
Needs
●​ Monkeys can handle structure migrations cleanly
●​ Monkeys can edit mod data without touching migrations
●​ Easy for Monkeys to understand data structure
●​ Monkeys can grab content from running deck into mod
●​ Platypuses can maintain seed data in files (without bootstrapping from db)
●​ Monkeys can add test seed data (will be needed for testing mods)
●​ Sharks don’t have to think about any of this. They just run `decko update`

Data Representation

Current:
●​ fixtures in card/db/seed
●​ json lists in card/db/migrate_cards/data
●​ yml in card/db/migrate_card/data/cards.yml
●​ content in card/db/migrate_card/data/cards

Proposed
Specify mod to seed from in config. Move fixtures to:

●​ [modname]/data/fixtures/real # contains cards.yml, card_actions.yml, etc
●​ [modname]/data/fixtures/test

Replace all the other data representations with “pod” data in

[modname]/data/real.yml
[modname]/data/test.yml
[modname]/data/real/OTHER.yml # (referred to by real.yml)
[modname]/data/test/OTHER.yml # (referred to by test.yml)

Rationale
●​ only one authoritative copy to maintain
●​ can avoid writing migrations (usually)
●​ can review changes easily in github
●​ easy to edit by hand when needed
●​ simplify seed updating tasks (easy to regenerate fixtures)
●​ mechanism for mod-specific cards

Pod Data

Each YAML entry is either a card “pod” or a relative reference to another YAML file. A pod looks
something like this:

name: My Card
codename: :mycard
type: typemark
content: mycontent

Pods support any normal argument to Card.create (or, more precisely, to #ensure_card),
including subcards, fields, skip, trigger, etc. We also handle some special ones:

●​ user: mark of user credited with act
●​ time: alter create/update time in timecop. Val is integer (Time.now.to_i). If prefaced by

a “+” or “-”, we compute a time in the future or past (respectively) from Time.now
●​ conflict: what to do if the name and/or codename exist - NOT YET IMPLEMENTED

Conflicts
The conflict policies, as spelled out below, assume every card is in one of three states:

1.​ new: there is no card with this name or this codename
2.​ pristine: a card with this name and/or codename exists but card has not been edited by

anyone other than cardbot
3.​ altered: card has been edited by someone other than just cardbot

For (a) entries with no codename and (b) entries with a codename and a name that is not
already in use, the conflict handling is straightforward:

 missing pristine altered

defer create do nothing do nothing

default create update do nothing

override create update update

Things get more complicated when the entry has a codename and the name is in use. Here is
what we do when (c) the name is in use but the codename is not. (Column headings refer to
the state of the existing card with the entry’s name.)

 pristine altered

defer create with new name create with new name

default update create with new name

override update update

Finally, here’s what we do when (d) both the name and the codename are already in use.
(Column headings refer to the state of the existing card with the entry’s codename.)

 pristine altered

defer do nothing do nothing

default update all but name do nothing

override alter conflicting name &
update codename card

alter conflicting name &
update codename card

For altering names, the standard behavior is to increment the name (eg myname 1).

Seeding / Migrating
Currently there are 4 types of migrations: structure and “card” migrations for core and deck
respectively. We should reduce to two types, each with its own mod directory:

●​ data/schema/ # structure migrations
●​ data/transform/ # card migrations that can’t be handled by YAML ingestion, including:

○​ renaming cards without codenames
○​ deleting cards without codename
○​ patterned content changes
○​ non-card changes (lookups, etc)

When you run decko (or card) setup, we progress through these stages:

1.​ Seed
a.​ from specifiable fixtures
b.​ includes migration tables

2.​ Update
a.​ migrate:port - confirm ported to new migration system)
b.​ migrate:schema - schema migrations (do not load card)
c.​ migrate:recode - handle changed codenames
d.​ eat - ingest pod data
e.​ migrate:transform - transform migrations
f.​ reset - reset tmp dirs and cache
g.​ mod:install
h.​ mod:uninstall
i.​ mod:symlink - update symlinks

It would be nice to be able to add scripts to this, too. That way we could support more significant
data transformations that require logic without locking the database. (Note: eating does not lock
the db).

Optimizations
●​ only eat in mods in which yaml has been updated since the mod card’s latest update
●​

CLI

There are three main groups of commands:

●​ card commands, eg `card eat`. Note these should not require the decko gem.
●​ decko commands, which include all the card commands (eg `decko eat`) AND some

others that require the decko gem.
●​ rake commands, which include (nearly) all the decko commands (eg `rake

decko:update`) AND some additional rarely used commands for platypuses. Some
special cases may not be executable as rake commands (eg decko new(?))

