
1 
18-500 Final Project Report: Team D5 - 05/07/2022 
 

W.R.I.S.T. 
Edward Lu, Joanne Park, Anushka Saxena 

Department of Electrical and Computer Engineering, 
Carnegie Mellon University 

 
Abstract—Immersive 3D modeling interfaces, such as 

hologram pyramids or head-mounted AR displays, demand new 
and novel input devices for high-fidelity interaction. Current 
trackpad technology on laptops constrain the user to their 
displays, restricting mobility. In this paper, we plan to solve this 
issue by building a system that will allow users to use their 
forearm as a trackpad to manipulate the view of a 3D model. Our 
system, called W.R.I.S.T., contains a wearable device with a small 
footprint, includes a 3D hologram pyramid, and has a wireless 
interface with low latency communication. We integrated one and 
two finger swiping gestures to respectively rotate and scale a 3D 
model displayed on a custom-build hologram pyramid.  
 

Index Terms—3D Modeling, Hologram Pyramid, MQTT, 
Sensing, Wearables, Wireless  

 
I.​ INTRODUCTION 

The rise of digital 3D environments will improve the way 
professionals give presentations. With 3D models, presenters 
are able to interact with their audience while also effectively 
engaging with the content on their screens. However, current 
technology is limited in how we display and interact with 
these 3D models, especially in terms of mobility. For instance, 
when university professors give lectures, they typically walk 
around the room while projecting their 3D content onto a 2D 
display. In order to interact with the content on the screen, 
they ultimately have to walk back-and-forth from their 
computers and audience members, disrupting the flow of the 
lecture. This simple solution to this is to use devices like 
wireless clickers. If the content was more complex, like a 3D 
model that requires more than just a click to interact with, 
clickers are not the best tool to use. There needs to be a new 
input device that can be used to interact with 3D models while 
a presenter is mobile.  

We present W.R.I.S.T.1, a system aimed to enable a user to 
use their forearm as a touch interface to control the view of a 
3D model. W.R.I.S.T. allows for mobile, wearable sensing 
using a surface that is nearly ubiquitous to all human beings: 
skin. Our bodies are always with us, no matter where we go, 
so it is natural to use it as an interface for computing. 
W.R.I.S.T. includes two main components: a wearable device 
with a compact form factor and a 3D hologram pyramid to 
view a 3D model. Most of the graphical interfaces of 
W.R.I.S.T. are Web-based, able to run in the browser of nearly 
all devices that have one. W.R.I.S.T. is an accessible, small, 
and intuitive interface for scenarios that require interacting 
with 3D models in a remote manner. 

 

1 WeaRable Immersive Sensing Technology 

II.​ USE-CASE REQUIREMENTS 
When a user puts on the W.R.I.S.T. device, their forearm 

should transform into a surface capable of recognizing two 
gestures: one finger swiping and two finger swiping. Each 
gesture is respectively mapped to two types of manipulations 
of a 3D model: rotations and scaling.  

For a one finger swipe, a user should be able to point their 
finger and tap the skin on the forearm of the arm wearing the 
W.R.I.S.T. wearable and swipe across in any direction. This 
gesture should cause a 3D model to rotate in proportion to the 
direction and displacement of the user’s finger swipe. For 
instance, if a user displaces his or her finger by 10mm, we 
expect the model to rotate approximately 5 times less than if 
the user displaced their finger by 50mm.  

For a two finger swipe, a user should be able to point two 
fingers (thumb and index or index and middle) on their 
forearm and drag their fingers towards or away from the 
device, which correspond to growing and shrinking the 3D 
model, respectively. Again, the direction and displacement of 
the two finger drag should proportionally scale the 3D model.  

All of the sensor data will be transferred wirelessly to 
ensure full mobility. Processing gestures will happen on a 
user’s laptop.  

The 3D model will be displayed on a 3D hologram pyramid 
made using four acrylic sheets and a standard screen. The 
model should appear to be holographically rendered onto the 
acrylic sheets. A user should not be able to notice a large delay 
between their gestures and the actions done to the 3D model. 
Additionally, the pyramid should be able to be displayed on 
any standard Web browser.  

 
III.​ ARCHITECTURE 

With these requirements in mind, our solution is to build a 
small device that is slightly larger than a smart watch. The 
user will be able to move their fingers in front of the device on 
their arm as if they are moving their fingers on a trackpad. 
These gestures will be translated into a geometric 
transformation and sent to the scene via a Web application and 
be projected onto the hologram pyramid.  

There are five main blocks: PCB, microcontroller (MCU), 
Edge Server, Web Application, and Hologram Pyramid. You 
can refer to Figure 1 for a block diagram of our application. 
The PCB and MCU are attached to a wearable wristband. We 
may sometimes refer to this device as the “wearable” or 
“Tony.” The PCB contains sensors used for finger detection. 
The MCU gathers all the sensor data and sends it to the Edge 
Server. The Edge Server performs finger recognition and 
gesture classification. The Web application takes in finger 
coordinates associated with a gesture and applies filtering and 
noise reduction. Then, it will apply the gesture to a 3D model. 
Finally, the hologram pyramid projects the 3D model.  
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Fig. 1: High-Level Block Diagram. 
 

We will now go through each component in more detail. For 
the PCB, we initially wanted to build it off of an Adafruit 
VL6180X breakout board. We wanted to make two boards, 
one for 10 VL6180X sensors and another one for all the 
“support components,” such as voltage regulators, resistors, 
capacitors, etc. However, when we finished designing and 
received the boards, the support components board did not 
seem to work. To debug, we manually attached 10 resistors to 
the sensor board and it ended up working.  

Once the Photon reads and sends all the data to our edge 
server, the data needs to be processed to determine the gesture 
and eventually the finger locations. To do this, we used a 
Support Vector Machine (SVM) to classify whether or not 
there is one or two fingers in front of the sensors. Once we 
classify, we fit a parabolic curve to the data with one finger 
and take the minimum point. For two fingers, we simply take 
the minimum point and send it to the webapp. 

