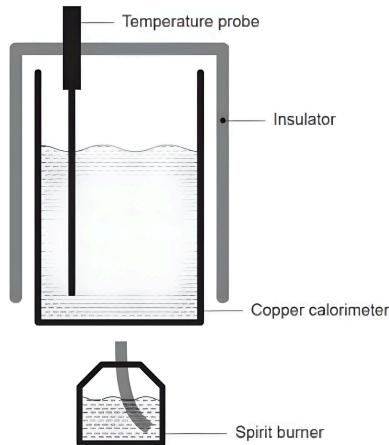


Questions

7.2 Homework // Name: _____

Multiple Choice

Question 1:


The energy from burning 0.250 g of ethanol causes the temperature of 150 cm³ of water to rise by 10.5°C. What is the enthalpy of combustion of ethanol, in kJ mol⁻¹?

Specific heat capacity of water: 4.18 J g⁻¹ K⁻¹

- A. 1.21×10^6
- B. 1.21×10^3
- C. 3.28×10^7
- D. 3.28×10^4

Question 2:

The enthalpy of combustion of a fuel was determined using the calorimeter shown. The final result was lower than the literature value.

Which factors could have contributed to this error?

- I. Not all heat from the combustion was transferred to the calorimeter.
- II. Incomplete combustion occurred.
- III. The temperature probe touched the bottom of the calorimeter.

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II, and III

Question 3:

A student obtained the following data to calculate q , using $q = mc\Delta T$.

$$m = 20.2 \text{ g} \pm 0.2 \text{ g}$$

$$\Delta T = 10^\circ\text{C} \pm 0.1^\circ\text{C}$$

$$c = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$$

What is the percentage uncertainty in the calculated value of q ?

- A. 0.2
- B. 1.2
- C. 11
- D. 14

Short Answer

Question 4:

(a) Calculate the enthalpy of neutralization based on the following data. [4]

Initial temperature of solutions / $^\circ\text{C}$	24.5
Concentration of KOH (aq) / mol dm^{-3}	0.950
Concentration of HCl (aq) / mol dm^{-3}	1.050
Volume of HCl (aq) / cm^3	50.00
Volume of KOH (aq) / cm^3	50.00
Final temperature of mixture / $^\circ\text{C}$	30.3

(b) State the assumptions you have made in your calculation. [1]

Question 5:

Alkanes undergo combustion and substitution.

Determine the molar enthalpy of combustion of an alkane if 8.75×10^{-4} mols are burned, raising the temperature of 20.0 g of water by 57.3°C. [2]

Key

Multiple Choice

Question 1:

B

Question 2:

A

Question 3:

C

Short Answer

Question 4:

(a) $\Delta T = 30.3 - 24.5 = 5.8 \text{ K} \checkmark$

$$\begin{aligned} q &= m(\text{H}_2\text{O}) \times c(\text{H}_2\text{O}) \times \Delta T(\text{H}_2\text{O}) \\ &= 100.0 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 5.8 \text{ K} \\ &= 2424.4 \text{ J} \checkmark \end{aligned}$$

KOH is the limiting reagent

$$n(\text{KOH}) = (50 \times 0.950) / 1000 = 0.0475 \text{ mol} \checkmark$$

$$\begin{aligned} \Delta H &= -2424.4 / 0.0475 = -51040 \text{ J mol}^{-1} \\ &= -51.04 \text{ kJ mol}^{-1} \checkmark \end{aligned}$$

(b) Assumptions: no heat loss, $c(\text{solution}) = c(\text{water})$, $m(\text{solution}) = m(\text{H}_2\text{O})$, $\text{density}(\text{H}_2\text{O}) = 1.00 \checkmark$

Question 5:

$$\begin{aligned} q &= mc\Delta T = 20.0 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ C}^{-1} \times 57.3 \text{ C} = 4790 \text{ J} \checkmark \\ \Delta H &= (4790/1000) / (8.75 \times 10^{-4} \text{ mol}) = -5470 \text{ kJ mol}^{-1} \checkmark \end{aligned}$$

Award [2] for correct final answer.

