
 PRINCIPLES OF ARTIFICIAL INTELLIGENCE

 Unit 2

 Search Algorithms

Search Algorithms in Artificial Intelligence

Search algorithms are one of the most important areas of Artificial Intelligence.
This topic will explain all about the search algorithms in AI.

Problem-solving agents:

In Artificial Intelligence, Search techniques are universal problem-solving
methods. Rational agents or Problem-solving agents in AI mostly used these
search strategies or algorithms to solve a specific problem and provide the best
result. Problem-solving agents are the goal-based agents and use atomic
representation. In this topic, we will learn various problem-solving search
algorithms.

Example Problems
Basically, there are two types of problem approaches:

●​ Toy Problem: It is a concise and exact description of the problem which
is used by the researchers to compare the performance of algorithms.

●​ Real-world Problem: It is real-world based problems which require
solutions. Unlike a toy problem, it does not depend on descriptions, but
we can have a general formulation of the problem.

Toy problems

 -Vacuum cleaner agent(covered in unit I)

 -8 puzzle

 -n-queens

 -Crypt arithmetic (chalk and talk)

 -Missionaries cannibals

Real world problems

 -Route finding

 -Traveling salesperson

 -VLSI layout

 -Robot navigation

 -Assembly sequencing

Some Toy Problems

8 Puzzle Problem: Here, we have a 3x3 matrix with movable tiles
numbered from 1 to 8 with a blank space. The tile adjacent to the blank space
can slide into that space. The objective is to reach a specified goal state similar
to the goal state, as shown in the below figure.

●​ In the figure, our task is to convert the current state into goal state by
sliding digits into the blank space.

In the above figure, our task is to convert the current(Start) state into goal state
by sliding digits into the blank space.
The problem formulation is as follows:

●​ States: It describes the location of each numbered tiles and the blank tile.
●​ Initial State: We can start from any state as the initial state.
●​ Actions: Here, actions of the blank space is defined, i.e., either left,

right, up or down
●​ Transition Model: It returns the resulting state as per the given state

and actions.
●​ Goal test: It identifies whether we have reached the correct goal-state.
●​ Path cost: The path cost is the number of steps in the path where the

cost of each step is 1.

Note: The 8-puzzle problem is a type of sliding-block problem which is used
for testing new search algorithms in artificial intelligence.

8-queens problem:

 The aim of this problem is to place eight queens on a chessboard in an order
where no queen may attack another. A queen can attack other queens
either diagonally or in same row and column.

From the following figure, we can understand the problem as well as its correct
solution.

https://github.com/topics/sliding-puzzle-game?o=desc&s=updated
https://www.tutorialandexample.com/artificial-intelligence-tutorial/

It is noticed from the above figure that each queen is set into the
chessboard in a position where no other queen is placed diagonally, in same row
or column. Therefore, it is one right approach to the 8-queens problem.
For this problem, there are two main kinds of formulation:

●​ Incremental formulation: It starts from an empty state where the
operator augments a queen at each step.

Following steps are involved in this formulation:

●​ States: Arrangement of any 0 to 8 queens on

the chessboard.

●​ Initial State: An empty chessboard
●​ Actions: Add a queen to any empty box.
●​ Transition model: Returns the chessboard with the queen added in a

box.
●​ Goal test: Checks whether 8-queens are placed on the chessboard

without any attack.
●​ Path cost: There is no need for path cost because only final states are

counted.

In this formulation, there is approximately 1.8 x 1014 possible sequence to
investigate.

●​ Complete-state formulation: It starts with all the 8-queens on the
chessboard and moves them around, saving from the attacks.

Following steps are involved in this formulation

●​ States: Arrangement of all the 8 queens one per column with no queen
attacking the other queen.

●​ Actions: Move the queen at the location where it is safe from the
attacks.

This formulation is better than the incremental formulation as it reduces the
state space from 1.8 x 1014 to 2057, and it is easy to find the solutions.

The Missionaries and Cannibals Problem.

On one bank of a river are three missionaries and three cannibals
find themselves and need to cross the river. The only boat
available holds only two at a time. And If the cannibals ever
outnumber the missionaries on either of the river’s banks, the
missionaries will get eaten.

How can everyone get across the river without the missionaries
risking being eaten?

Three missionaries and three cannibals present at Bank 1 of river.

https://missionariesandcannibalsproblem.wordpress.com/

(Missionary is denoted by M and Cannibal is denoted by C)

(After applying the rules)

Lets play the game :

Vacuum cleaner

Vaccum cleaner problem

•​ Vacuum cleaner problem is a well-known search problem for
an agent which works on Artificial Intelligence. In this problem, our
vacuum cleaner is our agent. It is a goal based agent, and the goal of this
agent, which is the vacuum cleaner, is to clean up the whole area. So, in
the classical vacuum cleaner problem, we have two rooms and one
vacuum cleaner. There is dirt in both the rooms and it is to be cleaned.
The vacuum cleaner is present in any one of these rooms. So, we have to
reach a state in which both the rooms are clean and are dust free.

https://www.includehelp.com/ml-ai/artificial-intelligence-based-agent.aspx
https://www.includehelp.com/ml-ai/introduction-to-artificial-intelligence.aspx
https://www.includehelp.com/ml-ai/artificial-intelligence-based-agent.aspx

•​ So, there are eight possible states possible in our vacuum cleaner
problem. These can be well illustrated with the help of the following
diagrams:

​

Consider a Vacuum cleaner world

Imagine that our intelligent agent is a robot vacuum cleaner.​
Let's suppose that the world has just two rooms. The robot can be in either room
and there can be dirt in zero, one, or two rooms.