Once the finger locations are streamed to the webapp, the 
webapp sends the positions to a Unity process. Unity filters 
out noise and incorrect data points as well as filters and queues 
finger locations to be processed in its event loop. The event 
loop performs the actual rotations and scalings of the model. 
The magnitude of these actions is proportional to the elapsed 
time of when data was collected to ensure a realistic 
translation of gestures to actions.  

 
IV.​ DESIGN REQUIREMENTS 

A.​ Engineering 
The most important requirement for us is portability. 

Therefore, we aimed to make the weight and dimensions of 
the W.R.I.S.T. wearable about the same as those of a typical 
Apple Watch. We wanted the wearable to be less than 100g, 

less than 65mm by 65mm, and cost less than $150. The 
heaviest Apple Watch available is about 41.7g, so we aim to 
be about double that weight at 100g so our device would feel 
light and comfortable on a user’s wrist. We purposefully aim 
much higher (more than double the weight), since we are not 
building custom chips like Apple, and want a lot of slack for 
our weight requirement to account for the off-the-shelf 
batteries and boards we used.  

With the evolution of visual technologies, we anticipate the 
next wave will be ubiquitous hologram technology [1]. 
However, due to cost and lack of availability, holographic 
projectors have a long way to go before being more common. 
Instead, we propose the use of a holographic pyramid that will 
be able to deliver the same effects of real-life 3D models. To 
design this pyramid, we followed the designs of Pepper’s 
Ghost, a popular optical illusion technique to project objects 
that aren’t in direct view [2]. Each side of the pyramid is an 
isosceles trapezoid that is connected to each other by the two 
slanted sides. The two main geometric considerations are (a) 
the smaller angle in the trapezoid is 45 degrees, and (b) the 
ratio of the top and bottom side of the trapezoid is 1:9. The 
pyramid will be placed on top of a monitor or flat screen that 
will lie on a table and will be provided by the user. 22” 
monitors are popular, which means the monitor is 
approximately 20” by 10”. If we divide the shorter side by 3, 
we get the size of the smallest size of the trapezoid. Therefore, 
we estimate that the pyramid size should be 3 ⅓” and the 
longer size be 30”. The material of the pyramid is acrylic, 
which is extremely cheap, so we could test out different sizes 
of the pyramid to achieve the optimal effect.  

 
B.​ Gesture Classification Accuracy 

The intended gesture of the user and the gesture that our 
classifier identifies should match about 90% of the time for 
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one finger swiping and 75% of the time for two finger 
swiping. This means we can tolerate 1 failure out of every 10 
tries for a one finger swipe and 1 failure out of every 4 tries 
for a two finger swipe. The reason why we have different 
accuracies for one and two finger swiping is because we 
predict, based on our initial algorithms and testing plans, that 
there might be two finger actions that may be detected as one 
finger ones, especially as the hand gets farther away from the 
device’s sensors.  

 
C.​ Gesture Translation Correctness 

Furthermore, we want the scaling of our transformations to 
be correct. Due to potential overlap of the sensor readings 
when a user’s finger is farther away from the sensors, we 
predict that the accuracy of our sensor readings may drop as 
the finger moves away from the sensor array. We plan for an 
85% difference between the true displacement of the finger 
paths when compared to the measured displacement predicted 
by our algorithm. We expect a somewhat low accuracy here 
since it will not take much away from user experience if the 
3D model does not transform exactly proportional to their 
finger displacement.  

 
D.​ Latency 
We also want data to be translated to almost instantaneously, 
and we are aiming for a benchmark set by past projects that 
used similar technologies. We plan for a 100ms delay between 
when a user finishes his or her intended gesture to when the 
3D model is transformed. This will give about a 10FPS 
(frames per second) update rate of our 3D scene. While 10FPS 
is somewhat low for rendering, it is not low enough to distract 
away from user experience [3].  
 

V.​ SYSTEM IMPLEMENTATION 
A.​ Wearable 

The wearable device consists of two main components: our 
custom-designed PCB for housing ten VL6180X distance 
sensors connected through a single I2C bus and a WiFi-capable 
microcontroller board.  

 

 
Fig. 2. Sensor Array PCB Diagram. 

 
 

 
Fig. 3. Photon Wiring Diagram. 

 
Our PCB contains a sensor array of ten VL6180X sensors 

arranged in a straight line. You can refer to Figures 2 and 3 for 
a visualization of our custom PCB design and its wiring. The 
VL6180X uses I2C for communication and can measure up to 
about 200mm (20cm). Additionally, they contain two GPIO 
pins: one for turning on and off the device and another for 
generating an interrupt when sensor data is available. A 
custom PCB allows us to place the ten sensors in a way so that 
the sensor array is compact, since we need the sensors to be as 
close as possible for our algorithm to correctly classify swipes 
with as much granularity as possible. We chose ten sensors 
because ten was the largest number of sensors we could fit 
into an array before the PCB became longer than the length of 
one of our wrists.  

We choose a Particle Photon microcontroller for sensor data 
collection and transfer. The Photon has 72MHz clock speed, a 
Real Time Clock, and a Cypress Wi-Fi chip. To collect sensor 
data, the Photon turns on a single VL6180X sensor and reads 
data from it and repeats this in a round-robin fashion, storing 
sensor data into a 10 element byte array. Since the VL6180X 
reads up to 200mm, its measurements can easily fit into 8 bits. 
We choose to read measurements in a round-robin fashion due 
to IR interference across sensors. The VL6180X sensors read 
the distance to the closest object within a 25° cone in front of 
it, meaning the VL6180X’s lasers and IR sensors can easily 
clash with each other.  

The PCB, Photon, and battery are all soldered together on a 
board attached to a wristband. The sensor array will stick out 
perpendicular to the forearm so that the sensors' lasers are 
parallel to the arm, while the Photon and battery will lay flat 
on the wrist. When a finger is swiped across the forearm, some 
of the sensors will detect an object and send the distance to the 
Photon. The Photon will read all the sensor data, pack it into 
an array, and send through MQTT for processing.  

