Relational Framework for
Prompt-based Automatic Layout
Generation with Glayout

Name - Chetanya Goyal
Slack - Chetanya Goyal

Email - chinnidude@gmail.com
GitHub - chetanyagoyal

Aim
Develop a system to generate DRC-clean analog layouts from natural

language prompts, streamlining the layout creation process and
enabling automated high-level circuit specification.

Background

Glayout is an Analog Layout Automation tool that uses a fully
hierarchical framework (with a gdsfactory backend) that allows the
user to write python code instead of having to manually create layouts
in tools such as Magic VLSI. The API uses a “MappedPDK”, which
consists of the governing set of rules (g_rules) for a certain pdk and
the generic set of layers (g_layers). This allows the user to abstract
out the actual name of a layer (stored as an integer tuple) for a
particular technology (such as sky13@ or gf180), as a result of which
they can program in a pdk-agnostic environment. The API consists of a
set of Pcells (parametric cells), routing methods, component movement
methods and transistor placement methods.

The Pcells themselves (implemented as pythonic code) are DRC clean

components which can be used to create larger designs, in conjunction
with the routing and movement methods. An example of this is the nmos
Pcell, which can be found here. This cell can be customized and placed
as required to create larger designs. The .gds output can be obtained


mailto:chinnidude@gmail.com
https://github.com/chetanyagoyal
https://gdsfactory.github.io/gdsfactory/layout.html
http://opencircuitdesign.com/magic/
https://github.com/idea-fasoc/OpenFASOC/blob/main/openfasoc/generators/gdsfactory-gen/glayout/primitives/fet.py

by using gdsfactory’'s write_gds() function. The visualized layout has
also been shown below. Glayout already implements larger circuits such
as differential pairs, operational amplifiers, current mirrors, etc.
using the currently existing primitives.

Code for an nfet Pcell (with pfets, op-amps, Layout of an nmos with 5
diff_pairs, etc written similarly in python code) fingers and minimum size

Implementing larger cells (or circuits), especially those as large as
(or larger than) Operational Amplifiers, requires a tremendous amount
of work, even with this framework. This calls for either a
simplification of the codebase or a framework built on top of the API
that abstracts out the need for the user to both be a skilled coder
and to know about the API's specifics. This project seeks to do the
latter, by expanding and improving upon an experimental prompt-based
framework (in the 3 top level python files in the folder, originally
authored by this contributor).

This framework (in its current state) works in a way that is described
by the figures below.

The framework uses nltk's sentence tokenizer to split a sentence into
words stored in a list and parses the list to obtain the main function
(place, move, route, etc.), the name of the module to be placed, port
names if routing and subcomponent references if moving. Conversations
consisting of user prompts can be saved as .convo files, which the
user will ideally be able to load in on the fly.



https://github.com/chetanya-goyal/OpenFASOC_relational/tree/main/openfasoc/generators/gdsfactory-gen
https://github.com/chetanya-goyal/OpenFASOC_relational/tree/main/openfasoc/generators/gdsfactory-gen
https://github.com/alibillalhammoud
https://www.nltk.org/api/nltk.tokenize.html

not supported yet (will be looked at )

. e N g = -
genid = mos . ’ load previously 1
comp_name = ‘myNmos 1 saved I
params = with width 5 length 1 I ti I
with_dummy False N SDIlVE_rSE '2”_
words = ['place’', 'an', 'nmos’,
place an nmos ‘called', 'myNmos', 'with',
called myNmos with ‘width', '5', 'length’', '1°, R
width 5 length 1 "with_dummy', 'False'] .
with_dummy False
e f/\\\ ‘.;
Take user input Tokenize Parse params
in prompt and and import code
conversational extract useful from primitive (or
english info routing) modules
new prompt A J
/\\— save conversation
route between myNmos_multiplier_0_gate_E asa.convo
and myNmos_multiplier_@_drain_E using C nrdum[l;;:odelo
LEGEND y
L:I user prompts .
exit
D general information

D flow information

e

METHODS

~

| move J l cells I

l primitives l

import cells

route I | helperl

S

and routing
methods

create a comp.
with the

specified namy

cell
movement

imports code for
either
absolute move
(manually move
the cell by (x.y)
units})

absolute

relative move
(move cell
some direction
relative to
another

J(i

relative

-

setup

*a lot of code is buggy,
and has been modified for
the sake of these examples,
but this is the general way
in which the framework
should work

Parse params and import
code from primitive (or
roufing) modules

cell

component

v

port-to-port
route

imports the routing method
from the module of the
specified route type
dumps the code to call the
route method for the
specified ports

