
Drupal Quality Initiative—Instructions
Document Description

https://drupal.org/project/dqi Main project page with issues etc.

 The Big Checklist Spreadsheet with checklists for each category.

Best Practices Detailed instructions for each step; this document and the
spreadsheet link into the Best Practices document.

Introduction Video From BADCamp 2018.

Table of Contents

Introduction

Key Work Products

Is this initiative opinionated?

Resources

Requirements

Design

Code

Install Coder module

Package Management

Code Linting

Code formatting

Recommended Formatter

Security Auditing

Documentation

Testing

Introduction
The goals of the Drupal Quality Initiative are:

●​ Gather industry best-practices in one place.

​ 1

https://drupal.org/project/dqi
https://docs.google.com/spreadsheets/d/1TnnQxYG4qcBc-22vPJa1uoZ14dNqcg0Erfz0BruErvk
https://docs.google.com/document/d/1li4q07BfewNSSPYlHnolzJ-6hICHl-WPRPSVDfTg4Zo
https://2018.badcamp.org/session/introducing-drupal-quality-initiative

●​ Establish Quality Levels similar to the Carnegie Mellon Capability Maturity Model: the DQI Level (“Drupal
Quality Initiative Level”). For example, ultimately we want to be able to say, “That module is DQI Level
3—definitely ready for production sites.”

●​ Create a community structure for contributed module maintainers to self-assess the quality of their
modules.

●​ Give module maintainers a quality ladder to climb.

Key Work Products
Who is the target for? Lead developer, site builder/technical team lead

Overall goal: A set of documents that will guide a lead developer to produce a successful project/contributed
module.

Insert detail about iron triangle.

Suggested products of the initiative are:

1.​ A master checklist of quality items to consider in each major area: Team Management, Requirements,
Coding, etc.

2.​ A standard for bugs; likely use the same levels used on Drupal.org i.e. minor, major, etc.
3.​ Creating Drupal Quality Initiative Levels. Something like the following (not attached to this!):

a.​ DQI Work Product Levels i.e. the actual code and documentation
i.​ DQI Level 1: Basic quality. Passes linting tests, code formatting, consistent object oriented

structure, basic security auditing.
ii.​ DQI Level 2: Moderate quality. Adds basic unit testing, major bugs known, included in

Drupal Security Review.
iii.​ DQI Level 3: Advanced quality. Adds functional testing, load testing, automated security

testing, low number of major bugs and there is evidence of the code being used in many
production sites.

b.​ DQI Team Levels i.e. processes the team uses, similar to the Capability Maturity Model:
i.​ DQI Level 1: Initial. Ad hoc, reactive, chaotic.

ii.​ DQI Level 2: Repeatable. Many processes are repeatable, possibly with consistent results,
even during times of stress.

iii.​ DQI Level 3: Defined. The processes are used sufficiently for teams to become competent
or the process to be validated in a range of situations.

iv.​ DQI Level 4: Managed (Capable). High quality is repeatable.
v.​ DQI Level 5: Optimizing (Efficient). Teams continually improve process performance

through incremental and innovative technological changes/improvements.

Is this initiative opinionated?
Yes and no. There are clearly different ways to accomplish the same goal, particularly when choosing tools. Plus
what works for one team may not work for another. Thus flexibility is the name of the game when implementing
“best practices.”

​ 2

https://en.wikipedia.org/wiki/Capability_Maturity_Model
https://docs.google.com/spreadsheets/d/1TnnQxYG4qcBc-22vPJa1uoZ14dNqcg0Erfz0BruErvk/edit#gid=28412867
https://en.wikipedia.org/wiki/Capability_Maturity_Model

However, there likely will be some degree of opinion when we start creating the DQI Work Product levels.

Resources
●​ List of static analysis tools
●​ Coder + PHPCS

Requirements

Design

Code

Install Coder module
Coder includes PHP Code Sniffer.

Use instructions here to install Coder in your ~/.composer/vendor directory. Be sure to add the Drupal and
DrupalPractice standards or phpcs won’t be able to do anything. Add the location of phpcs and phpcbf to your
path (the README.md explains how).

Package Management
Drupal has aligned on Composer.

Code Linting
Linting provides formatting and hints when there are potential problems with the code. You can lint for problem
highlighting and use a different code formatter, if you wish, or have the linter perform both functions for you.

●​ PHP Code Sniffer
●​ PHP Lint (runs multiple lints at one time)
●​ ESLint (Javascript)

Code Linting for Core

Code formatting
Using a code (re-)formatter makes codes easier to read and makes code consistent.

​ 3

https://github.com/exakat/php-static-analysis-tools
https://www.drupal.org/docs/8/modules/code-review-module/code-review-module-coder
https://getcomposer.org
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/overtrue/phplint
https://eslint.org

Recommended Formatter
The code formatter gaining tremendous traction is Prettier. It handles PHP, Javascript and more. Learn more from
their description page “Why Prettier?”

Security Auditing
●​ RIPS Tech
●​ PHP Malware Finder (PMF)
●​ SonarSource PHP
●​ Exakat
●​ PHPStan
●​ Psalm
●​ PHP Vulnerability Hunter
●​ Grabber
●​ Symfony Security

Documentation

Testing
●​ Testing Starter kit

Action items:

●​ ChrisW: Create Drive document for testing
https://docs.google.com/document/d/1n3feyWe1LcbsvLG4zQXTv5Romw0Oq2AUBKtbUZ3t0l0/edit?usp
=sharing

●​ Ladder:
○​ Level 1: Read through the docs provided. Be able to alter the provided tests for your site. Be able

to test if critical pages and text is present on the site. No behavior testing.
○​ Level 2: Be able to duplicate the kinds of tests we provide to cover super important pages of your

site.
○​ Level 3: Be able to test the critical/complex behavior of a key interaction on the site.

​ 4

https://prettier.io/docs/en/why-prettier.html
http://www.ripstech.com
https://github.com/nbs-system/php-malware-finder/
https://www.sonarsource.com/php/
https://www.exakat.io/
https://github.com/phpstan/phpstan
https://github.com/vimeo/psalm/
https://www.autosectools.com/PHP-Vulnerability-Scanner
http://rgaucher.info/beta/grabber/
https://security.symfony.com/
https://docs.google.com/document/d/1n3feyWe1LcbsvLG4zQXTv5Romw0Oq2AUBKtbUZ3t0l0/edit?usp=sharing
https://docs.google.com/document/d/1n3feyWe1LcbsvLG4zQXTv5Romw0Oq2AUBKtbUZ3t0l0/edit?usp=sharing

	Drupal Quality Initiative—Instructions
	Introduction
	Key Work Products
	Is this initiative opinionated?
	Resources

	Requirements
	Design
	Code
	Install Coder module
	Package Management
	Code Linting
	Code formatting
	Recommended Formatter

	Security Auditing

	Documentation
	Testing
	