 
B.​ Middleware and Gesture Recognition 

We have two edge servers on our system: a Mosquitto-based  
MQTT broker [5] and a custom Python script running an 
MQTT client that receives and processes sensor data for finger 
detection. The Mosquitto MQTT broker will be used to shuffle 
around data through MQTT topics. Our topic structure is 
detailed in Figure 4. Both the broker and the data processing 
Python script are run on a M1 MacBook. Since the Python 
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MQTT client and the broker are run on the same device, 
network traffic between them should be faster. All data is sent 
through a local WiFi network to ensure that communication is 
as fast as possible.  

We are using a coordinate plane paradigm where the x-axis 
represents the direction along the user’s arm and the y-axis 
represents the direction along the sensors. We can place 
coordinates where fingers are and compare the relationship 
between the points every 100ms in order to (a) accurately 
predict which gesture is being performed and (b) quantify the 
translation. These gestures are displayed in Figures 5, 6, and 7. 

 
Fig. 5. Gesture for rotation. Rotation occurs in all directions based on x,y 

coordinates of the finger. Top-Left is (0,0) Bottom Right is (175, 55). The 
x-axis is perpendicular to sensors and the y-axis is parallel to sensors. 

Fig. 6. Gesture diagram for zooming out. Represented as two finger swipes. 
Top-Left is (0,0) Bottom Right is (175, 55). The x-axis is perpendicular to the 
sensors and the y-axis is parallel to sensors. 
 

 
Fig. 7. Gesture diagram for zooming in. Represented as two finger swipes. 
Top-Left is (0,0) Bottom Right is (175, 55). The x-axis is perpendicular to the 
sensors and the y-axis is parallel to the sensors.  
 

Our edge server runs an MQTT client to receive sensor 
data. Once data arrives, the Python script first says that all 
values over 150mm are invalid and makes them equal to 255. 
This means we actually have a max detection distance of 
150mm, which is still a significant amount for a finger to 
move. We ignore values over 150mm because sensor readings 
over 150mm seemed to be unstable and a gesture at such a 
distance would be difficult to detect due to measurement 
instability.  

Once data is preprocessed, we applied a SVM classifier to 
the 10 data points to detect if there is one or two fingers 
present in front of the sensors. We chose a SVM since training 
is somewhat fast and applying the model to classify data is 
extremely fast. We wanted to make sure our classifier did not 
take too much time to ensure low latency processing. The 
SVM model is custom-trained on data we collected ourselves. 
On test data, it has a 95% accuracy. See the Design Trade 
Studies section for more information on how we trained the 
SVM. Figure 8 for examples of how the data looks like when 
there is a one finger swipe gesture happening and when there 
is a two finger swipe gesture happening. The SVM is able to 
learn and distinguish the shapes of the two gestures when a 
radial kernel is applied.  

Once a frame of data (10 sensor values after a full 
round-robin reading) is classified as either one or two fingers, 
we fit a parabolic curve to the sensor data. If the curve fitting 
algorithm fails, we ignore the data frame and return that it is 
noise. If curve fitting succeeds, we case off the number of 
fingers to find the x and y-value for the finger.  

If the number of fingers is classified as one, we grab the 
x-value of the minimum point of the fitted parabolic curve and 
the index of the sensor that is closest to the minimum value. If 
the number of fingers is classified as two, we simply grab the 
x-value and index of the sensor with the minimum sensor 
reading.  

Once we have (minimum sensor value, index of sensor 
with minimum value), we apply a weighted average of the 
y-values of the two adjacent sensors like so: 
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Where y is the y-value of the finger, c is the index of the 

sensor that is closest to the minimum value of the fitted 
parabola, xc is the sensor reading in mm of sensor at index c, xi 
is the sensor reading of sensor at index i, wi is the weight at 
sensor index i, and Ds is the distance the sensors are from each 
other in mm. The expression above finds the weighted average 
of the y-values of the sensor at index c, c - 1, and c + 1 to get 
the y-value of the finger. Note: for two finger gestures, the 
y-value is not used, but still calculated.  

 
 
 

Fig. 8. Curve fitting on sensor data. The top plot is for one finger swipes and 
the bottom plot is for two finger swipes. The blue dots are sensor readings 
gathered from the wearable.  

 
Once we have the predicted finger x and y-values, we 

package the finger location, classified number of fingers, and 

sensor reading timestamp to send to the Web application for 
further processing.  

 
C.​ Web Application 

The 3D hologram will be presented via a Web application 
and a hologram pyramid. We use Django for the back-end 
framework of our Web application and are using the MQTT 
protocol for data transfer between the edge server and the Web 
application. We are going to use Unity for manipulation of the 
3D object and formatting. Unity has a WebGL option that will 
allow us to build our content as JavaScript and WebAssembly 
programs that will run our Unity application on a Web 
browser.  

The sensor, battery, and gesture data will then be parsed by a 
JavaScript program on the Web application. It is possible to 
call Unity functions via JavaScript function calls using a Unity 
instance. The JavaScript on the Web application parses MQTT 
data to update battery status, update sensor information on a 
data visualizer, and structure gesture/finger information to be 
sent to the Unity build.  

We created Unity functions that will handle the incoming 
stream of information. Unity will receive the x and y 
coordinates of the finger location, timestamp, and number of 
fingers for each data frame sent. The Unity functions queue 
finger displacements and timestamps for each gesture. The 
finger displacements are filtered for noise using an averaging 
filter with a window of three data points. Then depending on 
which gesture appears the most for a single user gesture input, 
a flag will be set to start processing. A single user gesture 
input is defined as the group of data points that are either 
rotation or zoom between two none data points. Once a 
rotation or zoom flag is set for processing, the Unity update 
function will start performing model translations based on the 
queued timestamp data and finger displacements. See Figure 9 
at the end of the report for a detailed block diagram of the 
entire Unity pipeline.  

Our Web application has two main tabs, one that shows the 
battery information, connection status, and sensor data 
visualization and one that shows the hologram pyramid 
display. See Figures 10  and 11 for an image of the tabs of the 
Web application.  

 

 
Fig. 10. Battery status page of web application. Shows a visualization of 
sensor readings, battery status, and the MQTT connection.  
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Fig. 11. Unity view to project onto a hologram pyramid.  
 

