
Parallel Databases/Query Planning

Problem 1

Given the following relations D(A, B) and E(A, C)

Suppose that D and E are partitioned across 3 different machines using random block

partitioning, and no indexes are available on any of the machines. If we use a hash-join

(aka. shuffle-join) in the relational algebra plan to execute the queries below, determine

whether the following conditionals can be computed before or whether they must occur

after the shuffle.

a)​ SELECT D.A

FROM D, E

WHERE D.A = E.A

AND E.C > 10;

Do we need to shuffle before ‘E.C > 10’ can be determined?

b)​ SELECT D.A

FROM D, E

WHERE D.A = E.A

AND E.C - D.B > 20;

Do we need to shuffle before ‘E.C - D.B > 20’ can be determined?

c)​ SELECT D.A
FROM D, E

WHERE D.A = E.A

GROUP BY D.A

HAVING MAX(E.C) < 100;

Do we need to shuffle before ‘GROUP BY D.A’ can be determined?

Do we need to shuffle before ‘HAVING MAX(E.C) < 100’ can be determined?

Problem 2

Given the following query with relations R(A,B) and S(C):

SELECT R.A, MAX(R.B) AS MaxR_B

FROM R, S

WHERE R.A = S.C AND R.B > 10

GROUP BY R.A

Suppose that R and S are partitioned across 3 different machines using random block

partitioning, and no indexes are available on any of the machines. Draw the relational algebra

plan that you would use to execute the query above. Use only shuffle for joins. You do not need

to indicate how joins are executed locally on each machine.

(Start the diagram with 3 nodes at the bottom.)

Problem 3

Say you are designing a parallel relational database to store purchase data for manufacturing

products. The tables are:

Manufacturer(​mid​, name, category, city, state)
Purchase(​pid​, mid, date, amount) -- ​mid is a foreign key to Manufacturer

Tuples in the purchase table record individual payments in dollar amounts to a manufacturer for

purchases of some product. There is a large amount of data in both tables that would have to be

spread between multiple machines. As the database designer, you know that the most common

query that will be run on the system is:

SELECT m.mid, SUM(p.amount) AS total_revenue
FROM Purchase p, Manufacturer m
WHERE p.mid = m.mid
GROUP BY m.mid

a) Describe in a few sentences how you would partition the data between machines if your goal

is to maximize performance of the above query.

b) Now consider that instead of maximizing performance of any query, your goal is to minimize

skew and store the data evenly across the machines. Describe in a few sentences how you would

partition the data in that case.

Problem 4

Imagine that you are designing a parallel RDMS to digitize all the letters received by the post

office. We assume that “letters” may only contain paper (ie, text) or DVDs (ie, binary blobs).

LetterID SenderAddr RecipientAddr Status ContentType Content

12345 1600
Pennsylvania
Ave

185 E Stevens
Way

Delivered Text “Dear
Hannah, I
would like to
request a
regrade of
the midterm
…”

67890 3800 E
Stevens Way

185 E Stevens
Way

InTransit DVD (lots and lots
of 0s and 1s)

Consider the partitioning strategies we know:

●​ Block (Horizontal)

●​ Range (Horizontal) - please specify attribute set

●​ Hash (Horizontal) - please specify attribute set

●​ Vertical - please specify attribute set

Which one would you choose under the following circumstances? If you choose Range, Hash, or

Vertical partitioning, please specify the attributes that you would partition on.

a)​ The query load consisted solely of counts of in-transit letters (ie, “SELECT COUNT(*)

WHERE Status=’InTransit’”).​
​
​

b)​ All of the attributes have uniformly distributed data except for recipients (eg, the

President of the United States gets an unusually large or unusually small amount of

letters).​
​
​

c)​ The query load consists primarily but not solely of randomly-sampled letter contents,

grouped by sender (eg, the President of the United States typically sends letters that start

with “Dear Sir or Madam,…”). The database contains every letter sent since the creation

of the Postal Service in 1771.

	Problem 3
	Say you are designing a parallel relational database to store purchase data for manufacturing products. The tables are:
	Manufacturer(​mid​, name, category, city, state)
	Purchase(​pid​, mid, date, amount) -- ​mid is a foreign key to Manufacturer
	Tuples in the purchase table record individual payments in dollar amounts to a manufacturer for purchases of some product. There is a large amount of data in both tables that would have to be spread between multiple machines. As the database designer, you know that the most common query that will be run on the system is:
	SELECT m.mid, SUM(p.amount) AS total_revenue
	FROM Purchase p, Manufacturer m
	WHERE p.mid = m.mid
	GROUP BY m.mid
	a) Describe in a few sentences how you would partition the data between machines if your goal is to maximize performance of the above query.
	
	b) Now consider that instead of maximizing performance of any query, your goal is to minimize skew and store the data evenly across the machines. Describe in a few sentences how you would partition the data in that case.
	
	
	Problem 4
	Imagine that you are designing a parallel RDMS to digitize all the letters received by the post office. We assume that “letters” may only contain paper (ie, text) or DVDs (ie, binary blobs).