•​ states 1 and 2 are our initial states

•​ state 7 and state 8 are our final states (goal states)

•​ both the rooms are full of dirt and the vacuum cleaner can reside in any
room. And to reach the final goal state, both the rooms should be clean
and the vacuum cleaner again can reside in any of the two rooms.

•​ 1.dirty,dirty

 2.dirty,clean

 3.clean,dirty

 4.clean,clean

The vacuum cleaner can perform the following functions: move left, move right,
move forward, move backward and to suck dust

Goal formulation: intuitively, we want all the dirt cleaned up. Formally, the
goal is
 { state 7, state 8 }.

Problem formulation(Actions):Left,Right,Suck,NoOp

 State Space Graph:

In the real world Problems
�​ The real world is absurdly complex.

 - Real state space must be abstracted for problem solving.

 -An abstract state is equivalent to a set of real states.

�​ Abstract operator is equivalent to a complex combination of real actions.

 -Robot operator: Move down hall

 -In practice, this might involve a complex set of sensor and motor
activities.

�​ An abstract solution is equivalent to a set of real paths that are solutions
in the real world.

Example: Route finding problem
States: Each state obviously includes a location and the current time. Further
more, because the cost of an action may depend on previous segments, their fare
bases, and their state as domestic or international, the state must record extra
information about these “historical” aspects.

Initial state: This is specified by user query.

Actions: Taking any flight from the current location, in any seat class, leaving
after the current time.

Transition model: The state resulting from taking a flight will have the
flight’s destination as the current location and the flight’s arrival time as the
current time.

Goal test: are we at the final destination specified by the user?

Path cost: This depends on monetary cost, waiting time ,customers and
immigration procedures seat quality, type of airplane etc..

Example: TSM in Romania
�​ On holiday in Romania; currently in Arad.

�​ Formulate goal:

 - be in Bucharest

�​ Formulate problem:

�​ -states: various cities

 -actions: drive between cities

�​ Find solution:

 -Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

 -Goal Test > Are we in Bucharest.

 -Cost Function > Sum of road lengths to the destination

TSM IN ROMANIA contd…

Example: A VLSI LAYOUT
�​ A VLSI problem requires positioning millions of components and

connections on a chip to minimize area, minimize circuit delays and
manufacturing yield.

�​ The layout problems comes after the logical design phase and is usually
split into two parts:

 1)cell layout

 2)channel routing

In cell layout, the primitive components of the circuits are grouped into cells,
each of which performs some recognized function.

�​ Each cell has fixed footprint(size and shape) and requires a certain
number of connections to each of the other cells.

�​ The aim is to place the cells on the chip so that they do not overlap and so
that there is room for each wire through the gaps between the cells.

Channel routing finds a specific route for each wire through the gaps between
the cells.

Example: Robot Navigation
�​ A robot can move in a continuous space with an infinite set of possible

actions and states.

�​ For a circular robot moving on a flat surface, the space is essentially
two-dimensional.

�​ When the robot has arms and legs or wheels that must be controlled, the
search space becomes many-dimensional.

Advanced technique are required just to make the search space finite.

Example: Assembly sequencing
�​ In assembly problems, the aim is to find an order in which to assemble

the parts of some object.

�​ If the wrong order chosen, there will be no way to add some part later in
the sequence without undoing some of the work already done.

�​ Checking a step in the sequence for feasibility is a difficult geometrical
search problem closely related to robot navigation.

Thus, the generation of legal actions is the expensive part of assembly
sequencing.

Search Algorithm Terminologies:
o​ Search: Searchingis a step by step procedure to solve a search-problem

in a given search space. A search problem can have three main factors:

a.​ Search Space: Search space represents a set of possible
solutions, which a system may have.

a.​ Start State: It is a state from where agent begins the search.

b.​ Goal test: It is a function which observe the current state and
returns whether the goal state is achieved or not.

​​ Search tree: A tree representation of search problem is called Search
tree. The root of the search tree is the root node which is corresponding to
the initial state.

​​ Actions: It gives the description of all the available actions to the agent.

​​ Transition model: A description of what each action do, can be
represented as a transition model.

​​ Path Cost: It is a function which assigns a numeric cost to each path.

​​ Solution: It is an action sequence which leads from the start node to the
goal node.

​​ Optimal Solution: If a solution has the lowest cost among all
solutions.

Properties of Search Algorithms:
Following are the four essential properties of search algorithms to compare the
efficiency of these algorithms:

Completeness: A search algorithm is said to be complete if it guarantees to
return a solution if at least any solution exists for any random input.

Optimality: If a solution found for an algorithm is guaranteed to be the best
solution (lowest path cost) among all other solutions, then such a solution for is
said to be an optimal solution.

Time Complexity: Time complexity is a measure of time for an algorithm
to complete its task.

Space Complexity: It is the maximum storage space required at any point
during the search, as the complexity of the problem.

Types of search algorithms
Based on the search problems we can classify the search algorithms into
uninformed (Blind search) search and informed search (Heuristic search)
algorithms.