D.​ Hologram Pyramid 
To go more in depth about the hologram pyramid, we will 

be using four acrylic trapezoids zip tied together to create our 
pyramid. We based our trapezoid dimensions based off the 
angles from Pepper’s Ghost Experiment, which is a popular 
design mechanism for optical illusions. Unity will display four 
perspective views of the 3D model (Figure 12). The white 
lines are not actually displayed, and are drawn in Figure 12 to 
show where the pyramid base will be in respect to this image. 
The shorter base edge of the trapezoids will go along the white 
square, and the lines coming out of the corners of the square 
represent the edge between two trapezoids. We used a monitor 
to produce a larger view of the model.  
 

 
Fig. 12. Unity View of 3D model 
 

VI.​ TEST, VERIFICATION, AND VALIDATION 
To test our implementation, we ran two experiments to 

record the accuracy of gesture translation and the accuracy of 
finger location detection.  

 
A.​ Experiment 1: Classification Accuracy 

The first experiment involved a user performing six 
gestures: swiping with one finger up/down/left/right, and 
swiping with two fingers left and right. The hologram pyramid 
was in front of the user when the experiment was performed. 
The user performed each gesture 50 times and recorded what 

action was applied to the 3D model. The results are shown in 
Figure 13.  

Fig. 13. Gesture-to-Action Confusion Matrix. 
 
The confusion matrix shows that our model is very good at 

detection when tAhe user does not perform any gesture. Also, 
our model is pretty good at detecting horizontal one finger 
swipes. The model’s 4-8% confusion of left and right one 
finger swipes possibly comes from the user not fully lifting up 
their finger when performing the gesture. Our model seems 
slightly worse at detecting up and down one finger swipes, 
with 12-16% of vertical one finger being detected as no 
gesture. This is because the area to swipe vertically along the 
sensor is smaller than the area to swipe horizontally (15cm 
along the wrist vs 25cm length forearm), so a somewhat fast 
swipe across the sensors might not pick up enough data frames 
to qualify as a full gesture. Two finger swipes have the worst 
accuracy, due to the fact that the two fingers need to be a 
significant distance apart for our model to classify it as two 
fingers. If the two fingers are too close, then the sensor data 
frame looks almost indistinguishable from that of one finger. 
Also, if the hand is slanted at a large enough angle, the sensor 
array will not be able to see one of the fingers or the fingers 
may blend together as one when picked up by the sensors. 
Two finger swipes significantly suffer from the user not fully 
lifting up their finger when performing the next gesture, as left 
and right swipes get confused for each other ~20% of the time. 

These results were expected, as one can reason about the 
shortcomings of a 1D sensor array (can only see fingers in 1D, 
not lifting up a finger when performing another gesture can 
mess up the gesture classification, etc.).  

 
B.​ Experiment 2: Finger Displacement Accuracy 

To measure if we can properly measure how much a finger 
moves, we ran another experiment. In this experiment, a user 
placed a 150mm by 50mm grid on their forearm, marked with 
intervals of 25mm. The user performed 50mm horizontal and 
vertical one and two finger swipes 10 times and we recorded 
how much our model thought the finger moved. We ran this 
experiment to make sure our model translations were 
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proportional to finger displacements. A high error rate on this 
experiment would mean we are unable to distinguish between 
a long swipe vs a short swipe, which means our actions will 
not scale proportionally to finger movements. The error rate 
was calculated using: 

 
|𝐷

𝑀
−𝐷

𝐴
|

𝐷
𝐴

× 100

Where DM is the measured displacement of the finger(s) by 
our model and DA is the actual displacement of the fingers, 
which was always 50mm in this test. 

 

Gesture Distance 
Error (%) 

Swiping across sensors 20.29 

Swiping along sensors 19.40 

Two finger swiping across sensors 13.42 

Table 1. Finger tracking distance error table. 
 

According to Table 1, we have a maximum of 20% 
distance error, which means our measurements are at most 
20% off of the actual finger displacements. We aimed for 
15%, but 20% error is tolerable. Errors in sensor accuracy, 
approximations, and sensor update speed all factor into this 
~20% error.  

 
C.​ Experiment 3: Latency 

The latency of our system was measured using timestamps 
collected at every step of the pipeline. Every 100 sensor data 
frames when the wearable was in use (user was swiping), we 
found the average of the differences of the timestamps 
between each step of the pipeline and recorded it in Table 2 
below. The data was collected with all devices connected with 
the same WiFi network.  

 

Pipeline Step Latency (ms) 

Time to collect all sensor datas 40 

Wearable → Edge Server 29 

Edge Server → WebApp 34 

Total 103 
Table 2. Latency table. 

 
According to Table 2, we have a total latency of 103ms, 

which gives us an approximate 10 Hz update rate. This was 
just shy of meeting our requirements. It appears that collecting 
all 10 sensor values in a round robin fashion takes the most 
time. This is because when there is nothing in front of a 
VL6180X sensor, it takes almost twice as long to collect data. 

So for gestures where not all sensors need to fire to detect a 
finger, it takes much longer to collect sensor data than it really 
should.  

 
D.​ Engineering 
     As mentioned before, portability is an important aspect of 
our project. We are able to attach Tony to an exercise band. 
The band does not obstruct data input. Although it is slightly 
bigger than a smart watch, it does not exceed the width of the 
exercise band, which is something that people are used to 
wearing comfortably. 
     As part of our demonstration, we wanted to show that we 
could use the device anywhere in a room. We visited the 
lecture hall in Wean 7500 and were able to demonstrate that 
the device could send data to the computer from the farthest 
corner in the room. 
 
E.​ User Experience 
     Overall, we received positive feedback from users on our 
project. For the wearable device, when asked to rate how 
comfortable they are wearing the device from 1-5, the average 
rating was 3.75. Furthermore, each user was asked to perform 
each gesture 5 times. The accuracies are listed below. Due to 
time constraints from the users, the correctness and latency 
were not recorded. As shown, the rotation gestures had a 
higher average accuracy than the zooming gestures.  

 
Fig. 14. Average user accuracies from each gesture. 
 
