

CIA Lab 6 - Lighttpd (Web)

​
Lab Author: Ahmed SalahEldin Elkashef

●​ Task 1 - Install & Configure Virtual Hosts

Fetch, verify, build and install the daemon.

Fetching & Verifying Source Code:

My Web server of choice is lighttpd, lighttpd or as pronounced “lighty” is a web server that is
optimized for speed-critical environments, hence the name. Also it has two components in it’s
name, “light” and “httpd” -> lighttpd

In order to fetch the web server, we go directly to the official website and we are presented with a
section for “downloads” that contain two compressions of the web server code tar file. We
download any of them and also the GPG signature file, we can also find the public key that we
will need to import in order to start the verification process:

1

https://www.lighttpd.net/

Still, we lack the public key for the verification of lighttpd, for that, we go to any trusted keyserver
for GPG public keys, such as http://keys.gnupg.net/ and we search for lighttpd.

2

http://keys.gnupg.net/

As shown in the screenshot, there are a number of public keys that are available, throught many
years, the oldest of them is a revoked key from 2005. We go for the newest key and we get the
key ID from it, which will be F60A43D4.

Now we retrieve the public key using the key ID and attempt to verify the file:

It looks like the key has expired. However, after checking the internet, it seems that this is the
latest published public key for lighttpd, so we attempt a different form of verification using the
SHA256 checksum published on the website, and we compute another one for our local file and
then check them, if they are the same then we verify that our file is original as the one on the
website:

Both of them seem to be matching:
065259fb618774df516add13df22a52cac76a8f59e4561f143fe3ec810f4a03a

Now we start the installation process based on the official documentation here.
​
Building and Compiling:
As instructed, we decompress the zipped file and then cd into the resulting directory

3

https://redmine.lighttpd.net/projects/lighttpd/wiki/InstallFromSource

Before we proceed, we read in the documentation that we will need the zlib and pcre libraries, we
install and locate them, they are the libpcre3-dev (perl-compatible regular expressions) and
zlib1g-dev (for data compression).

sudo apt install libpcre3-dev

sudo apt install zlib1g-dev

In addition to other libraries that were found missing during the installation:

sudo apt install libbz2-dev

Libbz2 is a data compressor.

To enable the support for SSL/TLS before compilation, we use the ./configure with a lot of options
that can appear with ./configure --help.

From the --help, we know that we need to use the --with-openssl=<directory to SSL libraries>
flag.

We therefore have to locate the SSL libraries at first:

The directory is /usr/lib/x86_64-linux-gnu/

We run ./configure --with-openssl=/usr/lib/x86_64-linux-gnu/

4

And it appears that the OpenSSL libs successfully were discovered and lighttpd was configured
with the SSL features:

Then make:

5

Now, we redo the steps above to add additional modules that will be later used by this lab, we
have a look at the possible options and we find the following:

Plugins:
enabled: ​ ​ ​ ​ ​ ​ disabled:
 Mod_access​ ​ ​ ​ ​ mod_authn_gssapi
 Mod_accesslog​ ​ ​ ​ ​ mod_authn_ldap
 Mod_alias​ ​ ​ ​ ​ mod_authn_mysql
 Mod_auth​ ​ ​ ​ ​ mod_authn_pam
 Mod_authn_file​ ​ ​ ​ ​ mod_cml
 Mod_cgi​​ ​ ​ ​ ​ mod_geoip
 Mod_compress​ ​ ​ ​ ​ mod_magnet
 Mod_deflate​ ​ ​ ​ ​ mod_maxminddb
 Mod_dirlisting​ ​ ​ ​ ​ mod_mysql_vhost
 Mod_evhost​ ​ ​ ​ ​ mod_trigger_b4_dl
 Mod_expire​ ​ ​ ​ ​ mod_vhostdb_dbi
 Mod_extforward​ ​ ​ ​ ​ mod_vhostdb_ldap
 Mod_fastcgi​ ​ ​ ​ ​ mod_vhostdb_mysql
 Mod_flv_streaming​​ ​ ​ ​ mod_vhostdb_pgsql
 mod_indexfile
 mod_openssl
 mod_proxy
 mod_redirect
 mod_rewrite
 mod_rrdtool
 mod_scgi
 mod_secdownload
 mod_setenv
 mod_simple_vhost
 mod_sockproxy
 mod_ssi
 mod_staticfile
 mod_status
 mod_userdir
 mod_usertrack
 mod_vhostdb
 mod_webdav
 mod_wstunnel