Card commands

For Sharks
 new create a new deck
 setup populate a database
 update (or u) run data updates
 version (or v) card gem version
 help (or h) show this text

Eventually `card version` and `decko version` should be the same. But for now they’re different
and they output the version of their respective gems.

For Monkeys

card console
card dbconsole
card runner

card eat # import from yaml
 -n --name import only card with name
 (handles : for codenames)
 -m, --mod MOD only eat cards in given mod
 -u, --user USER user to credit unless specified
 (otherwise uses Decko Bot)
 -p, --podtype TYPE pod type: real, test, or all
 -v, --verbose output progress info and error backtraces
 -e --env environment (test, production, etc)
 -h --help

card sow # download card yml

 -n, --name NAME export card with name/mark
 (handles : and ~ prefixes)
 -i, --items also export card items (with -n)
 -o, --only-items only export card items (with -n)
 -c, --cql CQL export cards found by CQL (in JSON format)
 -m, --mod MOD output yaml to mod
 -p, --podtype PODTYPE podtype to dump
 (real or test. default based on current env)
 -t, --field-tags FIELD_TAGS comma-separated list of field tag marks
 -e, --env ENV environment to dump from (when local)
 -u --url source card details from url
 -h --help

card generate # auto-generate code
 mod name
 set mod pattern anchor1 [, anchor2, anchor3..]
 migration name
 -m --mod
 --schema

We should make the most important mod-developer operations really easy to remember and
use. (decko generate card:set is much harder to remember than card generate
set). set and mod are definitely the most important of these two.

card reset # by default clears both cache and tmpfiles
 -c --cache # cache only
 -t --tmpfiles # tmpfiles only

card rspec DECKO/CARD ARGS -- RSPEC ARGS
 -f, --file FILENAME Run specs with filename
 (with or without _rspec.rb)
 -m, --mod MODNAME Run all specs for a mod
 -s --[no-]simplecov Run with simplecov
 --pry-rescue Run with pry-rescue
 --[no]-spring Run with spring

Would be nice if rspec and cucumber didn’t have to have the -- separating the arguments we
pass on from those we don’t. (low priority)

decko commands
Decko adds a couple new commands:

decko server (for sharks)
decko cucumber (for monkeys
...

...and some commands have additional meaning in decko:

decko rspec

 ... also calls decko specs, whereas card rspec only calls card specs
decko update

Call card update and rake card:mod:symlink

Note: it would be nice if commands with mod-specific options (eat, sow, generate, etc) could be
smart about the current mod they’re in if called from within a mod.

rake commands

Rake is clearly a powerful tool for organizing a quick api for tasks that are sometimes performed
independently and other times as part of a larger process. We wouldn’t want to write separate
scripts for all those tasks.

rake card:eat # Ingests card data from mod yaml

rake card:mod:install # install all mods
rake card:mod:leftover # list mods still installed but not configured for use
rake card:mod:list # list current mods in load order
rake card:mod:symlink # symlink from deck public/{modname} to mod's public
 directory
rake card:mod:uninstall # uninstall leftover mods

rake card:reset_cache # Resets cache
rake card:reset_tmp # reset with an empty tmp directory

rake card:seed # Loads seed data
rake card:seed:build # completely regenerate seed fixtures starting with
 dependee seed fixtures
rake card:seed:replant # Truncates tables of each database for current
 environment and loads the seeds(alias for
 db:seed:replant)
rake card:seed:update # regenerate seed fixtures quickly from current
fixtures
rake card:setup # Creates the database, loads the schema, initializes
 seed data, and adds symlinks to public directories

rake card:sow # Exports card data to mod yaml

rake card:update # Runs migrations, installs mods, and updates symlinks

rake card:migrate # migrate structure and cards
rake card:migrate:redo # Redo the transform migration given by VERSION
rake card:migrate:schema # run structure migrations
rake card:migrate:stamp[type] # write the version to a file (not usually called
directly)
rake card:migrate:transform # run transform migrations

Additional Notes
●​ Every `rake card:task` call should also be callable as `rake decko:task`. (but

not necessarily vice versa)
●​ `rake -T` shows all rake commands with a `desc` call).
●​ We should make sure all the rails commands we want/need work as card/decko. Any

other commands should not show up from `rake -T`.
●​ Generally speaking, rake commands should pass on basic rake args (eg --trace) and

maintain environments
●​ All tasks should have tests

	Needs
	Data Representation
	Current:
	Proposed
	Rationale

	Pod Data
	Conflicts
	Seeding / Migrating
	Optimizations

	
	CLI
	Card commands
	For Sharks
	For Monkeys

	decko commands
	rake commands
	Additional Notes