F.​ Live Demonstration 

During our demonstration, we qualitatively observed new 
user’s enjoyment levels when using the wearable and viewing 
the 3D hologram. Many users seemed to be able to use our 
project with some explanation. We had to tell them that the 
gestures had to be extremely deliberate, but once we 
demonstrated, all users were able to understand how to use it.  

One finger swipes were the most successfully detectable and 
enjoyable for the users. Almost all the time and for all users, 
one finger swipes were able to rotate the 3D model.  

Two finger swipes were not always successful. This gesture 
was much less intuitive for users to understand. Many users 
had to swipe multiple times in order to successfully scale the 
model, but after a couple tries and false detections, the model 
would perform a zoom in or out. The success rate of two 
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finger swipes was highly variable. However, when it did work, 
the user was almost always impressed.  

Many users experienced almost no noticeable delay and we 
received many compliments on how fast our system was. The 
choice of an SVM, finger detection, and local WiFi 
connections seemed to successfully give us low latency.  

 Users also positively took to the hologram tool. As quoted, 
they were “surprised it works in the light”, as the area we were 
testing in was generally lighted. This was a concern of ours as 
the tool works best when the only light reflections are coming 
from the monitor. When seeing the entire system come 
together, a majority of users described our project as “cool.” 

Overall, we received many glowing reviews and praise on 
our system. Some users even spread the word about our 
project to their colleagues and many people came to our booth 
saying that their friend or colleague said to check us out. 
Lastly, we ended up winning second place in Apple’s 
competition!  

 
VII.​ DESIGN TRADE STUDIES 

A.​ Sensors 
We considered many different types of sensors for our 

project. For our purposes, we chose the VL6180X, an 
IR-based ToF distance sensor made by STMicroElectronics, 
amongst all the other sensors because of multiple factors. 
Some of the other sensors we were considering were pressure 
sensors, gyroscopes, and camera-based hand tracking sensors. 
We deemed that these other sensors all affected user 
experience in the scope of our project. Gyroscopes require 
extreme hand gestures which would cause discomfort for the 
user. Pressure sensors would take away the portability aspect 
of our design and would make our device’s form factor be 
quite large as it would have to be more of sleve than a 
wristband. Since pressure sensors rely on a defined medium to 
be attached to, it mimics a traditional trackpad. Finally 
camera-based hand tracking sensors need to have the subject 
in front of a camera or similar device in order to detect hand 
motion. This would prevent the user from moving outside a 
fixed range of space, which is not what we wanted. We 
ultimately decided on distance sensors, since they are 
lightweight and can be leveraged to detect finger movements.  

Amongst distance sensors, we chose the VL6180X [4] 
because of its short range of 20cm. We did not need a sensor 
with a longer range than 40cm distance, and we thought that 
having a shorter range would provide more accurate readings 
at short distances and give us a smaller data payload. We 
decided that 20cm would be a good size since it gives enough 
space for a user to do a gesture, but also not too large since the 
human forearm is only about 25cm on average. We included a 
chart (Figure 15) that lists out the different distance sensors we 
looked at and their feature comparison.  

 
Fig. 15. Comparison chart of different distance sensors taken from ST [4]. 
 
B.​ Communication 

We decided to not use a wired approach like USB cables for 
data communication, since it would defeat the purpose of our 
project and its goals of mobility. Initially, we were deciding on 
using Bluetooth for communication, but the BLE device we 
had was a bit hard to get working to prototype, so we shifted 
to WiFi. Since we want to integrate with Web technologies, 
WiFi was the better option due to its ubiquity and long range. 
We decided on the Particle Photon for our microcontroller, 
since it is easy to program and contains a built-in WiFi chip. 
For the WiFi communication protocol, we were deciding 
between the Particle Cloud’s pub-sub system, HTTP requests, 
or MQTT. For our case, MQTT seemed like the best fit. The 
Particle Cloud is mostly a black box, and we wanted to have 
some more control over deployment. Additionally, HTTP 
requests are not as fast as MQTT and are typically used for 
more document-based data rather than raw sensor data. 
MQTT, which is popular for IoT applications, seemed to allow 
high throughput communication and excels at sending small 
quantities of data at a high rate. MQTT also allows for high 
scalability, as any device can simply subscribe to an MQTT 
topic and receive either a stream of our sensor array 
measurements or our detected gestures and finger coordinates.  
 
C.​ Web Application Backend 

We thought about multiple web application frameworks, 
such as Symfony, Express, Ruby on Rails, and Django. 
However, amongst these, we decided to use Django. We 
mainly chose Django because our members were most 
familiar with it and because Django is used using Python. It 
also provided all of the basic functionalities we needed. We 
only needed an interface where we could store user data and 
serve our Unity application, which we could do with Django. 

 
D.​ Hologram 
    For the hologram pyramid, we noticed online that there 
were many designs that had trapezoid panels with angles of 
53-53-127-127. We initially started with that design to fit on 
an iPad, as shown below.  
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Fig. 16. First prototyping of the hologram pyramid. 

 
     However we realized that if we wanted the projection be 
more visible, we needed to a) increase the monitor size so that 
the images themselves are more spread apart, b) increase the 
size of the pyramid to have more slant to show the image, and 
c) increase the smaller angle of the pyramid to increase the 
height of the pyramid. We ultimately ended with the design 
below to fit the size of a normal computer monitor, something 
that most presenters have access to. 
 

 
Fig. 17. Second to last prototyping of hologram pyramid. 
 
E.​ Finger Detection Model 

We went through several iterations of the data pipeline after 
the sensors collected data. We had two schools of thought on 
what the model can do after a user performs a gesture in front 
of the sensors: 

a)​ The model can directly determine the gesture that the 
user just performed, or 

b)​ The model can determine how many fingers are 
present. 

Even though we didn’t end up going through the models 
described below, we did take features from each model and 
incorporated them into the final model. In the following 
sections, we will detail each approach we tried and the 
trade-offs for each of them.  
 