Features:
enabled: ​ ​ ​ ​ ​ ​ disabled:
 Auth-crypt​ ​ ​ ​ ​ dbi
 Compress-bzip2​ ​ ​ ​ ​ geoip
 Compress-deflate​ ​ ​ ​ ​ kerberos
 Compress-gzip​ ​ ​ ​ ​ ldap
 Large-files​ ​ ​ ​ ​ lua
 Network-ipv6​ ​ ​ ​ ​ maxminddb
 Network-openssl​ ​ ​ ​ ​ mysql
 Regex-conditionals​ ​ ​ ​ pam
​ ​ ​ ​ ​ ​ postgresql
 ​ ​ ​ ​ ​ ​ stat-cache-fam
 ​ ​ ​ ​ ​ ​ storage-gdbm
 ​ ​ ​ ​ ​ ​ storage-memcached
 ​ ​ ​ ​ ​ ​ webdav-locks
 ​ ​ ​ ​ ​ ​ webdav-properties

6

Using the list above, we understand what possible features we can enable to achieve the other
tasks in the lab:

For a wholistic approach, we will install with the support with all the features we might need, and
configure them whenever needed:

./configure --with-geoip --with-lua --with-maxminddb --with-memcached

--with-fam --with-openssl=/usr/lib/x86_64-linux-gnu/

We install the following packages:

sudo apt install libgamin-dev​
sudo apt install libgeoip-dev

sudo apt install libmaxminddb-dev

sudo apt install libmemcached-dev

For Log Analysis, we use a third-party Log analyzer (AwStats Software)

After configuration step is complete, we shall have the following features:

Features:
enabled: ​ ​ ​ ​ ​ ​ ​ disabled:
 Auth-crypt​ ​ ​ ​ ​ ​ ​ dbi
 Compress-bzip2​ ​ ​ ​ ​ ​ kerberos
 Compress-deflate​ ​ ​ ​ ​ ​ ldap
 Compress-gzip​ ​ ​ ​ ​ ​ lua
 Geoip​ ​ ​ ​ ​ ​ ​ ​ mysql
 Large-files​ ​ ​ ​ ​ ​ ​ pam
 Maxminddb​ ​ ​ ​ ​ ​ ​ postgresql
 Network-ipv6​ ​ ​ ​ ​ ​ ​ storage-gdbm
 Network-openssl​ ​ ​ ​ ​ ​ webdav-locks
 Regex-conditionals​ ​ ​ ​ ​ ​ webdav-properties
 stat-cache-fam
 storage-memcached

Now we make and sudo make install and it completes successfully.

After installation is complete, we do the following steps:

1)​ We move the /doc/config files to the /etc/lighttpd directory so that we have a
sample configuration file lighttpd.conf that we can configure easier.

2)​ We create the structure of the directories inside /var/log and the /srv/www according
to the configuration file

7

https://www.cyberciti.biz/tips/lighttpd-web-server-awstats-tutorial.html

After the config files are copied to the /etc/lighttpd/ directory, we have the following files:

I highlighted the most important files that will help me soon in the setup of Virtual hosts, SSL and
logging.

Secondly, we understand from the template lighttpd.conf file that the directory structure is as
follows:
Virtual hosts directory ​ -> "/srv/www/vhosts"
Document root ​ ​ -> "/srv/www/htdocs"
Logging directory ​ -> "/var/log/lighttpd"
Configuration directory ​ -> "/etc/lighttpd"

Therefore, we create all the directories as specified and we proceed for a small testing for the
web server’s functionality.