Uninformed/Blind Search:
The uninformed search does not contain any domain knowledge such as
closeness, the location of the goal. It operates in a brute-force way as it only
includes information about how to traverse the tree and how to identify leaf and
goal nodes. Uninformed search applies a way in which search tree is searched
without any information about the search space like initial state operators and
test for the goal, so it is also called blind search.It examines each node of the
tree until it achieves the goal node.

It can be divided into five main types:

o​ Breadth-first search
o​ Uniform cost search
o​ Depth-first search
o​ Iterative deepening depth-first search
o​ Bidirectional Search

Informed Search
Informed search algorithms use domain knowledge. In an informed search,
problem information is available which can guide the search. Informed search
strategies can find a solution more efficiently than an uninformed search
strategy. Informed search is also called a Heuristic search.

A heuristic is a way which might not always be guaranteed for best solutions
but guaranteed to find a good solution in reasonable time.

Informed search can solve much complex problem which could not be solved in
another way.

An example of informed search algorithms is a traveling salesman problem.

1.​ Greedy Search
2.​ A* Search

 Chapter 2

Uninformed Search Algorithms
Uninformed search is a class of general-purpose search algorithms which
operates in brute force-way. Uninformed search algorithms do not have
additional information about state or search space other than how to
traverse the tree, so it is also called blind search.

Following are the various types of uninformed search algorithms:

1.​ Breadth-first Search
2.​ Depth-first Search
3.​ Depth-limited Search
4.​ Iterative deepening depth-first search
5.​ Uniform cost search
6.​ Bidirectional Search

1. Breadth-first Search:
o​ Breadth-first search is the most common search strategy for traversing a

tree or graph. This algorithm searches breadthwise in a tree or graph, so it
is called breadth-first search.

o​ BFS algorithm starts searching from the root node of the tree and expands
all successor node at the current level before moving to nodes of next
level.

o​ The breadth-first search algorithm is an example of a general-graph
search algorithm.

o​ Breadth-first search implemented using FIFO queue data structure.

Advantages:

o​ BFS will provide a solution if any solution exists.
o​ If there are more than one solutions for a given problem, then BFS will

provide the minimal solution which requires the least number of steps.

Disadvantages:

o​ It requires lots of memory since each level of the tree must be saved into
memory to expand the next level.

o​ BFS needs lots of time if the solution is far away from the root node.

Example:

In the below tree structure, we have shown the traversing of the tree using BFS
algorithm from the root node S to goal node K. BFS search algorithm traverse in
layers, so it will follow the path which is shown by the dotted arrow, and the
traversed path will be:

1.​ S---> A--->B---->C--->D---->G--->H--->E---->F---->I---->K

Time Complexity: Time Complexity of BFS algorithm can be obtained by
the number of nodes traversed in BFS until the shallowest Node. Where the d=
depth of shallowest solution and b is a node at every state.

T (b) = 1+b2+b3+.......+ bd= O (bd)

Space Complexity: Space complexity of BFS algorithm is given by the
Memory size of frontier which is O(bd).

Completeness: BFS is complete, which means if the shallowest goal node is
at some finite depth, then BFS will find a solution.

Optimality: BFS is optimal if path cost is a non-decreasing function of the
depth of the node.

2. Depth-first Search
o​ Depth-first search isa recursive algorithm for traversing a tree or graph

data structure.
o​ It is called the depth-first search because it starts from the root node and

follows each path to its greatest depth node before moving to the next
path.

o​ DFS uses a stack data structure for its implementation.

o​ The process of the DFS algorithm is similar to the BFS algorithm.

Note: Backtracking is an algorithm technique for finding all possible solutions
using recursion.
Advantage:

o​ DFS requires very less memory as it only needs to store a stack of the
nodes on the path from root node to the current node.

o​ It takes less time to reach to the goal node than BFS algorithm (if it
traverses in the right path).

Disadvantage:

o​ There is the possibility that many states keep re-occurring, and there is no
guarantee of finding the solution.

o​ DFS algorithm goes for deep down searching and sometime it may go to
the infinite loop.

Example:

In the below search tree, we have shown the flow of depth-first search, and it
will follow the order as:

Root node--->Left node ----> right node.

It will start searching from root node S, and traverse A, then B, then D and E,
after traversing E, it will backtrack the tree as E has no other successor and still
goal node is not found. After backtracking it will traverse node C and then G,
and here it will terminate as it found goal node.

Completeness: DFS search algorithm is complete within finite state space as
it will expand every node within a limited search tree.

Time Complexity: Time complexity of DFS will be equivalent to the node
traversed by the algorithm. It is given by:

T(n)= 1+ n2+ n3 +.........+ nm=O(nm)

Where, m= maximum depth of any node and this can be much larger than
d (Shallowest solution depth)

Space Complexity: DFS algorithm needs to store only single path from the
root node, hence space complexity of DFS is equivalent to the size of the fringe
set, which is O(bm).

Optimal: DFS search algorithm is non-optimal, as it may generate a large
number of steps or high cost to reach to the goal node.

3. Depth-Limited Search Algorithm:
A depth-limited search algorithm is similar to depth-first search with a
predetermined limit. Depth-limited search can solve the drawback of the infinite
path in the Depth-first search. In this algorithm, the node at the depth limit will
treat as it has no successor nodes further.