1. Curve Fitting 

Before we looked into using machine learning, we wanted 
to find a way to determine finger location based on 
mathematically properties of the data. When there isn’t an 
object in front of the sensors or if an object is more than 255 
millimeters away, the sensors default to a reading of 255. 
Otherwise, the sensors detect the distance of the closest object 

to the nearest millimeters. Therefore, a differentiable equation 
can be fit to the data. After that occurs, we determine the 
minimums and maximums of the equation. When there is one 
finger present, a U-shaped line is created, and the minimum of 
the equation estimates where that finger is present. When there 
are two fingers presented, a W-shaped line is created, and the 
two local minimums represent where each finger is present, 
and the intersection of the two U-shaped lines created by the 
fingers intersect at the maximum of the equation. The curve 
fitting [6], minimums [7], and maxes [8] were computed using 
libraries from SciPy. 

 
Accuracy 

There is an argument n to the function where we can 
dictate how many points from each side of a point to 
determine the extrema. There is an argument polynomial to the 
function that allows us to dictate the order of the polynomial 
that the data is being fitted to. To determine which n and 
which polynomial would yield the highest accuracy, we 
collected data from the wearable placed on a table and 
performed three gestures six times: pinch in, pinch out, and 
swiping perpendicular to the sensors. After data collection, we 
ran the curve fitting model on each frame from each instance 
of the gesture, which guessed what gesture was occurring 
based on that frame. Our results are shown below. 
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Fig. 18. Accuracies for each gesture. Top is for pinch in, middle for pinch out, 
and bottom for swipe perpendicular. 
 
The highest accuracy for each gesture is detailed in the table 
below.  
 

Gesture n Polynomial 
degree 

Accuracy 
(%) 

pinch in 2 5 94.4 

pinch out 2 6 81.7 

perpendicular swipe 2 3 83.3 
Table 3. Highest accuracy of each gesture for polynomials of degree 3, 5, and 
6.  
 

Even though the highest n was the samest for each gesture, 
there was no consistency in the degree of the polynomial. The 
highest average of all gestures was 79.4% with n=2 and 
polynomial=4, so there wasn’t a specific polynomial that we 
could use. Therefore, we decided to not use the curve fitting 
for determining the gesture, but we did use curve fitting to 
determine the finger position when there is only one finger 
present. 
​
Latency 

The curve fitting model is almost instantaneous, as it 
doesn’t need to be processed by a complex machine learning 
model. This was one of the biggest appeals of using a model 
that didn’t require machine learning. 
 
Correctness 

At this stage, we weren’t concerned with correctness, just 
whether we could identify which gesture was occurring. 
However, we did look at the general correctness of the model. 
Identifying where the finger is located when a user was 
performing a swipe was the easiest, since only one point 
needed to be determined out of all the points. However, 
whenever a pinch was supposed to be detected, the model 
would sometimes think that there was too much noise to be 
classified as either gesture, the beginning of the pinch out was 
a swipe, or the end of the pinch in was a swipe. Therefore, in 
the duration of a pinch, it would be harder to determine where 

the fingers were present since the accuracy of detecting the 
gesture itself was low. Therefore, we decided not to use curve 
fitting to determine finger location of the zoom gestures. 

 
2. Support Vector Machines with Pinch and Swipe Data 

Since the sensors were extremely close to each other, there 
would be some overlap from the sensors due to the cone shape 
of the lasers. From the naked eye, we could guess what gesture 
was occuring, but something simple like curve fitting would 
not be able to determine the differences between swipes and 
pinches. Therefore, we decided to look into different machine 
learning options. 
  A support vector machine (SVM) is a type of machine 
learning that uses supervised learning mainly used for 
classification of data. We decided to use the support vector 
machine [9]  and the grid search library [10] from scikit-learn , 
a Python machine learning tool. The model will attempt to 
classify which gesture is occurring based on each data frame. 
 
Accuracy 
  We collected new data from Tony after it was attached to the 
exercise band and performed the gesture on our arms. We 
randomly allocate ⅔ of the data for training and ⅓ of the data 
for testing. The model tunes three different parameters: the 
type of kernel that the SVM uses, the regularization parameter 
C, and the kernel coefficient gamma if the SVM uses a radial 
kernel. The training accuracy of the gamma kernel is shown 
below. 

 
Fig. 19. Colormap of the SVM parameters. 
 
  After determining which parameters yield the highest 
training accuracy, the model uses those parameters for testing. 
The testing accuracy is shown below. 
 
 precision recall f1-score support 

     

-1 1 1 1 53 

0 0.85 0.81 0.83 48 

1 0.82 0.86 0.84 49 

 



11 
18-500 Final Project Report: Team D5 - 05/07/2022 

     

accuracy   0.89 150 

macro avg 0.89 0.89 0.89 150 

weighted 
avg 0.89 0.89 0.89 150 

Table 4. Accuracy of SVM on collected pinch and swipe data.  
 
  The green cell represents the average accuracy of the model. 
-1 represents noise, 0 represents swipes, and 1 represents 
pinches. Overall, the accuracy of the model was better than 
curve fitting, although even after we determined the gesture, 
we had no way to detect where the fingers were located. At 
this point, we decided to use curve fitting to determine finger 
location after we determine what gesture the user is attempting 
to perform. Even though the accuracy on collected data was 
decent, using this model in real-time yielded a lower accuracy. 
 
Latency 
  The training for the model sometimes took hours, but that 
would not be a part of the latency of the system. To determine 
what gesture is occurring, the model took around 30 
milliseconds to run. Even though this was a small time, this 
was around ⅓ of the total latency we were aiming for the 
system. 

 
Correctness 
  Similar to the problem with curve fitting, since the real-time 
accuracy was low, it was hard to detect the finger location 
when most of the pinches were being classified as noise from 
our SVM, so it was hard to determine the correctness of the 
gesture. 
 
3. Time Series Classification 
  We wanted to look into more accurate machine learning 
models to determine what gesture was occurring on our 
collected data. Time series classification is a type of machine 
learning that uses supervised learning to classify time series 
data. This way, we would be able to classify multiple data 
frames instead of one data frame. We predicted this would 
help with detecting pinches as pinches are easier to classify 
once the data is observed over time rather than during the 
duration of the gesture. There were five different 
classifications of data we could now get: pinch in, pinch out, 
swipe left, swipe right, and noise. We used the time series 
classification library from the sktime [11] Python machine 
learning framework.  
 