We make a test page and we place it in the htdocs directory:

Now we configure logging by adding the following two lines in the access_log.conf file in the
conf.d directory:

accesslog.filename = "/var/log/lighttpd/lighttpd.log"

8

The previous lines of configuration add the access log module and specify the location for these
logs.

Then check the syntax of the configuration file with:

lighttpd -t -f /etc/lighttpd/lighttpd.conf

It gives a SYNTAX OK message, now we run the server with:

lighttpd -D -f /etc/lighttpd/lighttpd.conf

The server looks like up and running:

Enabling SSL
According to the documentation, we can have SSL using a self-signed certificate, we place that in
the /etc/lighttpd/certs directory and then refer to it from within the configuration file.

We generate this certificate using the following openssl command:

openssl req -new -x509 -keyout lighttpd.pem -out lighttpd.pem -days 365

-nodes

9

Now we have a self-signed certificate, we edit the lighttpd.conf file:

We restart the server and test:

10

Define the root directory and then two virtual hosts (and configure DNS records or
wildcard accordingly):

●​ aaa.stX.inno-sne.ru
●​ bbb.stX.inno-sne.ru

For this new change, we add two new records to our BIND9 Zone file in /etc/bind/named.conf:

Create a simple, unique HTML page for each virtual host to make sure that the
server can correctly serve it.

We follow the documentation, and create two basic files in the virtual hosts directory, which is -
according to the lighttpd.conf file - is at /srv/www/vhosts
1st index.html file ​ ​ -> /srv/www/vhosts/aaa.st16.inno-sne.ru
2nd index.html file​ ​ -> /srv/www/vhosts/bbb.st16.inno-sne.ru

Inside the lighttpd.conf, we then add the following configuration:

$HTTP["host"] == "aaa.st16.inno-sne.ru" {

 server.document-root = vhosts_dir + "/aaa.st16.inno-sne.ru"

 var.server_name = "aaa.st16.inno-sne.ru"

}

$HTTP["host"] == "bbb.st16.inno-sne.ru" {

 server.document-root = vhosts_dir + "/bbb.st16.inno-sne.ru"

 var.server_name = "bbb.st16.inno-sne.ru"

}

11

After this, we test both:

Check the configuration syntax, start the daemon and enable it at boot time.

To check the configuration syntax, we run the following command:

lighttpd -t -f /etc/lighttpd/lighttpd.conf

To start the daemon, we run the following command:

lighttpd -D -f /etc/lighttpd/lighttpd.conf

12

Use curl to display the contents of a full HTTP/1.1 session served by your server.
Explain the meaning of each request and reply header.

For aaa.st16.inno-sne.ru:

13

For bbb.st16.inno-sne.ru:

14

To explain the headers one by one:

* TCP_NODELAY set
setting this means that TCP means that segments
are always sent as soon as possible

* ALPN, offering h2
ALPN (Application Layer Protocol Negotiation) is a TLS
extension that includes the protocol negotiation within
the exchange of hello messages.
Here ALPN offers HTTP/2 negotiation

* ALPN, offering http/1.1 Here ALPN offers HTTP/1.1 negotiation

* successfully set certificate verify locations:
* CAfile: /etc/ssl/certs/ca-certificates.crt
 CApath: /etc/ssl/certs

Determining and setting the path for the SSL
certificate directory and files

* TLSv1.3 (OUT), TLS handshake, Client hello (1):
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):
* TLSv1.3 (IN), TLS handshake, Certificate (11):
* TLSv1.3 (IN), TLS handshake, CERT verify (15):
* TLSv1.3 (IN), TLS handshake, Finished (20):
* TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):
* TLSv1.3 (OUT), TLS handshake, Finished (20):

TLS Handshake between client and server:
(OUT) means outgoing from the client to the server
(IN) means ingoing from the server to the client
* Client says Hello, server replies with:

1)​ Hello
2)​ SSL Certificate
3)​ Server's chosen cipher suite

* Client exchanges the cipher and connects.

* SSL connection using TLSv1.3 /
TLS_AES_256_GCM_SHA384

Both client and server have established the TLS
connection.

