performance. But recently there have been newer models created specifically for tabular

data, which is pushing the performance bar. Popularity is still a challenge, however, because
there is no easy, ready-to-use library like Sci-Kit Learn for deep learning. PyTorch Tabular
aims to change that by being an easy-to-use and flexible framework which makes using
SOTA model architectures in tabular data as easy as Sci-Kit Learn.

Michael Gschwind, Christian Puhrsch, Driss Guessous, Rui Zhu, Daniel Haziza, &
Francisco Massa | Meta Al

Better Transformer: Accelerating Transformer Inference in PyTorch

We introduce Better Transformer, the PyTorch project to accelerate Transformers for
inference and training with out-of-the-box enablement by implementing the Better
Transformer ‘fastpath’. Fastpath accelerates many of the most commonly executed functions
in Transformer models. Starting with PyTorch 1.13, the PyTorch Core API is implemented
with accelerated operations to deliver up to 2x-4x speedups on many Transformer models,
such as BERT and XLM-R. Accelerated operations are based on (1) operator and kernel
fusion and (2) exploiting sparsity created by variable sequence-length NLP batches. In
addition to improving MultiHeadAttention with fastpath, the model also includes sparsity
support for MultiHeadAttention and TransformerEncoder modules to take advantage of
variable sequence-length information with Nested Tensors for NLP models.

At present, we enable torchtext and Hugging Face domain libraries with Better Transformer,
delivering significant speedups for text, image, and audio models. Starting with the next
release, PyTorch core will include even faster fused kernels and training support. You can
preview these features today with PyTorch Nightlies, the nightly preview builds of the
upcoming PyTorch release.

Ke Wen, Pavel Belevich, & Anjali Sridhar | Meta Al

PiPPy: Automated Pipeline Parallelism for PyTorch

PiPPy is a library that provides automated pipeline parallelism for PyTorch models. With
compiler techniques, PiPPy splits a model into pipeline stages without requiring model
changes. PiPPy also provides a distributed runtime that distributes the split stages to
multiple devices and hosts and orchestrates micro-batch execution in an overlapped fashion.
We demonstrate application of PiPPy to Hugging Face models achieving 3x speedup on cloud
platforms.

OPTIMIZATION

Keita Watanabe | Amazon Webservices

Practical Guide on PyTorch Inference Using AWS Inferentia
In this session we will go through step-by-step how to conduct the inference process of
machine learning models using Inferentia. In addition, we compare the inference

performance with GPU and discuss the cost advantage. In the later part of the session, we
will also cover model deployment on Kubernetes.

Mingfei Ma | Intel Corporation and kumo.ai

PyG Performance Optimization for CPU

Accelerating PyG CPU performance with faster sparse aggregation.

PyG is a library built upon PyTorch to easily write and train Graph Neural Networks, which
heavily relies on the mechanism of Message Passing for information aggregation. We have
optimized critical bottlenecks of Message Passing from PyTorch, including: 1. Scatter
Reduce: maps to classic PyG use case when the Edgelndex is stored in COO memory
format. 2. SpMM Reduce: maps to the usage case when the Edgelndex is stored in CSR
memory format.

Jerry Zhang | Meta Al

Quantization in PyTorch 2.0 Export

Currently, PyTorch Architecture Optimization (torch.ao) offers two quantization flow tools:
eager mode quantization (beta) and fx graph mode quantization (prototype). With PyTorch
2.0 coming up, we are going to redesign quantization on top of the PyTorch 2.0 export path,
this talk will introduce our plans for supporting quantization in PyTorch 2.0 export path, its
main advantages over the previous tools, and how modeling developers and backend
developers will be interacting with this flow.

Naren Dasan, Dheeraj Peri, Bo Wang, Apurba Bose, George Stefanakis, & Nick
Comly | NVIDIA

Wei Wei, Shirong Wu, Yinghai Lu | Meta

Torch-TensorRT: A Compiler for Accelerating PyTorch Inference Using TensorRT
Torch-TensorRT is an open-source compiler targeting NVIDIA GPUs for high-performance
deep-learning inference in PyTorch. It combines the usability of PyTorch with the
performance of TensorRT allowing for easy optimization of inference workloads on NVIDIA
GPUs. Torch-TensorRT supports all classes of optimizations in TensorRT including reduced
mixed precision down to INT8, through simple Python & C++ APIs designed to work directly
from PyTorch. Torch-TensorRT outputs standard PyTorch modules as well as the TorchScript
format to allow for a completely self-contained, portable, & static module with TensorRT
engines embedded. We present recent improvements to Torch-TensorRT including the new
FX frontend which allows developers to use a full Python workflow for optimizing models and
extend Torch-TensorRT in Python, the unified Torch-TensorRT Runtime which enables hybrid
FX + TorchScript workflows and discuss future work for the project.

