
3PE Lookup Service
Parts of this document highlighted in purple, like this, are left for historical interest, but are
not intended to be the current focus of development. They may be removed later.

This lookup service provides a bidirectional mapping between third-party network (3PN)
identifiers in whatever forms they arrive, and Matrix IDs suitable for identifying the
Matrix-side ghost users and portal rooms representing those 3PN entities (3PEs).

The following examples give details of the proposed lookup service for the client to ask the
Homeserver (HS), and HS to ask application services (ASes) to provide a mapping from
third-party network locations (3PLs) and users (3PUs) into native Matrix IDs. This is
designed primarily to support the UX designed in First Class UX For Third Parties. The initial
information required from the user is some natural form of identifying the 3PE in whatever
form is naive to that network. This would be a textual (ideally Unicode) identifier, but does
not generally have any particular form. Some networks may use URIs to identify some
entities, most will not. Some types of network may even require multiple distinct components
to uniquely identify an entity - for example a generic IRC bridge will need to know both the
network name and the name of the entity within that network.

The reader should also be familiar with the general bridging concepts outlined in 3PN
Bridging.

This document expands on the initial proposal in the Matrix spec found at

http://matrix.org/docs/spec/r0.0.1/application_service.html#user-ids

Client Mapping 3PN Entities To Matrix IDs
This operation is the typical initial use-case, where the user of a client wishes to discover the
underlying Matrix room alias or user ID that represents a given entity on a 3PN. In order to
answer it, the HS might perform further lookups on its individual ASes, or talk to an identity
server, or any other behaviour it finds appropriate.

Query Metadata
The following queries that originate from a client performing a request on behalf of the user
may need to be aware of 3PN-specific details such as field names. A mechanism is needed
that lets clients discover what information is required for such a request.

GET /_matrix/client/:ver/thirdparty/protocols

https://docs.google.com/document/d/1uCwNuCCDwnXi4WOw1_mkftb5BXnhqVwV7Z5VT8wO2go/edit#
https://docs.google.com/document/d/1Yif6LNUPjbZhrP_ppg487rWsqtKNzRaYWzeeVmkSgAc/edit#heading=h.9ji5welszj50
https://docs.google.com/document/d/1Yif6LNUPjbZhrP_ppg487rWsqtKNzRaYWzeeVmkSgAc/edit#heading=h.9ji5welszj50
http://matrix.org/docs/spec/r0.0.1/application_service.html#user-ids

This query fetches the overall metadata about protocols supported by the HS. The format of
the return value is still very much a subject under heavy development; the following example
suggests what might be returned.

{​
 "irc": {​
 "user_fields": ["network", "nickname"],​
 "location_fields": ["network", "channel"],​
 "icon": "mxc://example.org/aBcDeFgH",​
 "field_types": {​
 "network": {​
 "regexp": "([a-z0-9-]+\.)*[a-z0-9-]+",​
 "placeholder": "irc.example.org"​
 },​
 "nickname": {​
 "regexp": "[^\s#]+",​
 "placeholder": "username"​
 },​
 "channel": {​
 "regexp": "#[^\s]+",​
 "placeholder": "#foobar"​
 }​
 },​
 "instances": [... (see below)],​
 },​
 "gitter": {​
 "user_fields": ["username"],​
 "location_fields": ["room"],​
 "field_types": { ... },​
 "instances": [...],​
 },​
 "slack": { ... }​
}

Here the toplevel object contains keys named after the protocols supported by the HS. The
value of each is an object containing metadata relating to that protocol. The contained keys
are:

●​ user_fields: A list of strings, giving the names of the fields required to identify a
user; these are the fields given to the /thirdparty/user query.

●​ location_fields: A list of strings, giving the names of the fields required to identify
a location; these are the fields given to the /thirdparty/location query.

●​ icon: An mxc:// URL for a small image to illustrate this protocol type in a user
interface.

●​ field_types: An object that gives information about the accepted values for each of
the named identification fields.

●​ instances: A list of objects representing logically independent sets of configuration.

The user_fields and location_fields lists should return a list of key names that match
the names of keys used in the fields object of user or location queries. These keys should
be ordered to suggest the way that entities might be grouped, with higher groupings ordered
first. For example, the name of a network or server should come before the name of a user
or location within that server. Clients may make use of this sorting order to display a
hierarchical breakdown of mapped entities.

