

Enhancing Accessibility: A Comprehensive Study of Current Apps for Enabling Accessibility of Disabled Individuals in Buildings

Eleni Apostolidou , <u>Paris A. Fokaides</u> School of Engineering, Frederick University, Cyprus, 7, Frederickou Str., 1036 Nicosia, Cyprus; res.ae@frederick.ac.cy:

KEYWORDS - Accessibility apps, Disabled individuals, Design for All, Inclusive design, Building accessibility, Mobile applications

ABSTRACT

In the digital age, mobile applications are powerful tools that significantly improve accessibility and inclusivity, particularly for people with disabilities. These applications offer various features that enhance the quality of life and independence of individuals with disabilities, especially in settings like teT-TE-- $\Sigma\tau$ o-b-anuildings. However, understanding the current landscape of accessibility applications and their effectiveness in creating inclusive environments is crucial for progress.

This research focuses on exploring mobile applications designed to enhance accessibility within buildings for individuals with disabilities. This study aims to identify trends, improve existing apps, and assess their impact on inclusiveness and empowerment. Objectives include application identification, evaluating their strengths, exploring their impact on independence and quality of life, and identiflying areas for future development.

This study reviews existing literature to understand accessibility applications tailored for disabled individuals in built environments, including universal design concepts and challenges. A thorough comparative analysis of accessibility applications reveals a need for a unified evaluation framework to assess accessibility. Such a framework ensures consistency, reliability, and transparency, promoting user trust, informed decisions, and innovation in empowering disabled individuals.

The study's findings provide insights into current accessibility apps for built environments. Highlights strengths, weaknesses, and potential improvements, offering valuable resources for developers, policymakers, and disabled individuals seeking effective accessibility tools. By promoting understanding of these apps, this research contributes to an inclusive society where disabled individuals can navigate and participate effortlessly.

1 INTRODUCTION

In today's rapidly evolving digital era, mobile applications have revolutionized various aspects of our lives, offering enhanced convenience, connectivity, and productivity. They have transformed how we communicate and entertain ourselves, but their potential extends even further, particularly in improving accessibility for individuals with disabilities, especially within buildings. People with disabilities often face challenges when accessing public and private structures, limiting their participation in education, employment, and social activities. However, mobile applications

designed for accessibility in buildings have emerged as a solution. These apps provide critical information about accessible entrances, elevators, ramps, and other facilities, along with real-time navigation assistance and user-generated reviews. By empowering disabled individuals to navigate spaces independently, these apps have the potential to bridge the accessibility gap, complementing architectural modifications and building codes' progress in recent years.

The principle of Design for All, focused on equality, accessibility, usability, flexibility, safety, aesthetics, and user involvement, underpins the development of apps for disabled individuals. These apps have demonstrated positive impacts on navigation, access to information, empowerment, and inclusion. To further enhance their functionality and impact, it is essential to address challenges such as data accuracy, technical limitations, and interface design. By integrating emerging technologies and fostering collaboration, inclusive smart buildings and smart cities hold the potential to revolutionize the quality of life for people with disabilities. This comprehensive research study aims to investigate current accessibility apps' strengths, weaknesses, and potential areas for improvement while assessing their impact on creating inclusive environments for disabled individuals in buildings. Through a literature review and comparative analysis of these apps, the study seeks to promote inclusive design practices and contribute to a more inclusive society where disabled individuals can navigate and participate fully.

DEVELOPMENT CHALLENGES **IMPROVEMENTS PROCESS** User - Centered Improved Navigation Data Accuracy & Integration of & Independence **Timeliness** Technologies Design Gamification of Integration of Enhanced access to **Technical** Accessibility information Limitations Incentives Collaboration with **Empowerment & Usability & Interface Enhanced Building Owners** Inclusion Design Collaboration & Data sharing

NEEDS AND CHALLENGES FOR APPS FOR DISABLED INDIVIDUALS

2 PAPER FORMAT

The uniform outlook will help the reader to follow the proceedings. This can be obtained most easily if authors use this template file to construct their papers. Please note the following details: this template is an A4 format with 20 mm margins left, right, top and bottom. Header and footer shall be positioned 16 mm from the edge.