Depth-limited search can be terminated with two Conditions of failure:

o​ Standard failure value: It indicates that problem does not have any
solution.

o​ Cutoff failure value: It defines no solution for the problem within a given
depth limit.

Advantages:
Depth-limited search is Memory efficient.

Disadvantages:
o​ Depth-limited search also has a disadvantage of incompleteness.
o​ It may not be optimal if the problem has more than one solution.

Example:

Completeness: DLS search algorithm is complete if the solution is above the
depth-limit.

Time Complexity: Time complexity of DLS algorithm is order-O(bℓ).

Space Complexity: Space complexity of DLS algorithm is O(b×ℓ).

Optimal: Depth-limited search can be viewed as a special case of DFS, and it
is also not optimal even if ℓ>d.

4. Uniform-cost Search Algorithm:
Uniform-cost search is a searching algorithm used for traversing a weighted tree
or graph. This algorithm comes into play when a different cost is available for
each edge. The primary goal of the uniform-cost search is to find a path to the
goal node which has the lowest cumulative cost. Uniform-cost search expands
nodes according to their path costs form the root node. It can be used to solve
any graph/tree where the optimal cost is in demand. A uniform-cost search
algorithm is implemented by the priority queue. It gives maximum priority to
the lowest cumulative cost. Uniform cost search is equivalent to BFS algorithm
if the path cost of all edges is the same.

Advantages:
o​ Uniform cost search is optimal because at every state the path with the

least cost is chosen.

Disadvantages:
o​ It does not care about the number of steps involve in searching and only

concerned about path cost. Due to which this algorithm may be stuck in
an infinite loop.

Example:

Completeness:

Uniform-cost search is complete, such as if there is a solution, UCS will find it.

Time Complexity:

Let C* is Cost of the optimal solution, and ε is each step to get closer to the
goal node. Then the number of steps is = C*/ε+1. Here we have taken +1, as we
start from state 0 and end to C*/ε.

Hence, the worst-case time complexity of Uniform-cost search isO(b1 + [C*/ε])/.

Space Complexity:

The same logic is for space complexity so, the worst-case space complexity of
Uniform-cost search is O(b1 + [C*/ε]).

Optimal:

Uniform-cost search is always optimal as it only selects a path with the lowest
path cost.

5. Iterative deepening depth-first Search:
The iterative deepening algorithm is a combination of DFS and BFS algorithms.
This search algorithm finds out the best depth limit and does it by gradually
increasing the limit until a goal is found.

This algorithm performs depth-first search up to a certain "depth limit", and it
keeps increasing the depth limit after each iteration until the goal node is found.

This Search algorithm combines the benefits of Breadth-first search's fast search
and depth-first search's memory efficiency.

The iterative search algorithm is useful uninformed search when search space is
large, and depth of goal node is unknown.

Advantages:

o​ Itcombines the benefits of BFS and DFS search algorithm in terms of fast
search and memory efficiency.

Disadvantages:

o​ The main drawback of IDDFS is that it repeats all the work of the
previous phase.

Example:

Following tree structure is showing the iterative deepening depth-first search.
IDDFS algorithm performs various iterations until it does not find the goal
node. The iteration performed by the algorithm is given as:

1'st Iteration-----> A​
2'nd Iteration----> A, B, C​
3'rd Iteration------>A, B, D, E, C, F, G​
4'th Iteration------>A, B, D, H, I, E, C, F, K, G​
In the fourth iteration, the algorithm will find the goal node.

Completeness:

This algorithm is complete is ifthe branching factor is finite.

Time Complexity:

Let's suppose b is the branching factor and depth is d then the worst-case time
complexity is O(bd).

Space Complexity:

The space complexity of IDDFS will be O(bd).

Optimal:

IDDFS algorithm is optimal if path cost is a non- decreasing function of the
depth of the node.

6. Bidirectional Search Algorithm:
Bidirectional search algorithm runs two simultaneous searches, one form
initial state called as forward-search and other from goal node called as
backward-search, to find the goal node. Bidirectional search replaces one
single search graph with two small subgraphs in which one starts the
search from an initial vertex and other starts from goal vertex. The search
stops when these two graphs intersect each other.

Bidirectional search can use search techniques such as BFS, DFS, DLS, etc.

Advantages:
o​ Bidirectional search is fast.
o​ Bidirectional search requires less memory

Disadvantages:
o​ Implementation of the bidirectional search tree is difficult.
o​ In bidirectional search, one should know the goal state in advance.

Example:

In the below search tree, bidirectional search algorithm is applied. This
algorithm divides one graph/tree into two sub-graphs. It starts traversing from
node 1 in the forward direction and starts from goal node 16 in the backward
direction.

The algorithm terminates at node 9 where two searches meet.

Completeness: Bidirectional Search is complete if we use BFS in both
searches.

Time Complexity: Time complexity of bidirectional search using BFS
is O(bd).

Space Complexity: Space complexity of bidirectional search is O(bd).

Optimal: Bidirectional search is Optimal.

 Chapter 3

Informed Search Algorithms
So far we have talked about the uninformed search algorithms which looked
through search space for all possible solutions of the problem without having
any additional knowledge about search space. But informed search algorithm
contains an array of knowledge such as how far we are from the goal, path cost,
how to reach to goal node, etc. This knowledge help agents to explore less to the
search space and find more efficiently the goal node.