Y

placement

- search subdirectories
for cell

- places code for the
cell's function
definition

- adds the cell to the
larger component
and inits ports



The framework is currently able to handle placement, routing and
movement for cells, saving conversations and dumping code, and the
creation of variables (strings, ints, dictionaries, lists, etc.). The
routing also requires the user to know the orientations and internal
port nomenclature for routing, which is non ideal. Currently, the only
way to assess the proper function of a generated design is to manually
run a magic DRC check. A better way to check for correctness would be
for the framework to be able to also write netlists when dumping code,
on which a magic LVS check can be run. This will ensure that the
layout created corresponds to the circuit netlist. Another useful
improvement would be to allow for multiple functions to be executed
from a single prompt. These are proposed to be looked at as feature
improvements. The framework needs to also be able to handle general
prompts, such as place a folded cascode stage called myFoldedCascode
(which involves placing components that have not been implemented as
Pcells yet). To account for this, the relational database can be
supplemented with a lookup table containing information about the
components, routing, placement, etc. about classes of general circuits
(such as cascodes, amplifiers, comparators, etc.), implemented as a
.json file like the one shown below

"cascode": {
"name": "nmos_cascode",
"components": {
"nfet": ["path_to nfet"],
"pfet_load": ["path_to pfet"]

}s

"routes_are_ between": {
"nfet": {
"drain_nfet_bottom": ["source_nfet top"],,
"drain_nfet _top": ["drain_pfet bottom", "via out"]
and so on

. other circuit classes like amplifiers, cascodes, etc



https://github.com/idea-fasoc/OpenFASOC/blob/main/openfasoc/common/drc-lvs-check/run_drc.sh

Additional Pcells and transistor placement methods will also need to
be implemented in the course of this project to make the transition to
an LLM easier. This would be the first implementation of a natural
language to layout tool, and would be a useful alternative to current
netlist-to-layout tools as it would significantly reduce the
barrier-to-entry for using glayout for analog design and would reduce
the complexity of the analog design process in general.

Deliverables

- Implement DRC checks for Glayout using magic DRC in OpenFASoC’s
CI system
- Refine relational framework with bug fixes and detailed error
logging
- Implement more complex Pcells and placement methods (enumerated
here)
- Improve the Relational Database:
- Abstract out internal port names to simplify routing
- Allow for multiple commands (separated by the word “and”) in
a single prompt
- Create lookup .json files for generic circuit classes
- Implement automatic netlist generation to enable LVS checks for
user created circuits
- Deploy the framework and crowdsource circuit designs to
accelerate the generation of a training dataset
- Develop the LLM to simplify prompts into sentences that the
relational model can parse and dump code for

Timeline

- Week 1: Implement CI checks for Glayout code

- Weeks 2 to 4: Implement new Pcells

- Weeks 5 and 6: Find and fix bugs in the current relational
framework

- Week 7: Bolster the error logging of the framework

- Weeks 8 and 9: Implement transistor placement methods such as
interdigitated, dummy, “ABBA” placement etc.


https://docs.google.com/spreadsheets/d/12O-WoqSlHhPshN3-2ph_LZLXPteRHmBOlMnybfmNyzg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/12O-WoqSlHhPshN3-2ph_LZLXPteRHmBOlMnybfmNyzg/edit?usp=sharing

- Week 10: Simplify routing methods

- Week 11: Implement multiple commands in a single prompt

- Week 12: Create lookup files for circuit classes

- Week 13: Implement netlist generation and LVS checking

- Week 14: Review feature PR with team

- Week 15: Research and discuss with team on optimum method to
implement LLM

- Weeks 16 and 17: Deploy the framework online and crowdsource
circuit designs with their prompts to accelerate dataset creation

- Weeks 18 and 19: Pick the most optimum designs and prompts from
the dataset, clean and preprocess the data

- Weeks 20 and 21: Use an encoder-decoder architecture and
pre-train the LLM

- Week 22 - Evaluate the model and fine-tune until the desired
similarity is achieved between ideal relational prompt and
generated relational prompt

Project Length - Large

Mentor - mehdi@umich.edu

About Me

I am Chetanya Goyal, a 3™ year undergraduate student at IIIT
Hyderabad, India. I am currently pursuing a dual-degree in Electronics
and Communications Engineering (B.Tech. + M.S. by Research). I have
been looking to apply for GSoC for a while now as it unifies the two
areas that I am most interested in - Hardware Design and open-source
contribution.

I have worked with Python, NGspice, LTSpice, iVerilog, C++ and Magic
extensively over the past 2 years in various course projects and other
undertakings. I am relatively new to open-source, having only started
contributing to OpenFASoC half a year ago.

Through these contributions, which involve infrastructure improvements
(expanding CI checking, decreasing code redundancy, ubuntu22 support)
and bug fixes (build file, generally fixing Issues, etc. raised here),
I have become well acquainted with the codebase and the ethos.



mailto:mehdi@umich.edu
https://github.com/idea-fasoc/OpenFASOC/pull/284
https://github.com/idea-fasoc/OpenFASOC/pull/251
https://github.com/idea-fasoc/OpenFASOC/pull/227
https://github.com/idea-fasoc/OpenFASOC/pull/246
https://github.com/idea-fasoc/OpenFASOC/pull/256
https://github.com/idea-fasoc/OpenFASOC/issues

I have started working on Glayout and can see the potential in the
idea, and would really like to be a part of the program, as it would
contribute significantly to the EDA community at large.



	Relational Framework for Prompt-based Automatic Layout Generation with Glayout 
	Aim 
	Background 
	Deliverables 
	Timeline 
	Project Length - Large 
	Mentor - mehdi@umich.edu 
	About Me 