Accuracy 
  One parameter that we could control is how many data 
frames the model should look at. The drawback to this model 
is that it cannot look at sets of data with unequal amounts of 
data frames, so our algorithm divides each instance into 
equal-sized windows to classify, and we tested the accuracy of 
different size windows. The accuracy of the different windows 
is shown below. 

 
Fig. 20. Accuracies of time series classification on collected data compared to 
different time window sizes. 
 

The highest average accuracy was 92.3% when the window 
size was 24 data points. This was the highest accuracy so far.  
 
Latency 

To achieve that accuracy, there would need to be 24 data 
frames before a gesture can be determined. This was mainly 
because pinches on average require more data frames to 
determine what gesture is occurring than swipes. When 
running on collected data, it took around 280 milliseconds to 
classify the data, and the latency would only increase in real 
time as the model would need to wait 24 data frames on top of 
the classification period. 
 
Correctness 
 Because we can accurately determine what gesture is 
occurring but not where the fingers are located, we began 
theorizing other ways to map real life transformation to the 
model transformation. We hypothesized that averaging each 
data point in each data frame and comparing the averages 
overtime would tell us what direction the gestures would need 
to move. Although we didn’t test this directly with time series, 
when running the data visualizations, we saw on average the 
data increased as a user swiped away from the sensors and the 
data decreased as a user swiped towards the sensors. After 
seeing the results of the time series classification,  we came to 
the conclusion that any two finger gestures would either be 
confused as noise or would need more data to classify as a 
pinch, so we decided to switch the zooming gesture. 

 
4. Support Vector Machines with One and Two Finger Data 
    We decided to revisit the support vector machine model. We 
found it was easy for the model to detect the end of a pinch 
out or the beginning of a pinch in since it was only during 
those times that two fingers were obviously present. 
Consequently, we changed the zooming gesture to be two 
finger swipes so that we would be able to better recognize the 
differences between the two types of gestures. Therefore, we 
changed the type of data we collected to be one and two finger 
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placements along the arm, with some data being actual swipes 
in different areas of the arm. However, we used the same 
machine learning library as before. 
 
Accuracy 
    We tested in a similar fashion to when our data was swipes 
and pinches. The data is shown below.  
 
 precision recall f1-score support 

     

0 0.93 0.91 0.92 138 

1 0.95 0.97 0.96 264 

     

accuracy   0.95 402 

macro avg 0.94 0.94 0.94 402 

weighted 
avg 0.95 0.95 0.95 402 

Table 5. Accuracy of SVM on collected one and two finger data. 
   
  The green cell indicates that this model has an average of 
95% accuracy. Instead of classifying one, two, and noise, we 
only classified whether the data saw one or two fingers, with 0 
and 1 respectively. We decided to filter noise on the web 
application when it received the finger detection data, which 
gives us more power to determine what to do with the model 
output. This was definitely a bigger increase from our 
previous SVM model, and as shown in the testing section, 
performed reatime at around the metrics we initially aimed for. 
 
Latency 
    The latency of the system was around 30 milliseconds. 
 
Correctness 
      Since determining the gesture was a lot more accurate than 
before, it was easier to test for correctness. We decided to take 
features from our previous models to compute the 
mathematical translations.  
   If there was only one finger present, we know the user is 
performing a rotation, so we used curve fitting and found the 
minimum to determine the finger position. After that, we 
found the deltas of the fingers and determined to move the 
model that much. Because of the higher accuracy with one 
finger, we had more liberties with rotations, which is why we 
introduced rotations in two more directions. If there were two 
fingers present, we took the idea of taking the average of the 
data points and applied that to the zooms. 
      Overall, the translations were more proportional to the 
actions. 
 

Model 
Accuracy 
(%) 

Latency 
(ms) Correctness 

Curve Fitting 79 0  

SVM of swipes vs 
pinches 89 ~30 

 

Time Series 
Classification 92 ~280 (ms) 

 

SVM of one vs two 
fingers 94 ~30 

 

Table 6. Summary of Finger Detection Model. 
 

VIII.​ PROJECT MANAGEMENT 
A.​ Schedule 

Our tentative schedule is attached on page 12 (Figure 21). 
 

B.​ Team Member Responsibilities 
Even though there are five blocks, there are six main parts 

of the capstone. Edward worked on PCB creation, 
programming the wearable, gesture and finger detection, and 
communication between components. Joanne worked on the 
Unity code, Web application, and hologram. Anushka worked 
on gesture and finger detection and prototyping the wearable 
and hologram. Although each member on our team is 
specialized in at least one part, we all worked together on each 
block since there are a lot of dependencies from one block to 
another. A more extensive breakdown of responsibilities is 
documented in our schedule (Figure 21).  

 
C.​ Bill of Materials and Budget 

Our Bill of Materials is shown in Table 7.  
 

D.​ Risk Mitigation Plans 
We are planning to create a custom PCB to accommodate 

our wristband size. However due to the term of our project, the 
shipping of the PCB after design is one huge risk factor we 
had to consider. It would be hard to have multiple iterations of 
our PCB because of time constraints. We planned to mitigate 
this risk by first modeling our PCB off an already existing 
PCB. We also got a professor to check our PCB before we 
ship it off.  

  One issue we ran into the day before demonstrations was 
that our battery broke. Although we had a spare battery with 
us, we realized that this could be an issue for users. 
Fortunately, since Tony can be charged while being wired to 
the computer, we were able to still use Tony while we didn’t 
have access to the battery before the demonstration. We have 
learned that in the future, we have to be careful with wiring 
but also should order spare parts if our budget allows us to. 

 
E.​ Ethical Issues 
     Our project does not pose any significant risks to the user, 
but there are very extreme cases that could occur. 
 