The field_types object contains type information about the sorts of accepted values in
each of the fields used to identify a user or location, which may be helpful to a client to assist
it in building a UI to ask the user for their values. The keys of the map are the possible field
names for identifying users and locations, and the values of each are themselves a
sub-object giving validation information about values of that field. The object should contain
two keys:

●​ regexp: A string containing a regular expression pattern that valid values should
match. This may be a fairly coarse filter; it is not required that the pattern reject all
possible invalid strings, as the underlying application service can apply its own better
logic anyway. It may simply serve as a reasonable first-cut filter on the client end,
perhaps to avoid server roundtrips, or to indicate validation in realtime as the user
types a value.

●​ placeholder: A string containing an example value to suggest to the user the sort of
thing they might want to enter here. It ought to be valid according to the validation
regular expression.

The instances list contains objects that represent each individual set of configuration that is
known for the protocol. Typically this is used to represent individual networks or domains of a
partitioned 3PN type. Usually a unified network would have just one. This list is in no
particular order. Servers are not obliged to return results in a consistent order, and clients
should take care to sort results consistently somehow, perhaps by description, if they are
displayed in a list to the user.

Each object should look like:

{​
 "desc": "Freenode",​
 "icon": "mxc://......",​
 "fields": {​
 "network": "freenode.net",​
 },​
}

The contained keys are:

●​ desc: A human-readable description string to identify this particular instance
configuration to a user, for display on a user interface

●​ icon: An optional mxc:// URL for a small image to illustrate this configuration of the
protocol. This will override a generic one provided at the protocol top-level object.

●​ fields: An object that provides preset values for certain lookup fields. This allows a
client to offer a choice of values to the user, or perhaps for other intermediate code to
validate the values of fields in queries.

●​

Other fields that might need specifying in future could include:

●​ Typing or enumeration value hints for other identification fields - validation regexps
for usernames, placeholder/example values, etc...

For efficiency, the client may also request information about a particular protocol

GET /_matrix/client/:ver/thirdparty/protocol/:protocol

This will return an object containing the metadata of the requested protocol (i.e. a single
value from the object that the /protocols request would have returned).

Rooms (aka "Locations")
The endpoint path encodes the protocol name; other fields that identify the 3PL are encoded
as query parameters:

GET /_matrix/client/:ver/thirdparty/location/:protocol​
 ?field1=$value1&field2=...

(Note: this URL is wrapped for presentation purposes in this document but would appear in a
single line over the wire)

A successful mapping results in a JSON list containing objects to represent the Matrix room
or rooms that represent a portal to this 3PN. Each has the Matrix room alias string, an
identifier for the particular 3PN protocol, and an object containing the network-specific fields
that comprise this identifier. It should attempt to canonicalise the identifier as much as
reasonably possible given the network type.

[{​
 "alias": $matrix_room_alias,​
 "protocol": $3pn_network_type,​
 "fields": {​
 "field1": $value1, ...​
 }​
},​
...]

The toplevel value is a list because in general the HS may have more than one match for a
given 3PL, as it may be aware of multiple different bridges hosted in different places that
route to the same 3PN. If multiple matches are returned, the order is generally unspecified;

the client should not infer any particular meaning from it. It may decide to offer the choice on
to the user.

An otherwise well-formed client request that happens to result in no matches yields a
successful response containing an empty list. Errors in the request (such as missing fields,
fields containing invalid values for that protocol) returns a 400-series response.

Note that this API generally simply performs a translation on the textual representation of a
potential 3PN entity from one form into another; it does not actually contact the 3PN in
question to verify that such an entity exists. A successful mapping does not mean that the
requesting user will actually be able to use the returned Matrix identifier, it simply means that
this is the identifier it should use to attempt it.

For example to find the #Matrix channel on the IRC network freenode:

GET /_matrix/client/:ver/thirdparty/location/irc​
 ?network=freenode&channel=%23Matrix

[{​
 "alias": "#freenode_#matrix:matrix.org",​
 "protocol": "irc",​
 "fields": {​
 "network": "freenode",​
 "channel": "#matrix"​
 }​
}]

In particular in this example, note that the 3PN AS has case-folded the channel name. It
knows that in this case, IRC is not case sensitive for channel names, so it has converted the
capital M of #Matrix into lower-case.