Accept answers in the range -5470 to -5480 kJ mol^{-1}

Optional Practice

Multiple Choice

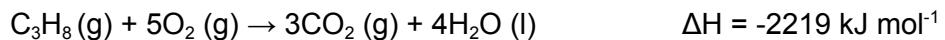
Question 1:

In an experiment to determine the enthalpy of combustion of an alcohol, the mass of a burner plus its contents, and the temperature of a known mass of water in a calorimeter are measured before and after the experiment. What are the expected results?

Mass of burner and contents	Reading on thermometer
A. Decreases	Increases
B. Decreases	Stays the same
C. Increases	Increases
D. Increases	Stays the same

Question 2:

A copper calorimeter was used to determine the enthalpy of combustion of butan-1-ol. The experimental value obtained was $-2100 \pm 200 \text{ kJ mol}^{-1}$, and the data booklet value is $-2676 \text{ kJ mol}^{-1}$.


Which of the following accounts for the difference between the two values?

- I. random measurement errors
- II. incomplete combustion
- III. heat loss to the surroundings

A. I and II only
B. I and III only
C. II and III only
D. I, II, and III

Question 3:

The thermochemical equation for the combustion of propane is:

Identify the true statements.

- I. If 1.00 g of propane is burnt completely, 2219 kJ of energy are produced.
- II. The reactants have more potential energy than the products.
- III. The reaction is exothermic.

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

Question 4:

20.0 cm³ of 2.0 mol dm⁻³ HNO₃ (aq) is mixed with 40 cm³ of 1.0 mol dm⁻³ KOH (aq) at 25.0°C. The temperature of the resulting solution increases by 9°C.

Predict the temperature change when 5.0 cm³ of 2.0 mol dm⁻³ HNO₃ (aq) is mixed with 10.0 cm³ of 1.0 mol dm⁻³ KOH (aq) at the same temperature.

A. 4.5°C

B. 9°C

C. 18°C

D. 27°C

Short Answer

Question 1:

A piece of brass is held in the flame of a Bunsen burner for several minutes. The brass is then quickly transferred into an aluminum calorimeter which contains 200.0 g of water.

Determine the temperature of the Bunsen flame from the following data.

$m(\text{water}) / \pm 0.01 \text{ g}$	200.00
$m(\text{brass}) / \pm 0.01 \text{ g}$	212.10
$m(\text{aluminum calorimeter}) / \pm 0.01 \text{ g}$	80.00
$c(\text{brass}) / \text{J g}^{-1} \text{ K}^{-1}$	0.400
$c(\text{aluminum}) / \text{J g}^{-1} \text{ K}^{-1}$	0.900
Initial temperature of water / $\pm 0.1^\circ\text{C}$	24.5
Final temperature of water / $\pm 0.1^\circ\text{C}$	77.5

Question 2:

1.10 g of glucose was completely burnt and the heat produced increased the temperature of the water in a copper calorimeter from 25.85°C to 36.50°C .

(a) Calculate the enthalpy of combustion of glucose from the data below.

Mass of water / g	200.00
Specific heat capacity of water / $\text{J g}^{-1} \text{ K}^{-1}$	4.18
Mass of copper / g	120.00
Specific heat capacity of copper / $\text{J g}^{-1} \text{ K}^{-1}$	0.385

(b) Draw an enthalpy level diagram to represent this reaction.

Question 3:

A student added 5.35 g of ammonium chloride to 100.0 cm³ of water. The initial temperature of the water was 25.55°C but it decreased to 21.79°C. Calculate the enthalpy change that would occur when 1 mol of the solute is added to 1.000 dm³ of water. [3]

Question 4:

Calculate the enthalpy change, in kJ mol⁻¹, when 1.00 mol is burnt in each case (the molar volume of a gas at STP is 22.7 dm³ mol⁻¹):

- (a) 105,000 J is given out when 0.100 mol of A is burnt.
- (b) 84,000 J is given out when 0.042 mol of B is burnt.
- (c) 11,000 J is given out when 0.500 g of CH₃OH is burnt.
- (d) 6,000 J is given out when 0.150 g of C₆H₆ is burnt.
- (e) 13,000 J is given out when 200 cm³ (measured at STP) of C₂H₆ (g) is burnt.