* ALPN, server accepted to use http/1.1 The server accepted the offer to go with HTTP/1.1

* Server certificate:
* subject: C=RU; ST=Tatarstan; L=Innopolis;
O=Innopolis-University; OU=SNE; CN=st16.inno-sne.ru;
emailAddress=ahmedelkashef2012@gmail.com
* start date: Oct 13 22:07:11 2020 GMT
* expire date: Oct 13 22:07:11 2021 GMT
* issuer: C=RU; ST=Tatarstan; L=Innopolis;
O=Innopolis-University; OU=SNE; CN=st16.inno-sne.ru;
emailAddress=ahmedelkashef2012@gmail.com
* SSL certificate verify result: self signed certificate (18),
continuing anyway.

Displayed information about the SSL Self-Signed
certificate. All those information were prefilled at
the moment of using openssl command to create
it.

> GET / HTTP/1.1 GET request from client to server

> Host: aaa.st16.inno-sne.ru
A third piece of information to identify a host, in addition
to IP and port number. (useful in the case of many
virtual hosts on a domain), if it is not specified, the root
Web domain will act as the default Web server.

> User-Agent: curl/7.68.0 The user agent to initiate the request, it is initiated
by curl, version 7.68.0

> Accept: */*

Accept any MIME type, MIME (Multipurpose Internet
Mail Extensions) are types of data and their extensions.
E.g. if the server is sending back images, it needs to
specify if its a JPG or PNG, this information is specified
in its MIME type header.

< HTTP/1.1 200 OK Success message from the server (200 OK)

15

< Content-Type: text/html
The type of document to be received (type/subtype)​
Type: text
Subtype: html

< Accept-Ranges: bytes

Here, the server indicates that bytes are the units to
define a ‘range’, this is useful in the case of partial
requests, if the server sets this to “none” then it doesn’t
support partial requests. You can know the full length of
the data with the Content-length header.

Example of partial request:
curl http://i.imgur.com/z4d4kWk.jpg -i -H "Range:
bytes=0-1023"

< ETag: "2570617897"
Entity Tag: one of the mechanisms that HTTP provide
for web cache validation. ETag is an identifier assigned
by a Web server to a specific version of a resource
found at a URL.

< Last-Modified: Tue, 13 Oct 2020 23:18:45 GMT Last time this data was modified

< Content-Length: 131 The full length of the data

< Date: Thu, 15 Oct 2020 00:04:46 GMT The date of the request

< Server: lighttpd/1.4.55 The version and the type of the server itself

16

●​ Task 2 - SSL/TLS

Enable SSL/TLS and tune the various settings to make it as secure as possible.
Describe how you created your own certificate(s) e.g. with Let’s encrypt or
self-signed and re-validate every virtual-host versus root directory. Explain your
security tuning process.

As described earlier, SSL/TLS was enabled from the very start during the building and
compilation process, and then was configured on two steps:

1)​ Creating a self signed certificate using the following openSSL command:

openssl req -new -x509 -keyout lighttpd.pem -out lighttpd.pem -days 365

-nodes

2)​ Configuring SSL/TLS to work on the whole server (all virtual hosts) from the lighttpd.conf
file in the SSL section as below:

Accept only TLSv1.2 and TLSv1.3 by enabling this option:

Ssl.openssl.ssl-conf-cmd = ("Protocol" => "-All, TLSv1.2, TLSv1.3")

Also the certificate - since it is self-signed - is not trusted by the testing website.

17

Finally, testing it:

18

●​ Task 3 - Web Server Performance

Investigate what configuration options there are that can potentially improve the
performance of the web server.

The main idea about the performance in lighttpd, is that it is a single-threaded server, and its main
resource limit are the file-descriptors. Therefore, our optimization will focus on that aspect.