All text paragraphs should be single spaced, with the first line indented by 10 mm. Double spacing should only be used before and after headings and subheadings as shown in this example. Position and style of headings and subheadings should follow this example. No spaces should be placed between paragraphs.

2.1 Header, Footer, Page Numbering

If this template is used when writing the full paper, headers and footers will be set automatically. Authors are only asked to replace the "SX-YY" number with the paper code that has

been assigned when the abstract was accepted) on the <u>header of the first page</u> and on the <u>footer of other pages</u> in order to set a unique page number in the Proceedings.

2.2 Fonts

Papers should use a 12-point Times New Roman font. The styles available are bold, italic and underlined.

It is recommended that text in figures is not smaller than 10-point font size.

2.3 Tables and Figures

Figure captions and table headings should be sufficient to explain the figure or table without needing to refer to the text. Figures and tables not cited in the text should not be presented. Styles Heading Table and Caption Figure are available in this template for tables and figures.

The following is the example for Table 1.

Table 1 Title of

Tables and placed close after reference in the and tables should Arabic numerals. should be centred Figure captions below the figures.

Header	X	Improved
(Flow control valves) Air operated valves	4	Yes
Check valves	2	Yes
Line discharge check valves	4	Yes
Pump discharge check valves	3	Yes
Motor driven pumps	2	Yes
Motor driven pumps	2	No

Example Table
figures should be
their first
text. All figures
be numbered with
Table headings
above the tables.
should be centred

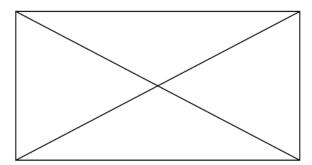


Figure 1: Caption for figure goes at the bottom

2.4 Equations

Each equation should be presented on a separate line from the text with a blank space above and below. Equations should be clear and expressions used should be explained in the text. The equations should be numbered consecutively at the outer right margin, as shown in Eq. (1) and (2) below. Here is one example. The number of different ways that a specified component can fail with (k-1) other components in a group of m similar components is:

$$\binom{m-1}{k-1} = \frac{(m-1)!}{(k-1)!(m-k)!} \tag{1}$$

Thus, the total failure probability, Q_t , of component in a common cause group of m components is:

$$Q_{t} = \sum_{k=1}^{m} {m-1 \choose k-1} Q_{k}^{(m)}$$
(2)

2.5 Bibliography

References in the text should be indicated by Arabic numerals in square brackets that run consecutively through the paper. Authors should ensure that all references are cited in the text and vice versa. The reference list should contain only literature references; other information (e.g. experimental details) should be placed either in the body of the text, or as a footnote. Each reference should contain only one literature citation. Authors are expected to check the original source reference for accuracy. Journal titles should be abbreviated according to American Chemical Society guidelines (The ACS Style Guide; Dodd, J. S., Ed.: American Chemical Society: Washington, DC, 1997). See examples for journal articles [1], books [2], multi-author books [3], proceedings [4] and personal communications [5], shown in the **REFERENCES** section of this template.

3 CONCLUSION

Conclusions should state concisely the most important propositions of the paper as well as the author's views of the practical implications of the results.

REFERENCES

- [1] P. Audebert, P. Hapiot, Effect of powder deposition, J. Electroanal. Chem. 361 (1993) 177.
- [2] J. Newman, Electrochemical Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1991.
- [3] A.R. Hillman, in: R.G. Linford (Ed.), Electrochemical Science and Technology of Polymers, vol. 1, Elsevier, Amsterdam, 1987, Ch. 5.
- [4] B. Miller, Proc. 6th Australian Electrochem. Conf., Geelong, Vic., 19-24 Feb., 1984; J. Electroanal. Chem., 168 (1984) 91.
- [5] Jones, personal communication, 1992.