Question 5:

- (a) When 1.20 g of hexane (C₆H₁₄) is burnt, the temperature of 250.0 g of water is raised by 56.0°C. Calculate the enthalpy change when one mole of hexane is burnt.
- (b) When 0.870 g of pentan-1-ol (C₅H₁₁OH) is burnt, the temperature of 180.0 g of water is raised by 38.0°C. Calculate the enthalpy change when one mole of pentan-1-ol is burnt.
- (c) When 0.521 g of benzene (C₆H₆) is burnt, the temperature of 320.0 g of water is raised by 12.2°C. Calculate the enthalpy change when one mole of benzene is burnt.
- (d) When 2.00 kg of octane (C₈H₁₈) is burnt, the temperature of 500 kg of water is raised by 46.0°C. Calculate the enthalpy change when one mole of octane is burnt.

Question 6:

A student conducts an experiment to determine the enthalpy change of combustion of propan-1-ol (C₃H₇OH)

- (a) Determine the enthalpy change of combustion of propan-1-ol using the student's experimental data:
Mass of water = 200.0 g
Initial temperature of water = 18.2°C
Maximum temperature of water = 38.6°C
Initial mass of spirit burner = 185.51 g
Final mass of spirit burner = 184.56 g
- (b) The actual value of the enthalpy change when one mole of propan-1-ol is burnt is -2010 kJ mol⁻¹. Account for any differences between this value and the one calculated from the experimental data in part (a).

Optional Practice Key

Multiple Choice

Question 1:

A

Question 2:

C

Question 3:

C

Question 4:

B

Short Answer

Question 1:

$$q = mc\Delta T$$

Temperature change (water and aluminum) = $77.5 - 24.5 = 53.0 \pm 0.2 \text{ K}$

Energy lost by brass = energy gained by water and calorimeter

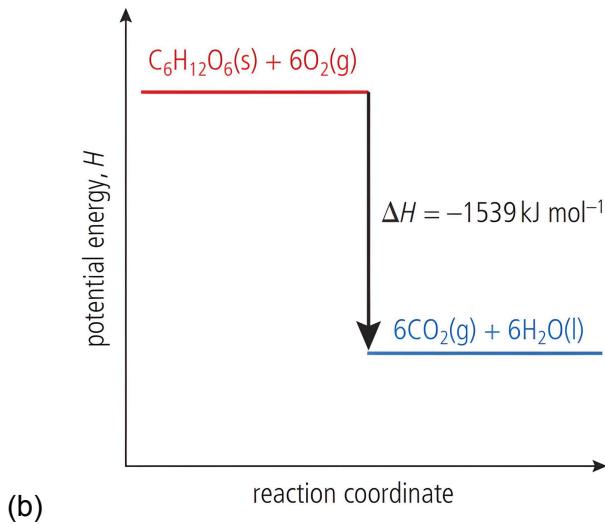
$$\text{Energy gained by water and calorimeter} = (200.00 \times 4.18 \times 53.0) + (80.00 \times 0.900 \times 53.0) \text{ J} = 44,308 + 3,816 = 48,124 \text{ J}$$

Energy lost by brass = 48,124 J

$$212.10 \times 0.400 \times (T_{\text{Bunsen}} - 77.5) = 48,124 \text{ J}$$

$$T_{\text{Bunsen}} - 77.5 = 48,124 / (212.10 \times 0.400) = 567.2^\circ\text{C}$$

$$\text{Temperature of brass in Bunsen flame} = 567.2 + 77.5 = 644.7^\circ\text{C}$$


Question 2:

$$(a) \Delta T = 36.50 - 25.85 - 10.65^\circ\text{C}$$

$$q = mc\Delta T = [m(\text{H}_2\text{O}) \times c(\text{H}_2\text{O}) \times \Delta T(\text{H}_2\text{O})] + [m(\text{Cu}) \times c(\text{Cu}) \times \Delta T(\text{Cu})] = (200.00 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 10.65 \text{ K}) + (120.00 \text{ g} \times 0.385 \text{ J g}^{-1} \text{ K}^{-1} \times 10.65 \text{ K}) = 8903.4 + 492.0 \text{ J} = 9395.4 \text{ J}$$

$$n(\text{C}_6\text{H}_{12}\text{O}_6) = 1.10 \text{ g} / 180.18 \text{ g mol}^{-1} = 6.11 \times 10^{-3} \text{ mol}$$

$$\Delta H_c = 9395.4 \text{ J} / 6.11 \times 10^{-3} \text{ mol} = -1539 \times 10^3 \text{ J mol}^{-1} = -1539 \text{ kJ mol}^{-1}$$