Sanchit Jain | Intel Corporation

Accelerating Inference with PyTorch by Leveraging Graph Fusions With oneDNN
Graph

The open-source oneDNN Graph library extends oneDNN with a flexible graph API to
maximize the optimization opportunities for generating efficient code on AI hardware
(currently x86-64 CPUs, but GPU support is on the way). It automatically identifies the
graph partitions to be accelerated via fusion. Its fusion patterns entail fusing
compute-intensive operations such as convolution, matmul and their neighbor operations for
both inference and training use cases. Since PyTorch 1.12, oneDNN Graph has been
supported as an experimental feature to speed up inference with Float32 datatype on
x86-64 CPUs. Support for inference with oneDNN Graph using BFloat16 datatype exists in
the PyTorch master branch, and hence also in nightly PyTorch releases. Intel Extension for
PyTorch is an open-source library that builds on top of PyTorch, and can be thought of as a
"staging-ground" for optimizations in PyTorch from Intel. It leverages oneDNN Graph for
inference with int8 datatype. This poster presents reproducible results with PyTorch’s
TorchBench benchmarking suite to demonstrate the inference speedup achieved with
PyTorch & oneDNN Graph using Float32, BFloat16 & int8 datatypes.

OTHER

Alban Desmaison | Meta Al

Back to Python: Extending PyTorch Without Touching C++

This poster presents the new extension points that the PyTorch team has designed to allow
users to extend PyTorch from Python. We will cover an introduction to Tensor Subclassing,
Modes and torch library. We will briefly describe each extension point and talk through
examples such as memory profiling, logging used operators, quantization and custom
sparse kernel all in less than 100 LOC. We will also introduce the new ways you can add new
devices and author kernels without the need to modify PyTorch directly.

Brian Hirsh | Meta AI

Functionalization in PyTorch

Functionalization is a way to remove mutations from arbitrary PyTorch programs sent to
downstream compilers. The PyTorch 2.0 stack is all about capturing graphs of PyTorch
operations and sending them off to a compiler to get better performance.

PyTorch programs can mutate and alias state, making them unfriendly to compilers.
Functionalization is a technique to take a program full of PyTorch operators, including
mutable and aliasing operators, and remove all mutations from the program while
preserving semantics.

Pankaj Takawale, Dagshayani Kamalaharan, Zbigniew Gasiorek, & Rahul
Sharnagat | Walmart Labs

Walmart Search: Serving Models at a Scale on TorchServe

Walmart Search has embarked on the journey of adopting Deep Learning in the Search
ecosystem for improving Search relevance in various parts. As our pilot use case, we
wanted to serve the computationally intensive Bert Base model at runtime with an objective
to achieve low latency and high throughput. We had JVM hosted web applications loading
and serving multiple models. The experimental models were being loaded onto the same
applications. These models are large in size and computation is expensive.

We were facing the following limitations with this approach: Refreshing model with the latest
version or adding new experimental model would need application deployment. Increased
memory pressure on a single application. Slow startup time due to loading multiple ML
models during startup. Concurrency was not beneficial due to limited CPU (Metrics on
concurrent model prediction vs sequential).

PRODUCTION

Joe Doliner & Jimmy Whitaker | Pachyderm, Inc.

TorchX: From Local Development to Kubernetes and Back

TorchX is incredibly useful for developing PyTorch applications quickly. But when it comes to
deployment, nothing is easy. With docker development, Kubernetes, and customer
schedulers, there’s a lot to learn. In this talk, we'll discuss how organizations can deploy to
production, why TorchX is a great system for this, and lessons we learned so you can avoid
hitting them too.

Shauheen Zahirazami, Jack Cao, Blake Hechtman, Alex Wertheim | Google
Ronghang Hu| Meta Al

Training at Scale Using Fully Sharded Data Parallel (FSDP) with PyTorch/XLA

PyTorch/XLA enables PyTorch users to run their models on XLA devices including Google's
Cloud TPUs. The latest improvements in PyTorch/XLA enables training PyTorch models using
FSDP to train very large models. In this work we present benchmarks and Hardware Flops
Utilization of training HuggingFace GPT-2 on Cloud TPU v4.

Rohan Varma & Andrew Gu | Meta Al

FSDP Production Readiness

This talk dives into recent advances in PyTorch Fully Sharded Data Parallel (FSDP) that have
enabled better throughput, memory savings, and extensibility. These improvements have
unblocked using FSDP for models of different modalities and for varying model and data
sizes. We will share best practices to apply these features to specific use cases such as
XLMR, FLAVA, ViT, DHEN, and GPT3-style models.