The informed search algorithm is more useful for large search space. Informed
search algorithm uses the idea of heuristic, so it is also called Heuristic search.
Heuristics function: Heuristic is a function which is used in Informed
Search, and it finds the most promising path. It takes the current state of the
agent as its input and produces the estimation of how close agent is from the
goal. The heuristic method, however, might not always give the best solution,
but it guaranteed to find a good solution in reasonable time. Heuristic function
estimates how close a state is to the goal. It is represented by h(n), and it
calculates the cost of an optimal path between the pair of states. The value of
the heuristic function is always positive.
Admissibility of the heuristic function is given as:

•​ h(n) <= h*(n)

Here h(n) is heuristic cost, and h*(n) is the estimated cost. Hence heuristic
cost should be less than or equal to the estimated cost.
Pure Heuristic Search:

Pure heuristic search is the simplest form of heuristic search algorithms. It
expands nodes based on their heuristic value h(n). It maintains two lists, OPEN
and CLOSED list. In the CLOSED list, it places those nodes which have already
expanded and in the OPEN list, it places nodes which have yet not been
expanded.
On each iteration, each node n with the lowest heuristic value is expanded and
generates all its successors and n is placed to the closed list. The algorithm
continues unit a goal state is found.
In the informed search we will discuss two main algorithms which are given
below:

•​ Best First Search Algorithm(Greedy search)

•​ A* Search Algorithm

1.) Best-first Search Algorithm (Greedy Search):
Greedy best-first search algorithm always selects the path which appears best at
that moment. It is the combination of depth-first search and breadth-first search
algorithms. It uses the heuristic function and search. Best-first search allows us
to take the advantages of both algorithms. With the help of best-first search, at

each step, we can choose the most promising node. In the best first search
algorithm, we expand the node which is closest to the goal node and the closest
cost is estimated by heuristic function, i.e.

•​ f(n)= g(n).

Were, h(n)= estimated cost from node n to the goal.
The greedy best first algorithm is implemented by the priority queue.
Best first search algorithm:

•​ Step 1: Place the starting node into the OPEN list.

•​ Step 2: If the OPEN list is empty, Stop and return failure.

•​ Step 3: Remove the node n, from the OPEN list which has the lowest

value of h(n), and places it in the CLOSED list.

•​ Step 4: Expand the node n, and generate the successors of node n.

•​ Step 5: Check each successor of node n, and find whether any node is a

goal node or not. If any successor node is goal node, then return success

and terminate the search, else proceed to Step 6.

•​ Step 6: For each successor node, algorithm checks for evaluation

function f(n), and then check if the node has been in either OPEN or

CLOSED list. If the node has not been in both list, then add it to the

OPEN list.

•​ Step 7: Return to Step 2.

Advantages:

•​ Best first search can switch between BFS and DFS by gaining the

advantages of both the algorithms.

•​ This algorithm is more efficient than BFS and DFS algorithms.

Disadvantages:
•​ It can behave as an unguided depth-first search in the worst case scenario.

•​ It can get stuck in a loop as DFS.

•​ This algorithm is not optimal.

Example:

Consider the below search problem, and we will traverse it using greedy
best-first search. At each iteration, each node is expanded using evaluation
function f(n)=h(n) , which is given in the below table.

In this search example, we are using two lists which are OPEN and
CLOSED Lists. Following are the iteration for traversing the above example.

Expand the nodes of S and put in the CLOSED list
Time Complexity: The worst case time complexity of Greedy best first
search is O(bm).
Space Complexity: The worst case space complexity of Greedy best first
search is O(bm). Where, m is the maximum depth of the search space.
Complete: Greedy best-first search is also incomplete, even if the given
Initialization: Open [A, B], Closed [S]
Iteration state space is finite.

Optimal: Greedy best first search algorithm is not optimal.

2.) A* Search Algorithm:
A* search is the most commonly known form of best-first search. It uses
heuristic function h(n), and cost to reach the node n from the start state g(n). It
has combined features of UCS and greedy best-first search, by which it solve
the problem efficiently. A* search algorithm finds the shortest path through the
search space using the heuristic function. This search algorithm expands less
search tree and provides optimal result faster. A* algorithm is similar to UCS
except that it uses g(n)+h(n) instead of g(n).
In A* search algorithm, we use search heuristic as well as the cost to reach the
node. Hence we can combine both costs as following, and this sum is called as
a fitness number.

At each point in the search space, only those node is expanded which have the
lowest value of f(n), and the algorithm terminates when the goal node is found.
Algorithm of A* search:

Step1: Place the starting node in the OPEN list.
Step 2: Check if the OPEN list is empty or not, if the list is empty then return
failure and stops.
Step 3: Select the node from the OPEN list which has the smallest value of
evaluation function (g+h), if node n is goal node then return success and stop,
otherwise
Step 4: Expand node n and generate all of its successors, and put n into the
closed list. For each successor n', check whether n' is already in the OPEN or

CLOSED list, if not then compute evaluation function for n' and place into
Open list.
Step 5: Else if node n' is already in OPEN and CLOSED, then it should be
attached to the back pointer which reflects the lowest g(n') value.
Step 6: Return to Step 2.

Advantages:
•​ A* search algorithm is the best algorithm than other search algorithms.

•​ A* search algorithm is optimal and complete.

•​ This algorithm can solve very complex problems.

