Unit 5 - Lesson 7
Name(s) Period Date

Activity Guide - Will it Crash?

Let’s play a game: “Will it Crash?”

Each row in the table below presents a small program that uses if-statements and robot commands.
Trace the code and plot the movements of the robot for the 3 scenarios shown to the right of the code. If
the robot is directed to move onto a black square, it “crashes” and the program ends. If the robot doesn’t
crash, then draw a triangle showing its ending location and direction.

There are a few patterns to the ways if-statements are typically used:
Basic If-statements

Sequential If-statements

Basic If-else statements

Nested If and if-else statements.

Combinations of all of the above

Each section below presents an example of one of these common patterns, followed by a few problems
for you to try. For each type study, and make sure you understand, the example and why each of the
3 scenarios ends up in the state shown.

EXAMPLE: Basic If-statement

Code is executed sequentially from top to Scenario 1: Scenario 2: Scenario 3:
bottom. The code inside the if-block
executes ONLY if the condition is true,
otherwise the block is skipped and

execution picks up on the first line after the |

if-block. é\ é\
By T ENIEN =N

MOVE_FORWARD () .-f,, 5
IF (CAN MOVE (forward))
{

MOVE_FORWARD ()
MOVE_FORWARD ()

}
ROTATE LEFT () Use the diagram to

MOVE_FORWARD () trace each robot move.

You try it: Basic If-statement

ROTATE LEFT ()
IF (CAN _MOVE (left))

{ ROTATE_LEFT () "ﬂ ‘ -I-

}
MOVE FORWARD ()

MOVE FORWARD () I ?

EXAMPLE: Sequential If-statements

Lines of code, including if statements, are
evaluated separately, one at a time, in
order from top to bottom. An if-block
executes ONLY if the expression is true.
Note that an earlier if-statement might
change the state of the of world for an
if-statement that comes later. This makes

it hard to predict what will happen unless
you trace the robot moves and take each

line one at a time. 5

IF (CAN MOVE (f d)) :
* fan e o SEs |IeCe - W

MOVE_FORWARD ()
}

IF (CAN MOVE (forward))
{

MOVE FORWARD ()
}
ROTATE LEFT ()
IF (CAN MOVE (forward))
{
MOVE FORWARD ()
}

YOU TRY IT - Sequential If-statements

ROTATE LEFT ()
IF (CAN MOVE (forward))

{ p— —

MOVE_FORWARD () g ‘g
}

ROTATE RIGHT ()

IF (CAN MOVE (forward))

{ | >

MOVE_FORWARD ()
}

ROTATE LEFT ()
IF (CAN MOVE (forward))

{
MOVE FORWARD ()

}

IF (CAN _MOVE (left))

ROTATE LEFT ()

MOVE_FORWARD ()

IF (CAN _MOVE (left))

{
ROTATE_LEFT () ‘ :-A
MOVE_FORWARD ()

Y >
<

IF (CAN MOVE (left))

ROTATE LEFT ()
MOVE_FORWARD ()

EXAMPLE: If-else Statement

The code in the if-block executes ONLY if
the expression is true, otherwise the code
in the else block will run. But one or the
other must execute. An else statement
can be attached to a single if-statement.

ROTATE LEFT ()
IF (CAN MOVE (forward))
{
MOVE_FORWARD ()
}
ELSE({
ROTATE LEFT ()
ROTATE_LEFT ()
}
MOVE_FORWARD ()

¥ DU

™
O

NOTE: Easy to miss
MOVE_FORWARD on
the last line

YOU TRY IT - Simple If-Else

Here is a block-based
version of a very similar
program.

MOVE FORWARD

IF (:AN_MCME. |:':|:'war:1|>

[MOVE FORWARD]

ELSE

ROTATE LEFT

MOVE FORWARD

ROTATE RIGHT

MOVE FORWARD

MOVE FOEWARD

IF (CAN MOVE (left))
{
ROTATE LEFT ()
MOVE_FORWARD ()
}
ELSE
{
ROTATE RIGHT ()
MOVE_FORWARD ()

IF (CAN _MOVE (right))

ROTATE RIGHT ()
}
ELSE
{

ROTATE LEFT ()

}
MOVE_FORWARD ()

EXAMPLE: Nested Statements

You can put if- and if-else statements
inside other if-statements. All previous
rules apply, but tracing the code can be
tricky.

