Kühl- und Gefrierschränke

	Runi- und Geirierschranke
1.	Macht ein Kühlschränk das Universum kälter? ODER: Es ist ein heißer Tag, und Ihre Klimaanlage [=air conditioner] ist kaputt. Hilft es, wenn Sie Ihren
2.	Kühlschrank auf lassen (wenn er nicht kaputt geht)? Die fünf wichtigsten Teile des Kühlschranks beim Kompressionsverfahren sind:
	V, K, K, Kapillarrohr/Drosselorgan
3.	und natürlich das Kältemittel. Implizit (aber nicht explizit) im Text: was ist für den Kühleffekt wichtiger: a. dass das Kühlmittel im Verdampfer sehr kühl ist
4.	b. dass das Kühlmittel im Verdampfer verdampft? Was bedeutet <i>Siedepunkt</i> ? Hat ein gutes Kühlmittel einen niedrigen Siedepunkt (unter 25 Grad Celsius) oder einen hohen Siedepunkt (über 100 Grad Celsius)?
5.	So ein Mist. Ich kann den verdammten Verdampfer nicht finden! Bitte helfen Sie mir: ist der Verdampfer im Kühlschrank oder hinter dem Kühlschrank?
6.	Ist der Kondensator im Kühlschrank oder hinter dem Kühlschrank?
7.	Ist das Drosselorgan (Kapillarrohr) dünn oder dick? Ist der Druck hinter dem Drosselorgan höher oder niedriger? Ist das Drosselorgan im Kreislauf vor dem Verdampfer oder vor dem Kondensator?
8.	Was würde passieren, wenn der Kühlschrank kein Drosselorgan (Kapillarrohr) hätte? ["welches den Druckausgleich zwischen Kondens. & Verd. verhindert"]
9.	Das Kühlmittel verdampft, wenn es kalt ist, und kondensiert, wenn es heiß ist. Ist das normal? Was ist die Lösung dieses Paradoxes?
10.	Die Funktion des Kompressors:
	a. Erhöht oder senkt der Kompressor den Druck des Kühlmittels?
	b. Wie beeinflusst der Druck auf ein Gas oder eine Flüssigkeit seinen/ihren Siedepunkt?
	i. höherer Druck ==> höherer Siedepunkt ODER
	ii. höherer Druck ==> niedrigerer Siedepunkt?
	c. Erhöht oder senkt der Kompressor die Temperatur des Kühlmittels?
	d. Ist das ein Problem? Denken Sie an Frage Nummer 3!
11.	Welche zwei Teile des Absorberkühlschranks ersetzen zusammen den
	Kompressor? [ein Teil "saugt" das Ammoniak aus dem Verdampfer; ein Teil "drückt" das Ammoniak in den Kondensator]
12.	Welche Teile sind beim Absorptionsverfahren und beim Kompressionsverfahren gleich? Welche sind anders? [siehe Frage 2!]
13.	Welche Vorteile hat das Absorptionsverfahren? Wann/Wo benutzt man Absorberkühlschränke zum Beispiel?
14.	[Nicht im Text] Das Absorptionsverfahren benutzt etwa dreimal so viel Energie wie das Kompressionsverfahren. Warum ist das nicht überraschend? [Welcher "paradoxe" Teil des Absorberkühlschranks macht das logisch?]
	Fassen Sie das Kompressionsverfahren zusammen. Beginnen Sie im Verdampfer. Fassen Sie das Absorptionsverfahren zusammen. Beginnen Sie im Verdampfer.

- 17. FCKWs und FKWs sind meine Lieblingschemikalien, denn ich **hasse**
 - Mehr Info:
 - o Wikipedia (Deutsch): Kältemittel > Einfluss auf Ozonschicht und Treibhauseffekt
 - Wikipedia (Englisch): Chlorofluorocarbon > <u>Development of alternatives for CFCs</u>