Question 3:

$$\Delta H_{\text{reaction}} = -\Delta H_{\text{water}}$$

$$q = mc\Delta T$$

$$\Delta H_{\text{water}} = 100.0 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times (21.79 - 25.55) \text{ K} = -1571.68 \text{ J} \quad \checkmark$$

$$n(\text{NH}_4\text{Cl}) = 5.35 \text{ g} / 53.50 \text{ g mol}^{-1} = 0.100 \text{ mol} \quad \checkmark$$

$$\Delta H = -\Delta H_{\text{water}} / n(\text{NH}_4\text{Cl}) = -(-1571.68 \text{ J}) / 0.100 \text{ mol} = +15716.8 \text{ J mol}^{-1} = +15.7 \text{ kJ mol}^{-1} \quad \checkmark$$

Question 4:

$$\Delta H = -q/n$$

Divide by 1,000 to convert to kJ

$$(a) -105,000 / (0.100 \times 1000) = -1,050 \text{ kJ mol}^{-1}$$

$$(b) -84,000 / (0.042 \times 1000) = -2,000 \text{ kJ mol}^{-1}$$

(c) Convert mass to amount in mol by dividing by molar mass.

$$-11,000 / ((0.500 / 32.05) \times 1000) = -705 \text{ kJ mol}^{-1}$$

$$(d) -6,000 / ((0.150 / 78.12) \times 1000) = -3,120 \text{ kJ mol}^{-1}$$

(e) Convert volume to dm³ before dividing by the molar volume (22.7 dm³ mol⁻¹) to give the amount in mol.

$$-13,000 / ((0.200 / 22.7) \times 1000) = -1,480 \text{ kJ mol}^{-1}$$

Question 5:

$$(a) q = 250.0 \times 4.18 \times 56.0 = 58,520 \text{ J}$$

$$n = 1.20 / 86.20 = 0.0139 \text{ mol}$$

$$\Delta H = -58,520 / 0.0139 = -4200000 \text{ J mol}^{-1} \text{ or } -4200 \text{ kJ mol}^{-1}$$

$$(b) q = 180.0 \times 4.18 \times 38.0 = 28,591 \text{ J}$$

$$n = 0.870 / 88.17 = 9.867 \times 10^{-3} \text{ mol}$$

$$\Delta H = -28,591 / (9.867 \times 10^{-3}) = -2900000 \text{ J mol}^{-1} \text{ or } -2900 \text{ kJ mol}^{-1}$$

(c) $q = 320.0 \times 4.18 \times 12.2 = 16,329 \text{ J}$

$$n = 0.521 / 78.12 = 6.669 \times 10^{-3} \text{ mol}$$

$$\Delta H = -16.329 / (6.669 \times 10^{-3} \text{ mol}) = -2450000 \text{ J mol}^{-1} \text{ or } -2450 \text{ kJ mol}^{-1}$$

(d) $q = 500,000 \times 4.18 \times 46.0 = 96,140,000 \text{ J}$

$$n = 2,000 / 114.26 = 17.50 \text{ mol}$$

$$\Delta H = -5490000 \text{ J mol}^{-1} \text{ or } -5490 \text{ kJ mol}^{-1}$$

Question 6:

(a) $q = 200.0 \times 4.18 \times (38.6 - 18.2) = 17,054 \text{ J}$

$$n = (185.51 - 184.56) / 60.11 = 1.580 \times 10^{-2} \text{ mol}$$

$$\Delta H = -17,054 / (1.580 \times 10^{-2}) = -1080000 \text{ J mol}^{-1} \text{ or } -1080 \text{ kJ mol}^{-1}$$

(b) Heat energy loss to the surroundings; incomplete combustion; (other, more minor, factors include evaporation of water and/or propan-1-ol)