According to the documentation, those options that can potentially improve the performance are
the following:

-​ Out-of-fd condition
-​ Increase Number of Maximum Connections
-​ Disabling HTTP Keep-Alives
-​ stat() cache

Out-of-fd condition: As described, file descriptors are the main resource limit for the lighttpd
server. Also, taking into consideration that a simple request for a PHP page can result in the
usage of 3 file descriptors:

1)​ TCP/IP socket to the client
2)​ TCP/IP and Unix domain socket to the FastCGI process
3)​ filehandle to the file in the document root to check if it exists

Therefore, if the server runs out of File-descriptors, an error like this has a high probability of
being found:

... accept() failed: Too many open files

Increase Number of Maximum Connections: The solution for this, is to increase the
server.max-fds limit.

The current server.max-fds in the configuration file is: 1024, which we increase to 2048.

Decreasing HTTP Keep-Alives: The default configuration contains the following:

server.max-keep-alive-requests = 16​
server.max-keep-alive-idle = 5​
server.max-read-idle = 60​
server.max-write-idle = 360

This configuration translates to:
“Handle at maximum 16 keep-alive requests in a row on a single connection, and wait 5 seconds
before lighttpd drops the unused keep-alive connection.“

19

Under heavy usage conditions, and with the current defaults, we can easily lead our server to run
out of file descriptors as explained before. In order to fix this, we configure the server to use a
less amount of keep-alives in the same time, and hence keep our server away from running out of
file descriptors: 4 keep-alives instead of 16

server.max-keep-alive-requests = 4​
server.max-keep-alive-idle = 4

Stat() cache: stat() system call is expensive, it produces so much information and caching it
saves a lot of time and context switches.

stat() is usually used to check the existence of a file. Everytime the server is asked for a specific
file, it runs this system call and then returns back to the client with an answer. Instead, we can opt
to run it only once and monitor the directory of that file for any changes, and only then, we can
run it again and update the cached information with the new results.

There are three options for this caching engine:

1)​ No cache engine -> disable
2)​ Fam -> caching engine to keep track of directories
3)​ Simple -> caches the stat() result for 1 second

The current setting was to “disable”, wet it to “fam”.

Also look at how you can check the (current) load on the web server using e.g. the
Apache mod status module.

This can be achieved in lighttpd using the
(mod_status) module.

We start by loading it to the lighttpd.conf
file.

Then by adding the configuration in the
conf.d/status file, which will contain
a conditional statement, that will enable
only 127.0.0.1 (the server itself) from
opening certain URLs to check for the
server status. In addition, we also enable
another directive for server configuration
information. Screen shots are below:

20

Testing it from the same server computer:

Server Config:

21

Server status:

Using a standard benchmarking tool (e.g. ab, siege, etc.) evaluate the performance
of your server before and after optimizations for both the static page and the
dynamic page. Try to maximize the number of requests per second. Explain all the
changes made.

First, we need to create two pages, 1 static page and place it in the aaa.st16.inno-sne.ru and the
other one is a dynamic page and place it in the bbb.inno-sne.ru page.

22

Static page is a simple html page with only one tag and it is the current page from the other tasks.
Dynamic page, will be clone a website page and place it in the appropriate directory for bbb:

We use siege for this, and install it via apt:

sudo apt install siege

And start our testing on the aaa and the bbb respectively, using the same number of users (255
default limit) in addition to the -b flag which runs the test with NO DELAY for throughput
benchmarking.

siege -c255 -t5S -b aaa.st16.inno-sne.ru

aaa.st16.inno-sne.ru (before)​ ​ ​ ​ ​ aaa.st16.inno-sne.ru (after)

23

bbb.st16.inno-sne.ru (before)​ ​ ​ ​ ​ bbb.st16.inno-sne.ru (after)

As it is clear from the results, the server was now having a slightly better improvement in the
response time, and an increase in the successful transactions in the case of static pages.
However, the true improvement is noticed when the power of cache is in use with the dynamic
page. Since the server was able to do more transactions, is more available and transfers a bigger
number of data with higher concurrency. Also the number of successful transactions has
increased significantly as a result.

24

●​ Task 3 - GeoIP

Previously, we have configured our server to use GeoIP libraries in the building and compilation
process.

By examining the conf.d directory, we find a geoip.conf file, we examine the contents of that file:

From the documentation, we understand that the server module “mod_geoip” has been
deprecated and the currently supported module is “mod_maxminddb”

We need to download the GeoLite2 database file, which If the IP was found in the database, the
module sets the appropriate environment variables to the request, thus making this information
available to other modules/fcgi.