Users
The endpoint path encodes the protocol name; other fields that identify the 3PL are encoded
as query parameters:

GET /_matrix/client/:ver/thirdparty/user/:protocol​
 ?field1=$value1&field2=...

A successful mapping results in a JSON list containing structures to represent the Matrix
user ID for the ghost representing this 3PU, an identifier for the particular 3PN type, and an
object containing the network-specific fields that comprise this identifier. As with room
aliases, in general this list may contain more than one result; both because of multiple
bridges, and in case the HS has decided to contact an Identity Server, which it trusts to
provide a reference from the 3PID to a native Matrix account.

[{​
 "userid": $matrix_user_alias,​
 "protocol": $3pn_network_type,​

 "fields": {​
 "field1": $value1, ...​
 }​
},​
...]

As with the room mapping API, this is simply a translation of the textual representation of the
name; it does not imply that the user actually exists.

For example to find the @jim user on Gitter:

GET /_matrix/client/:ver/thirdparty/user/gitter?user=%40jim

[{​
 "userid": "@gitter_jim:matrix.org",​
 "protocol": "gitter",​
 "fields": {​
 "user": "jim"​
 }​
}]

In particular in this example, note that the 3PN AS has stripped the leading @ symbol from
the user name, because it is not a significant part of the username on the gitter network.

Client Mapping Matrix IDs to 3PN Entities
Using these APIs to perform "reverse" lookups, turning Matrix native identifier forms into
3PN identifiers is just as simple, by supplying other forms of query parameters. In these
cases, the path does not contain a component for the protocol type, because the requesting
client may not yet know what that is.

GET /_matrix/client/:ver/thirdparty/location?alias=$mxalias

GET /_matrix/client/:ver/thirdparty/user?userid=$mxid

In both cases, the response can return the same shaped structure as it does in the forward
mapping cases, because the response yields both the broken-down 3PN-specific fields, and
the Matrix ID.

AppServ Mapping 3PN Entities To Matrix IDs
These APIs are called on the AS by the HS, either by request of a client, or merely to collect
information on an AS that a client may want later.

Query Metadata
GET /_matrix/app/:ver/thirdparty/protocol/:protocol

This endpoint invoked by the HS returns a JSON object containing information for a single
thirdparty protocol, in the form described above.

The following operations begin with a client requesting a mapping for an entity from the 3PN
identifier form into a Matrix room alias or user ID that could be used to represent this entity
within Matrix. The HS then picks any ASes it has configured that may be able to provide an
answer.

Rooms
GET /_matrix/app/:ver/thirdparty/location/:protocol​
 ?field1=$value1&field2=...

Example:

GET /_matrix/app/unstable/thirdparty/location/irc​
 ?network=freenode&channel=#matrix...

The response to this request takes the same form as the response to the client-API request
(such that the HS might just proxy the value through to the requesting client directly).

Users
GET /_matrix/app/:ver/thirdparty/user/:protocol​
 ?field1=$value1&field2=...

Example:

GET /_matrix/app/unstable/thirdparty/user/irc​
 ?network=freenode&nickname=mrrobot...

The response to this request takes the same form as the response to the client-API request
(such that the HS might just proxy the value through to the requesting client directly).

AppServ Mapping Matrix IDs to 3PN Entities
Using these APIs to perform "reverse" lookups, turning Matrix native identifier forms into
3PN identifiers is just as simple, by supplying other forms of query parameters. In these
cases, the path does not contain a component for the protocol type, because the requesting
HS may not yet know what that is.

GET /_matrix/app/:ver/thirdparty/location?alias=$mxalias

GET /_matrix/app/:ver/thirdparty/user?userid=$mxid

In both cases, the response can return the same shaped structure as it does in the forward
mapping cases, because the response yields both the broken-down 3PN-specific fields, and
the Matrix ID.

	3PE Lookup Service
	Client Mapping 3PN Entities To Matrix IDs
	Query Metadata
	Rooms (aka "Locations")
	Users

	Client Mapping Matrix IDs to 3PN Entities
	AppServ Mapping 3PN Entities To Matrix IDs
	Query Metadata
	Rooms
	Users

	AppServ Mapping Matrix IDs to 3PN Entities