Erwin Huizenga & Nikita Namjoshi | Google

Orchestrating Pytorch Workflows With Kubeflow Pipelines and TorchX

TorchX is a universal job launcher for PyTorch applications that helps ML practitioners speed
up iteration time and support end to end production. In this talk, we show you how to build
and run TorchX components as a pipeline using the Kubeflow Pipeline (KFL) DSL. We go into
detail on how to use KFP and TorchX to build components and how to use KFP DSL to
orchestrate and run ML workflows.

Shauheen Zahirazami, James Rubin, Mehdi Amini, Thea Lamkin, Eugene Burmako,
& Navid Khajouei | Google

A Community- led and OSS Ecosystem of ML Compiler and Infrastructure Projects
ML development is often stymied by incompatibilities between frameworks and hardware,
forcing developers to compromise on technologies when building ML solutions. OpenXLA is a
community-led and open-source ecosystem of ML compiler and infrastructure projects being
co-developed by AI/ML leaders including Alibaba, Amazon Web Services, AMD, Arm, Apple,
Google, Intel, Meta, NVIDIA, and more. It will address this challenge by letting ML
developers build their models on leading frameworks and execute them with high
performance across any hardware backend. This flexibility will let developers make the right
choice for their project, rather than being locked into decisions by closed systems. Our
community will start by collaboratively evolving the XLA compiler and StableHLO, a portable
ML compute operation set that makes frameworks easier to deploy across different
hardware options.

TOOLS

Mao Lin, Keren Zhou, & Penfei Su | UC Merced and OpenAl

Squeezing GPU Memory Usage in PyTorch

The limited GPU memory resources can often hinder the performance of GPU-accelerated
applications. While PyTorch’s Caching Allocator aims to minimize the number of expensive
memory allocations and deallocations and maximize the efficient utilization of GPU memory
resources, our study of common deep learning models revealed significant memory
fragmentation problems. In some cases, up to 50% of GPU memory is wasted. To better
understand the root causes of memory fragmentation, we developed a tool that visualizes
GPU memory usage in two ways: the allocator view and the block view. The allocator view

presents memory usage with each allocation or deallocation event, and the block view
shows the changes in specific memory blocks over time. Our analysis revealed the
considerable potential to save GPU memory, which would relieve the bottleneck of limited
resources. By employing strategies such as swapping, activation recomputation, and
memory defragmentation, we were able to reduce GPU memory waste significantly.

Mohamed Masoud, Farfalla Hu, & Sergey Plis | Georgia State University
Neuroneural Trends

“Brainchop”: In Browser MRI Volumetric Segmentation and Rendering

In brainchop project, we bring high fidelity pre-trained deep learning models for volumetric
analysis of structural magnetic resonance imaging (MRI) right to the browsers of scientists
and clinicians with no requirement on their technical skills in setting up Al-solutions. All of
this in an extensible open-source framework. Our tool is the first front-end MRI
segmentation tool on the web that supports full brain volumetric processing in a single pass
inside a browser. This property is powered by our lightweight and reliable deep learning
model Meshnet that enables volumetric processing of the entire brain at once, which leads
to increased accuracy with modest computational requirements. High-quality client-side
processing solves the privacy problem, as the data does not need to leave the client.
Moreover, browser-based implementation is able to take advantage of available hardware
acceleration regardless of the brand or architecture.

GitHub: https://qgithub.com/neuroneural/brainchop

Xu Zhao, Will Constable, David Berard, Taylor Robie, Eric Han, & Adnan Aziz |
PyTorch Perf Infra Team - Meta

TorchBench: Quantifying PyTorch Performance During the Development Loop
Holding the line of performance is challenging for ML frameworks like PyTorch. The existing
AI benchmarks like MLPerf are end-to-end, therefore require large volumes of datasets,
at-scale GPU clusters, and long benchmarking time. We develop TorchBench, a novel Al
benchmark suite which highlights with minimal data inputs, single GPU, and
milliseconds-per-test latencies. TorchBench is now deployed as part of the PyTorch nightly
release process, guarding performance/correctness regressions and testing experimental
PyTorch features on SOTA machine learning models.

Gustaf Ahdritz, Sachin Kadyan, Will Gerecke, Luna Xia, Nazim Bouatta, Mohammed
AlQuraishi | Weights & Biases

Democratizing AI for Biology With OpenFold

OpenFold, developed by Columbia University, is an open-source protein structure prediction
model implemented with PyTorch. The goal of OpenFold is to verify that AlphaFold 2 —
DeepMind's protein structure prediction model — can be reproduced from scratch and
beyond that, make components of the system available to like-minded researchers and
academics so they can build on top of it. During this research, Weights & Biases was used to
accelerate OpenFold’s reproduction of AlphaFold 2. The collaborative nature of W&B allowed

https://github.com/neuroneural/brainchop

for insights to scale from a single researcher to the entire team and helped solve the
reproducibility challenge in ML.