In order to acquire that GeoLite2 databases files, we signup and download them and place them
in the conf.d/ directory

25

https://www.maxmind.com/en/geolite2/signup

And edit the configuration file accordingly to point to the Geolite-City.mmdb file and include the
maxminddb module:

26

After the setup, we test the program and it appears that the program has a segmentation fault as
a result. After some research, it looks like Geolite2 database’s structure is now different than what
is specified in the documentation of lighttpd here:
https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModMaxMindDB

And the following block:

maxminddb.env = (​
 "GEOIP_COUNTRY_CODE" => "country/iso_code",​
 "GEOIP_COUNTRY_NAME" => "country/names/en",​
 "GEOIP_CITY_NAME" => "city/names/en",​
 "GEOIP_CITY_LATITUDE" => "location/latitude",​
 "GEOIP_CITY_LONGITUDE" => "location/longitude",​
)

Is what maps the database file into the maxminddb environment, which in turn gets passed to the
mod_magnet for redirection and control. Since the module for handling the database was not
documented enough, I believe that my efforts were not enough to complete the missing gap.

(is only NGINX capable to do this?)

Definitely no, as I showed, it can work with the right and updated modules also in lighttpd using
the following modules:

-​ mod_geoip (or the new mod_mindmaxdb)
-​ mod_magnet

●​ References:

1.​ https://www.lighttpd.net/
2.​ https://www.lighttpd.net/download/
3.​ https://en.wikipedia.org/wiki/Lighttpd
4.​ https://redmine.lighttpd.net/projects/lighttpd/wiki
5.​ https://redmine.lighttpd.net/projects/lighttpd/wiki/OptionalLibraries
6.​ https://redmine.lighttpd.net/projects/lighttpd/wiki/InstallFromSource
7.​ https://redmine.lighttpd.net/projects/lighttpd/wiki/TutorialConfiguration
8.​ https://git.lighttpd.net/lighttpd/lighttpd1.4/src/branch/master/INSTALL
9.​ https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_SSL
10.​https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_Performance
11.​https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_PerformanceFastC

GI
12.​https://redmine.lighttpd.net/projects/lighttpd/wiki/HowToSimpleSSL
13.​https://www.cyberciti.biz/tips/lighttpd-web-server-awstats-tutorial.html
14.​https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModMaxMindDB
15.​https://wiki.alpinelinux.org/wiki/Production_Web_server:_Lighttpd
16.​https://hubpages.com/technology/Configure-Apache2-VirtualHost-and-Bin

d9-on-Debian
17.​https://tools.ietf.org/html/rfc5424

27

https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModMaxMindDB
https://www.lighttpd.net/
https://www.lighttpd.net/download/
https://en.wikipedia.org/wiki/Lighttpd
https://redmine.lighttpd.net/projects/lighttpd/wiki
https://redmine.lighttpd.net/projects/lighttpd/wiki/OptionalLibraries
https://redmine.lighttpd.net/projects/lighttpd/wiki/InstallFromSource
https://redmine.lighttpd.net/projects/lighttpd/wiki/TutorialConfiguration
https://git.lighttpd.net/lighttpd/lighttpd1.4/src/branch/master/INSTALL
https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_SSL
https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_Performance
https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_PerformanceFastCGI
https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_PerformanceFastCGI
https://redmine.lighttpd.net/projects/lighttpd/wiki/HowToSimpleSSL
https://www.cyberciti.biz/tips/lighttpd-web-server-awstats-tutorial.html
https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModMaxMindDB
https://wiki.alpinelinux.org/wiki/Production_Web_server:_Lighttpd
https://hubpages.com/technology/Configure-Apache2-VirtualHost-and-Bind9-on-Debian
https://hubpages.com/technology/Configure-Apache2-VirtualHost-and-Bind9-on-Debian
https://tools.ietf.org/html/rfc5424

	Fetching & Verifying Source Code:
	Enabling SSL