Disadvantages:
•​ It does not always produce the shortest path as it mostly based on

heuristics and approximation.

•​ A* search algorithm has some complexity issues.

•​ The main drawback of A* is memory requirement as it keeps all

generated nodes in the memory, so it is not practical for various

large-scale problems.

Example:
In this example, we will traverse the given graph using the A* algorithm. The
heuristic value of all states is given in the below table so we will calculate the
f(n) of each state using the formula f(n)= g(n) + h(n), where g(n) is the cost to
reach any node from start state.
Here we will use OPEN and CLOSED list.

Solution:

Initialization: {(S, 5)}
Iteration1: {(S--> A, 4), (S-->G, 10)}
Iteration2: {(S--> A-->C, 4), (S--> A-->B, 7), (S-->G, 10)}
Iteration3: {(S--> A-->C--->G, 6), (S--> A-->C--->D, 11), (S--> A-->B, 7),
(S-->G, 10)}

Iteration 4 will give the final result, as S--->A--->C--->G it provides the
optimal path with cost 6.
Points to remember:

•​ A* algorithm returns the path which occurred first, and it does not search

for all remaining paths.

•​ The efficiency of A* algorithm depends on the quality of heuristic.

•​ A* algorithm expands all nodes which satisfy the condition

f(n)<="" li="">

Complete: A* algorithm is complete as long as:
•​ Branching factor is finite.

•​ Cost at every action is fixed.

Optimal: A* search algorithm is optimal if it follows below two conditions:
•​ Admissible: the first condition requires for optimality is that h(n) should

be an admissible heuristic for A* tree search. An admissible heuristic is

optimistic in nature.

•​ Consistency: Second required condition is consistency for only A*

graph-search.

If the heuristic function is admissible, then A* tree search will always find the
least cost path.
Time Complexity: The time complexity of A* search algorithm depends on
heuristic function, and the number of nodes expanded is exponential to the
depth of solution d. So the time complexity is O(b^d), where b is the branching
factor.
Space Complexity: The space complexity of A* search algorithm is O(b^d)

Means-Ends Analysis in Artificial Intelligence
We have studied the strategies which can reason either in forward or backward,

but a mixture of the two directions is appropriate for solving a complex and

large problem. Such a mixed strategy, make it possible that first to solve the

major part of a problem and then go back and solve the small problems arise

during combining the big parts of the problem. Such a technique is

called Means-Ends Analysis.

•​ Means-Ends Analysis is problem-solving techniques used in Artificial

intelligence for limiting search in AI programs.

•​ It is a mixture of Backward and forward search technique.

•​ The MEA technique was first introduced in 1961 by Allen Newell, and

Herbert A. Simon in their problem-solving computer program, which was

named as General Problem Solver (GPS).

•​ The MEA analysis process centered on the evaluation of the difference

between the current state and goal state.

How means-ends analysis Works:
The means-ends analysis process can be applied recursively for a problem. It is
a strategy to control search in problem-solving. Following are the main Steps
which describes the working of MEA technique for solving a problem.
a.​ First, evaluate the difference between Initial State and final State.

b.​ Select the various operators which can be applied for each difference.

c.​ Apply the operator at each difference, which reduces the difference

between the current state and goal state.

Operator Subgoaling
In the MEA process, we detect the differences between the current state and
goal state. Once these differences occur, then we can apply an operator to
reduce the differences. But sometimes it is possible that an operator cannot be
applied to the current state. So we create the subproblem of the current state, in
which operator can be applied, such type of backward chaining in which
operators are selected, and then sub goals are set up to establish the
preconditions of the operator is called Operator Subgoaling.

Algorithm for Means-Ends Analysis:
Let's we take Current state as CURRENT and Goal State as GOAL, then
following are the steps for the MEA algorithm.

•​ Step 1: Compare CURRENT to GOAL, if there are no differences

between both then return Success and Exit.

•​ Step 2: Else, select the most significant difference and reduce it by doing

the following steps until the success or failure occurs.

a.​ Select a new operator O which is applicable for the current difference,

and if there is no such operator, then signal failure.

b.​ Attempt to apply operator O to CURRENT. Make a description of

two states.​

i) O-Start, a state in which O?s preconditions are satisfied.​

ii) O-Result, the state that would result if O were applied In O-start.

c.​ If​

(First-Part <------ MEA (CURRENT, O-START)​

And​

(LAST-Part <----- MEA (O-Result, GOAL), are successful, then

signal Success and return the result of combining FIRST-PART, O,

and LAST-PART.

The above-discussed algorithm is more suitable for a simple problem and not
adequate for solving complex problems.

Example of Mean-Ends Analysis:
Let's take an example where we know the initial state and goal state as given
below. In this problem, we need to get the goal state by finding differences
between the initial state and goal state and applying operators.

Solution:

To solve the above problem, we will first find the differences between initial
states and goal states, and for each difference, we will generate a new state and
will apply the operators. The operators we have for this problem are:

•​ Move

•​ Delete

•​ Expand

1. Evaluating the initial state: In the first step, we will evaluate the initial
state and will compare the initial and Goal state to find the differences between
both states.

2. Applying Delete operator: As we can check the first difference is that in
goal state there is no dot symbol which is present in the initial state, so, first we
will apply the Delete operator to remove this dot.