IF (CAN MOVE (forward))
{ =
MOVE_FORWARD () 'K A .

} -4

o » = =
IF (CAN MOVE (backward))
{

ROTATE LEFT ()
ROTATE_LEFT ()
MOVE_FORWARD ()

}
MOVE FORWARD ()

}
MOVE_FORWARD ()

YOU TRY IT - Nested If-statements

IF (CAN MOVE (forward))
{
IF (CANiMOVE (left))
{
ROTATE LEFT ()
}
ELSE{
ROTATE RIGHT ()
}
MOVE_FORWARD ()

\J

}
ELSE

{

ROTATE_LEFT ()
ROTATE LEFT ()

}
MOVE FORWARD ()

[1F
(CAN_MDVE forward)
MOVE FORWARD]

ELSE
iF (CAN_MGVE) >
ROTATE LEFT . >
MOVE FORWARD ‘?
ELSE
ROTATE RIGHT
MOVE FORWARD

Challenges: putting it all together -- if, if-else, sequential if, nested statements

FZF (CP.N_MD‘.?E [left |)

ROTATE LEFT I

|V

FORWARD

IF (CAN MOVE (forward))
{

MOVE FORWARD ()
IF (CAN MOVE (left)) - aem N
{ CRf

ROTATE_LEFT ()

IF (CAN MOVE (right)) :-
{ >l > > >

ROTATE RIGHT ()
}

(s
=
o=

}

}
MOVE FORWARD ()

IF (CAN MOVE (forward))
{
MOVE FORWARD ()
IF(CAN_MOVE (left))
{
IF(CAN MOVE (right))
{
ROTATE_RIGHT ()
}
ELSE
{
ROTATE LEFT ()
}
}
ELSE
{
ROTATE RIGHT ()

}
MOVE_FORWARD ()
}
ELSE
{
ROTATE LEFT ()
ROTATE_LEFT ()
}
MOVE_FORWARD ()

Now you try it!

Now that you’ve had a bunch of practice reading and tracing code with if-statements, try writing your own
pseudocode robot program that uses if-statements.

Problem statement:

Write a program to make the robot end up on the target gray square

facing any direction...but your code must be able to handle the possibility
of an obstacle that could appear in any one of the other squares (i.e.
squares that aren’t the start or target squares - numbered 1-7 in the

diagram)

You must write the code without knowing ahead of time where the
obstacle will be. In other words, you must write one program that can

handle any possibility that might occur. For this exercise, there 8 possible
locations where obstacle might be, we’ll call them scenarios 0-7:

S

>

H: = >

> > >

mlm

Write your program by hand below and test it by tracing it against each of the 8 possible
scenarios. Your code should get the robot to the target no matter where the obstacle appears.
Goal: When the program ends, the robot is on the gray square -- it can be facing any direction
Tip: When hand-writing code you don’t need to follow the pseudo code strictly, as long as your
intent is clear. For example, using abbreviations and/or omitting the curly-braces and just

indenting is fine.

Here are three different solutions which show a variety in algorithms as well as suitable

hand-written code. There are many other solutions as well.

Sequential ifs

Sequential if-else

“Brute force-y” nested if-else

if(can move (forward))
move_ forward()

if{ can move (forward))
move_ forward()

rotate _right()

if(can move (forward))
move_ forward()

rotate-left()

if{ can move(forward))
move_ forward()

if(can move (forward))
move_ forward()

iflcanMove())
move()

else
rotate-right()
move()
rotate-left()

iflcanMove())
move()

else
rotate-right()
move()
rotate-left()

if{ canMove())
move()

else
rotate-right()
move()

If canMove (fwd)
fwd
If canMove (right)
right
fwd
right
fuwd
Else
fwd
right
fuwd
Else
right
fwd
lef
fwd
fwd