1.​ Physical harm 
Tony was attached to an exercise band and wrapped 

around another layer of fabric so that there are no electronic 
parts exposed to the skin. However, all the wiring sautered to 
the board, and the battery is also in close proximity to the 
body. If there were to be any electrical problems, the users’ 
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hand would be at the greatest risk. The person wearing Tony 
would be affected adversely, but one mitigation technique 
would be to build a better encasing system for Tony so that 
there would be more protection. We haven’t tested our 
product’s long term effects on users, so it would be interesting 
to see if the product has any effect on arm or finger 
movement. 

 
2.​ Data communication channels 

​ There is data being transferred from the sensors to the 
edge server to the web application, which means there are 
several areas where a hacker could send their own data and 
somehow overpower the system. This would be more critical 
if the sensor data were affecting more parts of the screen 
rather than an isolated web application. A hacker could 
potentially take control of the users’ computer. The person 
who would be at the greatest risk is the person running the 
edge server and running the web application. This could be 
mitigated by using secure servers from trusted companies. 
 

3.​ Web security 
The web application does not have security, and this 

might be a security risk in two main ways. One, the user has to 
sign up to use the web application. It is important to make sure 
whoever does sign up knows their data is secure and is only 
being used for authentication purposes. The person at the 
greatest risk is the user accessing the web application. This 
could also be solved from the previous solution - by running 
the servers on more secure platforms. 

 
IX.​ RELATED WORK 

There are many portable trackpads out there, such as the 
Apple Magic Trackpad, Logitech Wireless Touchpad, which 
could provide a similar gesture recognition function as our 
wearable watch. However none of the existing trackpads out 
in the market right now has a design where there is no actual 
physical medium for a user to perform gestures on. Our 
wristband makes use of distance sensors to detect gestures 
made on our arm, thus adding a level of mobility and 
portability that differs our product from the existing trackpads.  

We are designing a hologram pyramid to visualize 3D 
objects and manipulate them using gestures taken by our 
wristband. When compared to the other existing 3D model 
viewing technologies such as Autocad, Unity, three.js, many 
of them require the user to view from a display. They are 
limited to where they can view this 3d model. We provide this 
hologram pyramid as a way for users to view their model from 
any space and also be able to walk around it and manipulate 
its view using our wristband. Thus also adding another level of 
uniqueness from the existing trackpad technologies out there.  

 
X.​ SUMMARY 

Originally, we had planned to only rotate and zoom in two 
directions using swipes and pinches respectively, which 
guided our original accuracy prediction of 82.5% and 
correctness error of 15%. However, since then, we have 
included an all degree rotation while altering the user 
experience to increase the accuracy and correctness. 

Furthermore, we achieved our latency requirement. Since our 
numbers are close, we consider our system a success. 

We are hoping that this project will change the immersive 
technology field in the future and to improve how we interact 
with computer graphics and modeling. We are changing the 
field of digital environments that will improve how 
professionals give presentations. Presenters want to be able to 
interact with their audience while also effectively engaging 
with the content on their screens. Professors who prefer 
moving around the classroom, engineers who want to provide 
a more interactive experience to stakeholders, and doctors who 
want to inspect MRI imaging in a more practical sense will be 
able to use our product with ease and add value to their daily 
work. 

 
A.​ Future Work  

In the future, we hope to see this project adapt to more 
OS-level interface functionalities such as cursor movement 
and text. We expect our project to become more widely 
needed in the future as immersive technologies become more 
ubiquitous, just as Iron Man envisioned.  

 
B.​ Lessons Learned  

Our system was either able to successfully meet or get close 
to the design specifications. It was definitely able to pass the 
use-case requirements, as we did create a system that allows 
people to control a 3D hologram with their fingers and 
forearm.  

A large limit to our project was the communication latency. 
We believe if we have chosen Bluetooth over WiFi we would 
be able to reach much lower than 100ms latency. We 
ultimately chose WiFi because it was the easiest to use for the 
hardware we all on-hand, but WiFi is highly susceptible to 
interference from other devices and campus WiFi is not 
always the fastest. If we had no choice but to use WiFi, we 
would probably have used UDP instead of MQTT, which uses 
TCP. UDP is much faster than TCP and it would be ok to drop 
some sensor data frames. 

Another limitation of our system was the VL6180X’s slow 
update rate when there is no object in front of it. Since the 
round robin algorithm needs to wait for each sensor to finish 
before reading from the next one, it has to wait for sensors 
whose measurements might not even be important in finger 
detection. For instance, when a user is swiping on the lower 
part of their forearm towards the sensors, only half the sensors 
will have valid readings and the other half will read nothing. 
However, the round robin algorithm needs to read everything 
before sending data to the edger server. So, it spends most of 
the time waiting for empty data. If we were to do it again, we 
would possibly pick a single sensor that can read a whole area 
instead of 10 individual sensors.  

Since we have a 1D distance sensor array, it is highly 
susceptible to interference. If anything is in front of the 
sensors, our system will say there is a finger. So, if there are 
other fingers blocking a finger swiping on the forearm, there 
may be a false two finger detection, when only one finger is 
touching the skin. This is unfortunately impossible to mitigate 
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given our implementation, but maybe adding a heat signature 
sensor can at least distance between random objects blocking 
the finger like clothes. This means users’ sleeves need to be 
removed out of the way when using our device, as the system 
may classify cloth as fingers or sleeves may block the sensors 
entirely. It was a bit annoying for users to roll up their sleeves 
during the demo.  

If a student reading this report is planning to remake this 
project in the future or tackle this application, we would 
suggest changing the use case to an OS-interface rather than a 
3D hologram. If you are to stick with a 3D interface, perhaps 
use an AR headset since it would make more sense to use your 
forearm as a touch interface when wearing a headset that is 
always on your body. Overall, this was a very interesting 
challenge to explore and a super fun project to make!  
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GLOSSARY OF ACRONYMS 
PCB – Printed Circuit Board 
MQTT – Message Queuing Telemetry Transport 
ToF – Time of Flight 
IR –  Infrared 
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Fig. 4. MQTT Data Flow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Unity-Webapp Flow Chart. 
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Table 7. Bill of Materials and Budget. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



17 
18-500 Final Project Report: Team D5 - 05/07/2022 
 
 
 
Fig. 21. Schedule 
and Task 
Breakdown. 
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