3. Applying Move Operator: After applying the Delete operator, the new
state occurs which we will again compare with goal state. After comparing these
states, there is another difference that is the square is outside the circle, so, we
will apply the Move Operator.

4. Applying Expand Operator: Now a new state is generated in the third
step, and we will compare this state with the goal state. After comparing the
states there is still one difference which is the size of the square, so, we will
apply Expand operator, and finally, it will generate the goal state.

Hill Climbing Algorithm in Artificial
Intelligence

•​ Hill climbing algorithm is a local search algorithm which continuously

moves in the direction of increasing elevation/value to find the peak of

the mountain or best solution to the problem. It terminates when it

reaches a peak value where no neighbor has a higher value.

•​ Hill climbing algorithm is a technique which is used for optimizing the

mathematical problems. One of the widely discussed examples of Hill

climbing algorithm is Traveling-salesman Problem in which we need to

minimize the distance traveled by the salesman.

•​ It is also called greedy local search as it only looks to its good immediate

neighbor state and not beyond that.

•​ A node of hill climbing algorithm has two components which are state

and value.

•​ Hill Climbing is mostly used when a good heuristic is available.

•​ In this algorithm, we don't need to maintain and handle the search tree or

graph as it only keeps a single current state.

Features of Hill Climbing:
Following are some main features of Hill Climbing Algorithm:

•​ Generate and Test variant: Hill Climbing is the variant of Generate

and Test method. The Generate and Test method produce feedback which

helps to decide which direction to move in the search space.

•​ Greedy approach: Hill-climbing algorithm search moves in the

direction which optimizes the cost.

•​ No backtracking: It does not backtrack the search space, as it does

not remember the previous states.

State-space Diagram for Hill Climbing:
The state-space landscape is a graphical representation of the hill-climbing
algorithm which is showing a graph between various states of algorithm and
Objective function/Cost.
On Y-axis we have taken the function which can be an objective function or cost
function, and state-space on the x-axis. If the function on Y-axis is cost then, the
goal of search is to find the global minimum and local minimum. If the function
of Y-axis is Objective function, then the goal of the search is to find the global
maximum and local maximum.

Different regions in the state space landscape:
Local Maximum: Local maximum is a state which is better than its neighbor
states, but there is also another state which is higher than it.
Global Maximum: Global maximum is the best possible state of state space
landscape. It has the highest value of objective function.
Current state: It is a state in a landscape diagram where an agent is currently
present.
Flat local maximum: It is a flat space in the landscape where all the
neighbor states of current states have the same value.

Shoulder: It is a plateau region which has an uphill edge.

Problems in Hill Climbing Algorithm:
1. Local Maximum: A local maximum is a peak state in the landscape
which is better than each of its neighboring states, but there is another state also
present which is higher than the local maximum.
Solution: Backtracking technique can be a solution of the local maximum in
state space landscape. Create a list of the promising path so that the algorithm
can backtrack the search space and explore other paths as well.

2. Plateau: A plateau is the flat area of the search space in which all the
neighbor states of the current state contains the same value, because of this
algorithm does not find any best direction to move. A hill-climbing search
might be lost in the plateau area.
Solution: The solution for the plateau is to take big steps or very little steps
while searching, to solve the problem. Randomly select a state which is far
away from the current state so it is possible that the algorithm could find
non-plateau region.

3. Ridges: A ridge is a special form of the local maximum. It has an area
which is higher than its surrounding areas, but itself has a slope, and cannot be
reached in a single move.
Solution: With the use of bidirectional search, or by moving in different
directions, we can improve this problem.

Types of Hill Climbing Algorithm in Artificial Intelligence
Here we discuss the types of a hill-climbing algorithm in artificial intelligence:

Types of Hill Climbing Algorithm:
•​ Simple hill Climbing:

•​ Steepest-Ascent hill-climbing:

•​ Stochastic hill Climbing:

1. Simple Hill Climbing
It is the simplest form of the Hill Climbing Algorithm. It only takes into account

the neighboring node for its operation. If the neighboring node is better than the

current node then it sets the neighbor node as the current node. The algorithm

checks only one neighbor at a time. Following are a few of the key feature of

the Simple Hill Climbing Algorithm

•​ Since it needs low computation power, it consumes lesser time

•​ The algorithm results in sub-optimal solutions and at times the solution is

not guaranteed

Algorithm

1. Examine the current state, Return success if it is a goal state

2. Continue the Loop until a new solution is found or no operators are left to

apply

3. Apply the operator to the node in the current state

4. Check for the new state

•​ If Current State = Goal State, Return success and exit

•​ Else if New state is better than current state then Goto New state

•​ Else return to step 2

5. Exit

2. Steepest-Ascent Hill Climbing
Steepest-Ascent hill climbing is an advanced form of simple Hill Climbing

Algorithm. It runs through all the nearest neighbor nodes and selects the node

which is nearest to the goal state. The algorithm requires more computation

power than Simple Hill Climbing Algorithm as it searches through multiple

neighbors at once.

Algorithm

1. Examine the current state, Return success if it is a goal state

2. Continue the Loop until a new solution is found or no operators are left to

apply

Let ‘Temp’ be a state such that any successor of the current state will have a

higher value for the objective function. For all operators that can be applied to

the current state

•​ Apply the operator to create a new state

•​ Examine new state

•​ If Current State = Goal State, Return success and exit

•​ Else if New state is better than Temp then set this state as Temp

•​ If Temp is better than Current State set Current state to Target

3. Stochastic Hill Climbing
Stochastic Hill Climbing doesn’t look at all its neighboring nodes to check if it

is better than the current node instead, it randomly selects one neighboring

node, and based on the pre-defined criteria it decides whether to go to the

neighboring node or select an alternate node.