	
	AGENDA Friday, Dec 2, 2022​View Bios | Website​
	

	*VIRTUAL LIVESTREAM LUNCH TALKS
	
	Tal Baumel | Microsoft
	
	Clément Chadebec | INRIA
	
	Min Jean Cho | Intel
	
	Robin Lobel | TorchStudio
	Li Ning | AWS
	Jimmy Whitaker | Pachyderm

	PRESENTATION ABSTRACTS
	
	Breakout Sessions
	Joe Bowser | Adobe

	
	Nikita Namjoshi & Eric Dong | Google
	
	Raghu Ganti | IBM
	Thomas Chaton | Lightning AI
	
	Parinita Rahi & Razvan Tanase | Microsoft
	Jiong Gong | Intel
	Kiuk Chung & Pooja Maknikar | Amazon

	Community and Partner Talks
	Joe Isaacson & Geeta Chauhan | Meta AI
	Jeff Daily | AMD

	
	Uros Lipovsek | Amazon
	
	Hagay Lupesko | MosaicML

	
	Kulin Seth | Apple

	
	Lysandre Debut & Sylvain Gugger | Hugging Face
	Zain Rizvi | Meta AI

	POSTER DIRECTORY
	COMPUTER VISION

	
	LIBRARIES

	
	 OPTIMIZATION

	
	OTHER

	
	PRODUCTION

	
	TOOLS

	POSTER ABSTRACTS
	COMPUTER VISION
	Dinkar Juyal, Syed Asher Javed, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, Aaditya Prakash, Logan Kilpatrick, Anand Sampat | PathAI

	
	LIBRARIES
	Erik Hagendorn | AbbVie
	Kai Fricke & Balaji Veeramani| Anyscale
	Jan Hückelheim| Argonne National Laboratory
	Daniel Haziza, Francisco Massa, Jeremy Reizenstein, Patrick Labatut, & Diana Liskovich| Meta AI
	Max Balandat| Meta AI
	Justin Zhao| Predibase
	Christian Puhrsch | Meta AI
	Sang Keun Choe| Carnegie Mellon University
	Samantha Andow | Meta AI
	Patrick Stiller, Jeyhun Rustamov, Friedrich Bethke, Maksim Zhdanov, Raj Sutarya, Mahnoor Tanveer, Karan Shah, Richard Pausch, Sunna Torge, Alexander Debus, Attila Cangi, Peter Steinbach, Michael Bussmann, & Nico Hoffmann | Helmholtz Zentrum Dresden-Rossendorf
	Haoqi Fan | Meta AI
	Jose Gallego-Posada (Juan Camilo Ramirez, co-author)| Mila, University of Montreal
	Zhihan Fang | Meta AI
	Wanchao Liang & Junjie Wang | Meta AI
	Manu Joseph | Thoucentric
	Michael Gschwind, Christian Puhrsch, Driss Guessous, Rui Zhu, Daniel Haziza, & Francisco Massa | Meta AI
	Ke Wen, Pavel Belevich, & Anjali Sridhar | Meta AI

	OPTIMIZATION
	Keita Watanabe | Amazon Webservices
	Mingfei Ma | Intel Corporation and kumo.ai
	Jerry Zhang | Meta AI
	Naren Dasan, Dheeraj Peri, Bo Wang, Apurba Bose, George Stefanakis, & Nick Comly | NVIDIA
	Wei Wei, Shirong Wu, Yinghai Lu | Meta
	Sanchit Jain | Intel Corporation

	OTHER
	Alban Desmaison | Meta AI
	Brian Hirsh | Meta AI
	Pankaj Takawale, Dagshayani Kamalaharan, Zbigniew Gasiorek, & Rahul Sharnagat | Walmart Labs

	PRODUCTION
	Joe Doliner & Jimmy Whitaker | Pachyderm, Inc.
	Shauheen Zahirazami, Jack Cao, Blake Hechtman, Alex Wertheim | Google
	Ronghang Hu| Meta AI
	Rohan Varma & Andrew Gu | Meta AI
	Erwin Huizenga & Nikita Namjoshi | Google
	Shauheen Zahirazami, James Rubin, Mehdi Amini, Thea Lamkin, Eugene Burmako, & Navid Khajouei | Google

	TOOLS
	Mao Lin, Keren Zhou, & Penfei Su | UC Merced and OpenAI
	Mohamed Masoud, Farfalla Hu, & Sergey Plis | Georgia State University Neuroneural Trends
	Xu Zhao, Will Constable, David Berard, Taylor Robie, Eric Han, & Adnan Aziz | PyTorch Perf Infra Team - Meta
	Gustaf Ahdritz, Sachin Kadyan, Will Gerecke, Luna Xia, Nazim Bouatta, Mohammed AlQuraishi | Weights & Biases