Advantage of Hill Climbing Algorithm in Artificial
Intelligence
Advantage of Hill Climbing Algorithm in Artificial Intelligence is given below:

•​ Hill Climbing is very useful in routing-related problems like Travelling

Salesmen Problem, Job Scheduling, Chip Designing, and Portfolio

Management

•​ It is good in solving the optimization problem while using only limited

computation power

•​ It is more efficient than other search algorithms

Hill Climbing Algorithm is a very widely used algorithm for Optimization

related problems as it gives decent solutions to computationally challenging

problems. It has certain drawbacks associated with it like its Local Minima,

Ridge, and Plateau problem which can be solved by using some advanced

algorithm.

https://www.educba.com/search-algorithms-in-ai/

Applications of hill climbing algorithm
The hill-climbing algorithm can be applied in the following areas:

Marketing

A hill-climbing algorithm can help a marketing manager to develop the best

marketing plans. This algorithm is widely used in

solving Traveling-Salesman problems. It can help by optimizing the distance

covered and improving the travel time of sales team members. The algorithm

helps establish the local minima efficiently.

Robotics

Hill climbing is useful in the effective operation of robotics. It enhances the

coordination of different systems and components in robots.

Job Scheduling

The hill climbing algorithm has also been applied in job scheduling. This is a

process in which system resources are allocated to different tasks within a

computer system. Job scheduling is achieved through the migration of jobs from

one node to a neighboring node. A hill-climbing technique helps establish the

right migration route.

Cryptarithmetic Problem in AI Or Constraint
satisfaction problem

Cryptarithmetic Problem is a type of constraint satisfaction problem where the
game is about digits and its unique replacement either with alphabets or other
symbols. In cryptarithmetic problem, the digits (0-9) get substituted by some

https://www.tutorialandexample.com/constraint-satisfaction-problems-in-artificial-intelligence/
https://www.tutorialandexample.com/constraint-satisfaction-problems-in-artificial-intelligence/
https://www.tutorialandexample.com/constraint-satisfaction-problems-in-artificial-intelligence/

possible alphabets or symbols. The task in cryptarithmetic problem is to
substitute each digit with an alphabet to get the result arithmetically correct.
We can perform all the arithmetic operations on a given cryptarithmetic
problem.
The rules or constraints on a cryptarithmetic problem are as follows:

●​ There should be a unique digit to be replaced with a unique alphabet.
●​ The result should satisfy the predefined arithmetic rules, i.e., 2+2 =4,

nothing else.
●​ Digits should be from 0-9 only.
●​ There should be only one carry forward, while performing the addition

operation on a problem.
●​ The problem can be solved from both sides, i.e., lefthand side (L.H.S),

or righthand side (R.H.S)

Let’s understand the cryptarithmetic problem as well its constraints better with
the help of an example:

●​ Given a cryptarithmetic problem, i.e.,

 S E N D + M O R E = M O N E Y

In this example, add both terms S E N D and M O R E to bring M O N E Y as
a result.
Follow the below steps to understand the given problem by breaking it into
its subparts:

●​ Starting from the left hand side (L.H.S) , the terms are S and M. Assign a
digit which could give a satisfactory result. Let’s assign S->9 and M->1.

Hence, we get a satisfactory result by adding up the terms and got an
assignment for O as O->0 as well.

●​ Now, move ahead to the next terms E and O to get N as its output.

Adding E and O, which means 5+0=0, which is not possible
because according to cryptarithmetic constraints, we cannot assign the same
digit to two letters. So, we need to think more and assign some other value.

Note: When we will solve further, we will get one carry, so after applying it,
the answer will be satisfied.

●​ Further, adding the next two terms N and R we get,

But, we have already assigned E->5. Thus, the above result does not satisfy the
values
because we are getting a different value for E. So, we need to think more.

Again, after solving the whole problem, we will get a carryover on this
term, so our answer will be satisfied.

 where 1 will be carry forward to the above term
Let’s move ahead.

●​ Again, on adding the last two terms, i.e., the

rightmost terms D and E, we get Y as its result.

 where 1 will be carry forward to the above term

●​ Keeping all the constraints in mind, the final resultant is as follows:

●​ Below is the representation of the assignment of the digits to the
alphabets.

More examples of cryptarithmatic problems can be:

 ----------------THE END----------------

	
	
	The Missionaries and Cannibals Problem.
	Search Algorithm Terminologies:
	Properties of Search Algorithms:
	Types of search algorithms
	Uninformed/Blind Search:
	Informed Search

	 Chapter 2
	Uninformed Search Algorithms
	1. Breadth-first Search:
	Example:

	2. Depth-first Search
	Note: Backtracking is an algorithm technique for finding all possible solutions using recursion.
	Example:

	3. Depth-Limited Search Algorithm:
	Example:

	4. Uniform-cost Search Algorithm:
	Example:

	5. Iterative deepening depth-first Search:
	Example:

	6. Bidirectional Search Algorithm:
	Example:

