18-500 Final Project Report: Team D5 - 05/07/2022

W.R.LS.T.

Edward Lu, Joanne Park, Anushka Saxena
Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Immersive 3D modeling interfaces, such as
hologram pyramids or head-mounted AR displays, demand new
and novel input devices for high-fidelity interaction. Current
trackpad technology on laptops constrain the user to their
displays, restricting mobility. In this paper, we plan to solve this
issue by building a system that will allow users to use their
forearm as a trackpad to manipulate the view of a 3D model. Our
system, called W.R.L.S.T., contains a wearable device with a small
footprint, includes a 3D hologram pyramid, and has a wireless
interface with low latency communication. We integrated one and
two finger swiping gestures to respectively rotate and scale a 3D
model displayed on a custom-build hologram pyramid.

Index Terms—3D Modeling, Hologram Pyramid, MQTT,
Sensing, Wearables, Wireless

L INTRODUCTION

The rise of digital 3D environments will improve the way
professionals give presentations. With 3D models, presenters
are able to interact with their audience while also effectively
engaging with the content on their screens. However, current
technology is limited in how we display and interact with
these 3D models, especially in terms of mobility. For instance,
when university professors give lectures, they typically walk
around the room while projecting their 3D content onto a 2D
display. In order to interact with the content on the screen,
they ultimately have to walk back-and-forth from their
computers and audience members, disrupting the flow of the
lecture. This simple solution to this is to use devices like
wireless clickers. If the content was more complex, like a 3D
model that requires more than just a click to interact with,
clickers are not the best tool to use. There needs to be a new
input device that can be used to interact with 3D models while
a presenter is mobile.

We present W.R.I1.S.T.!, a system aimed to enable a user to
use their forearm as a touch interface to control the view of a
3D model. W.R.L.S.T. allows for mobile, wearable sensing
using a surface that is nearly ubiquitous to all human beings:
skin. Our bodies are always with us, no matter where we go,
so it is natural to use it as an interface for computing.
W.R.LS.T. includes two main components: a wearable device
with a compact form factor and a 3D hologram pyramid to
view a 3D model. Most of the graphical interfaces of
W.R.L.S.T. are Web-based, able to run in the browser of nearly
all devices that have one. W.R.I.S.T. is an accessible, small,
and intuitive interface for scenarios that require interacting
with 3D models in a remote manner.

! WeaRable Immersive Sensing Technology

II. USsE-CASE REQUIREMENTS

When a user puts on the W.R.L.S.T. device, their forearm
should transform into a surface capable of recognizing two
gestures: one finger swiping and two finger swiping. Each
gesture is respectively mapped to two types of manipulations
of a 3D model: rotations and scaling.

For a one finger swipe, a user should be able to point their
finger and tap the skin on the forearm of the arm wearing the
W.R.ILS.T. wearable and swipe across in any direction. This
gesture should cause a 3D model to rotate in proportion to the
direction and displacement of the user’s finger swipe. For
instance, if a user displaces his or her finger by 10mm, we
expect the model to rotate approximately 5 times less than if
the user displaced their finger by 50mm.

For a two finger swipe, a user should be able to point two
fingers (thumb and index or index and middle) on their
forearm and drag their fingers towards or away from the
device, which correspond to growing and shrinking the 3D
model, respectively. Again, the direction and displacement of
the two finger drag should proportionally scale the 3D model.

All of the sensor data will be transferred wirelessly to
ensure full mobility. Processing gestures will happen on a
user’s laptop.

The 3D model will be displayed on a 3D hologram pyramid
made using four acrylic sheets and a standard screen. The
model should appear to be holographically rendered onto the
acrylic sheets. A user should not be able to notice a large delay
between their gestures and the actions done to the 3D model.
Additionally, the pyramid should be able to be displayed on
any standard Web browser.

II1. ARCHITECTURE

With these requirements in mind, our solution is to build a
small device that is slightly larger than a smart watch. The
user will be able to move their fingers in front of the device on
their arm as if they are moving their fingers on a trackpad.
These gestures will be translated into a geometric
transformation and sent to the scene via a Web application and
be projected onto the hologram pyramid.

There are five main blocks: PCB, microcontroller (MCU),
Edge Server, Web Application, and Hologram Pyramid. You
can refer to Figure 1 for a block diagram of our application.
The PCB and MCU are attached to a wearable wristband. We
may sometimes refer to this device as the “wearable” or
“Tony.” The PCB contains sensors used for finger detection.
The MCU gathers all the sensor data and sends it to the Edge
Server. The Edge Server performs finger recognition and
gesture classification. The Web application takes in finger
coordinates associated with a gesture and applies filtering and
noise reduction. Then, it will apply the gesture to a 3D model.
Finally, the hologram pyramid projects the 3D model.

—

18-500 Final Project Report: Team D5 - 05/07/2022

Off the Shelf

[Hardware] Software
Purchased
Newly
(e Designed
VL6180X e N\
-) Edge Server
> IC
VL6180X Web Hologram
- SVM . gra
WiFi- | 4 Classification wiri- | Application Pyramid
SR Round Robin MQTT |~ MQTT Dianeo
VL6180X ~» Measurement |- > : > J g 4 [Flat Screen J
\ J Reading . Library | -
Finger Unity]
- x10 Detection Scene Acrylic Sheets
Particle Photon
VL6180X \ MCU /

Fig. 1: High-Level Block Diagram.

We will now go through each component in more detail. For
the PCB, we initially wanted to build it off of an Adafruit
VL6180X breakout board. We wanted to make two boards,
one for 10 VL6180X sensors and another one for all the
“support components,” such as voltage regulators, resistors,
capacitors, etc. However, when we finished designing and
received the boards, the support components board did not
seem to work. To debug, we manually attached 10 resistors to
the sensor board and it ended up working.

Once the Photon reads and sends all the data to our edge
server, the data needs to be processed to determine the gesture
and eventually the finger locations. To do this, we used a
Support Vector Machine (SVM) to classify whether or not
there is one or two fingers in front of the sensors. Once we
classify, we fit a parabolic curve to the data with one finger
and take the minimum point. For two fingers, we simply take
the minimum point and send it to the webapp.

Once the finger locations are streamed to the webapp, the
webapp sends the positions to a Unity process. Unity filters
out noise and incorrect data points as well as filters and queues
finger locations to be processed in its event loop. The event
loop performs the actual rotations and scalings of the model.
The magnitude of these actions is proportional to the elapsed
time of when data was collected to ensure a realistic
translation of gestures to actions.

V. DESIGN REQUIREMENTS
A. Engineering
The most important requirement for us is portability.
Therefore, we aimed to make the weight and dimensions of
the W.R.I.S.T. wearable about the same as those of a typical
Apple Watch. We wanted the wearable to be less than 100g,

less than 65mm by 65mm, and cost less than $150. The
heaviest Apple Watch available is about 41.7g, so we aim to
be about double that weight at 100g so our device would feel
light and comfortable on a user’s wrist. We purposefully aim
much higher (more than double the weight), since we are not
building custom chips like Apple, and want a lot of slack for
our weight requirement to account for the off-the-shelf
batteries and boards we used.

With the evolution of visual technologies, we anticipate the
next wave will be ubiquitous hologram technology [1].
However, due to cost and lack of availability, holographic
projectors have a long way to go before being more common.
Instead, we propose the use of a holographic pyramid that will
be able to deliver the same effects of real-life 3D models. To
design this pyramid, we followed the designs of Pepper’s
Ghost, a popular optical illusion technique to project objects
that aren’t in direct view [2]. Each side of the pyramid is an
isosceles trapezoid that is connected to each other by the two
slanted sides. The two main geometric considerations are (a)
the smaller angle in the trapezoid is 45 degrees, and (b) the
ratio of the top and bottom side of the trapezoid is 1:9. The
pyramid will be placed on top of a monitor or flat screen that
will lie on a table and will be provided by the user. 22”
monitors are popular, which means the monitor is
approximately 20” by 10”. If we divide the shorter side by 3,
we get the size of the smallest size of the trapezoid. Therefore,
we estimate that the pyramid size should be 3 !5 and the
longer size be 30”. The material of the pyramid is acrylic,
which is extremely cheap, so we could test out different sizes
of the pyramid to achieve the optimal effect.

B. Gesture Classification Accuracy
The intended gesture of the user and the gesture that our
classifier identifies should match about 90% of the time for

18-500 Final Project Report: Team D5 - 05/07/2022

one finger swiping and 75% of the time for two finger
swiping. This means we can tolerate 1 failure out of every 10
tries for a one finger swipe and 1 failure out of every 4 tries
for a two finger swipe. The reason why we have different
accuracies for one and two finger swiping is because we
predict, based on our initial algorithms and testing plans, that
there might be two finger actions that may be detected as one
finger ones, especially as the hand gets farther away from the
device’s sensors.

C. Gesture Translation Correctness

Furthermore, we want the scaling of our transformations to
be correct. Due to potential overlap of the sensor readings
when a user’s finger is farther away from the sensors, we
predict that the accuracy of our sensor readings may drop as
the finger moves away from the sensor array. We plan for an
85% difference between the true displacement of the finger
paths when compared to the measured displacement predicted
by our algorithm. We expect a somewhat low accuracy here
since it will not take much away from user experience if the
3D model does not transform exactly proportional to their
finger displacement.

D. Latency

We also want data to be translated to almost instantancously,
and we are aiming for a benchmark set by past projects that
used similar technologies. We plan for a 100ms delay between
when a user finishes his or her intended gesture to when the
3D model is transformed. This will give about a 10FPS
(frames per second) update rate of our 3D scene. While 10FPS
is somewhat low for rendering, it is not low enough to distract
away from user experience [3].

V. SYSTEM IMPLEMENTATION
A. Wearable
The wearable device consists of two main components: our
custom-designed PCB for housing ten VL6180X distance
sensors connected through a single 1°C bus and a WiFi-capable
microcontroller board.

GPIOO GPIOI Pin
Pin (unused)

I’C Pins Single VL6180 Sensor Power

g

Fig. 2. Sensor Array PCB Diagram.

Fig. 3. Photon Wiring Diagram.

Our PCB contains a sensor array of ten VL6180X sensors
arranged in a straight line. You can refer to Figures 2 and 3 for
a visualization of our custom PCB design and its wiring. The
VL6180X uses I?C for communication and can measure up to
about 200mm (20cm). Additionally, they contain two GPIO
pins: one for turning on and off the device and another for
generating an interrupt when sensor data is available. A
custom PCB allows us to place the ten sensors in a way so that
the sensor array is compact, since we need the sensors to be as
close as possible for our algorithm to correctly classify swipes
with as much granularity as possible. We chose ten sensors
because ten was the largest number of sensors we could fit
into an array before the PCB became longer than the length of
one of our wrists.

We choose a Particle Photon microcontroller for sensor data
collection and transfer. The Photon has 72MHz clock speed, a
Real Time Clock, and a Cypress Wi-Fi chip. To collect sensor
data, the Photon turns on a single VL6180X sensor and reads
data from it and repeats this in a round-robin fashion, storing
sensor data into a 10 element byte array. Since the VL6180X
reads up to 200mm, its measurements can easily fit into 8 bits.
We choose to read measurements in a round-robin fashion due
to IR interference across sensors. The VL6180X sensors read
the distance to the closest object within a 25° cone in front of
it, meaning the VL6180X’s lasers and IR sensors can easily
clash with each other.

The PCB, Photon, and battery are all soldered together on a
board attached to a wristband. The sensor array will stick out
perpendicular to the forearm so that the sensors' lasers are
parallel to the arm, while the Photon and battery will lay flat
on the wrist. When a finger is swiped across the forearm, some
of the sensors will detect an object and send the distance to the
Photon. The Photon will read all the sensor data, pack it into
an array, and send through MQTT for processing.

B. Middleware and Gesture Recognition

We have two edge servers on our system: a Mosquitto-based
MQTT broker [5] and a custom Python script running an
MQTT client that receives and processes sensor data for finger
detection. The Mosquitto MQTT broker will be used to shuftle
around data through MQTT topics. Our topic structure is
detailed in Figure 4. Both the broker and the data processing
Python script are run on a M1 MacBook. Since the Python

18-500 Final Project Report: Team D5 - 05/07/2022

MQTT client and the broker are run on the same device,
network traffic between them should be faster. All data is sent
through a local WiFi network to ensure that communication is
as fast as possible.

We are using a coordinate plane paradigm where the x-axis
represents the direction along the user’s arm and the y-axis
represents the direction along the sensors. We can place
coordinates where fingers are and compare the relationship
between the points every 100ms in order to (a) accurately
predict which gesture is being performed and (b) quantify the
translation. These gestures are displayed in Figures 5, 6, and 7.

ROTATE

sensors

initial finger
location (x,y)

final finger
location
(x}y’)

arm

Fig. 5. Gesture for rotation. Rotation occurs in all directions based on x,y
coordinates of the finger. Top-Left is (0,0) Bottom Right is (175, 55). The
x-axis is perpendicular to sensors and the y-axis is parallel to sensors.

ZOOM OUT

arm
sensors

two finger
location (x)

final two
finger
location (x')

Fig. 6. Gesture diagram for zooming out. Represented as two finger swipes.
Top-Left is (0,0) Bottom Right is (175, 55). The x-axis is perpendicular to the
sensors and the y-axis is parallel to sensors.

ZOOMIN

arm
sensors

final two finger
location (x')

initial two
finger
location (x)

Fig. 7. Gesture diagram for zooming in. Represented as two finger swipes.
Top-Left is (0,0) Bottom Right is (175, 55). The x-axis is perpendicular to the
sensors and the y-axis is parallel to the sensors.

Our edge server runs an MQTT client to receive sensor
data. Once data arrives, the Python script first says that all
values over 150mm are invalid and makes them equal to 255.
This means we actually have a max detection distance of
150mm, which is still a significant amount for a finger to
move. We ignore values over 150mm because sensor readings
over 150mm seemed to be unstable and a gesture at such a
distance would be difficult to detect due to measurement
instability.

Once data is preprocessed, we applied a SVM classifier to
the 10 data points to detect if there is one or two fingers
present in front of the sensors. We chose a SVM since training
is somewhat fast and applying the model to classify data is
extremely fast. We wanted to make sure our classifier did not
take too much time to ensure low latency processing. The
SVM model is custom-trained on data we collected ourselves.
On test data, it has a 95% accuracy. See the Design Trade
Studies section for more information on how we trained the
SVM. Figure 8 for examples of how the data looks like when
there is a one finger swipe gesture happening and when there
is a two finger swipe gesture happening. The SVM is able to
learn and distinguish the shapes of the two gestures when a
radial kernel is applied.

Once a frame of data (10 sensor values after a full
round-robin reading) is classified as either one or two fingers,
we fit a parabolic curve to the sensor data. If the curve fitting
algorithm fails, we ignore the data frame and return that it is
noise. If curve fitting succeeds, we case off the number of
fingers to find the x and y-value for the finger.

If the number of fingers is classified as one, we grab the
x-value of the minimum point of the fitted parabolic curve and
the index of the sensor that is closest to the minimum value. If
the number of fingers is classified as two, we simply grab the
x-value and index of the sensor with the minimum sensor
reading.

Once we have (minimum sensor value, index of sensor
with minimum value), we apply a weighted average of the
y-values of the two adjacent sensors like so:

18-500 Final Project Report: Team D5 - 05/07/2022

1
» Wi(yl, +c+i)

i=—1
y = DA
Xw,
i=—1
=————if0 <i < 10, else +
w, = =<3 if i , else =

Where y is the y-value of the finger, ¢ is the index of the
sensor that is closest to the minimum value of the fitted
parabola, x, is the sensor reading in mm of sensor at index ¢, X;
is the sensor reading of sensor at index i, w; is the weight at
sensor index i, and Dj is the distance the sensors are from each
other in mm. The expression above finds the weighted average
of the y-values of the sensor at index ¢, ¢ - 1, and ¢ + 1 to get
the y-value of the finger. Note: for two finger gestures, the
y-value is not used, but still calculated.

Gesture=swipe

°
40 1 ®
)
30 inyer
£
£ °
4
2 201 °
2
°
10 °
°
0 °
0 50 100 150 200 250
distance (mm)
Gesture=two
dipger
40 1 d
°
_ 301 °
£
£ °
4
@ 201 °
v
w
[
10 (]
°
0 °
0 50 100 150 200 250

distance (mm)

Fig. 8. Curve fitting on sensor data. The top plot is for one finger swipes and
the bottom plot is for two finger swipes. The blue dots are sensor readings
gathered from the wearable.

Once we have the predicted finger x and y-values, we
package the finger location, classified number of fingers, and

sensor reading timestamp to send to the Web application for
further processing.

C. Web Application

The 3D hologram will be presented via a Web application
and a hologram pyramid. We use Django for the back-end
framework of our Web application and are using the MQTT
protocol for data transfer between the edge server and the Web
application. We are going to use Unity for manipulation of the
3D object and formatting. Unity has a WebGL option that will
allow us to build our content as JavaScript and WebAssembly
programs that will run our Unity application on a Web
browser.

The sensor, battery, and gesture data will then be parsed by a
JavaScript program on the Web application. It is possible to
call Unity functions via JavaScript function calls using a Unity
instance. The JavaScript on the Web application parses MQTT
data to update battery status, update sensor information on a
data visualizer, and structure gesture/finger information to be
sent to the Unity build.

We created Unity functions that will handle the incoming
stream of information. Unity will receive the x and y
coordinates of the finger location, timestamp, and number of
fingers for each data frame sent. The Unity functions queue
finger displacements and timestamps for each gesture. The
finger displacements are filtered for noise using an averaging
filter with a window of three data points. Then depending on
which gesture appears the most for a single user gesture input,
a flag will be set to start processing. A single user gesture
input is defined as the group of data points that are either
rotation or zoom between two none data points. Once a
rotation or zoom flag is set for processing, the Unity update
function will start performing model translations based on the
queued timestamp data and finger displacements. See Figure 9
at the end of the report for a detailed block diagram of the
entire Unity pipeline.

Our Web application has two main tabs, one that shows the
battery information, connection status, and sensor data
visualization and one that shows the hologram pyramid
display. See Figures 10 and 11 for an image of the tabs of the
Web application.

Tony Visualized Tony Status
Voltage: Not Connected

Battery %: Not Connected

J

Tony Connection
MOTT status: Not Connected

J

Gesture Detected: Nane

Fig. 10. Battery status page of web application. Shows a visualization of
sensor readings, battery status, and the MOTT connection.

18-500 Final Project Report: Team D5 - 05/07/2022

Unity View

WRIST. Hologram E

Change
Model

Fig. 11. Unity view to project onto a hologram pyramid.

D. Hologram Pyramid

To go more in depth about the hologram pyramid, we will
be using four acrylic trapezoids zip tied together to create our
pyramid. We based our trapezoid dimensions based off the
angles from Pepper’s Ghost Experiment, which is a popular
design mechanism for optical illusions. Unity will display four
perspective views of the 3D model (Figure 12). The white
lines are not actually displayed, and are drawn in Figure 12 to
show where the pyramid base will be in respect to this image.
The shorter base edge of the trapezoids will go along the white
square, and the lines coming out of the corners of the square
represent the edge between two trapezoids. We used a monitor
to produce a larger view of the model.

Fig. 12. Unity View of 3D model

VI TEST, VERIFICATION, AND V ALIDATION
To test our implementation, we ran two experiments to
record the accuracy of gesture translation and the accuracy of
finger location detection.

A. Experiment 1: Classification Accuracy

The first experiment involved a user performing six
gestures: swiping with one finger up/down/left/right, and
swiping with two fingers left and right. The hologram pyramid
was in front of the user when the experiment was performed.
The user performed each gesture 50 times and recorded what

action was applied to the 3D model. The results are shown in
Figure 13.

WRIST Gesture Classification

1.0
No gesture -RleEd 0% 0% 0% 0% 0%
swipe left - 4% 8% 0% 0% 0% 0% 0.8
[
2
= swipe right- 0% 6% 4% 0% 0% 0% 06
Ll .
o
2 Swipe up - 12% 2% 4% 0% 0%
E . - 0.4
£ Swipe down - 16% 0% 4% 0%
[
a
Two finger swipe left - 0% 2% 0% 0% 02
Two finger swipe right - 0% 0% 2% 0% 0% 24%
| | | | | i -0.0
o > > = x = c
£ o o o o o
= = c c I E
B =) K=l k=) ° £ o
S] © ©] 5 M
= =z 2 £ N
] [} = B
o [3z S
7] = o
=] H z
5 & £ 2
@ 2
3D medel action

Fig. 13. Gesture-to-Action Confusion Matrix.

The confusion matrix shows that our model is very good at
detection when tAhe user does not perform any gesture. Also,
our model is pretty good at detecting horizontal one finger
swipes. The model’s 4-8% confusion of left and right one
finger swipes possibly comes from the user not fully lifting up
their finger when performing the gesture. Our model seems
slightly worse at detecting up and down one finger swipes,
with 12-16% of vertical one finger being detected as no
gesture. This is because the area to swipe vertically along the
sensor is smaller than the area to swipe horizontally (15cm
along the wrist vs 25cm length forearm), so a somewhat fast
swipe across the sensors might not pick up enough data frames
to qualify as a full gesture. Two finger swipes have the worst
accuracy, due to the fact that the two fingers need to be a
significant distance apart for our model to classify it as two
fingers. If the two fingers are too close, then the sensor data
frame looks almost indistinguishable from that of one finger.
Also, if the hand is slanted at a large enough angle, the sensor
array will not be able to see one of the fingers or the fingers
may blend together as one when picked up by the sensors.
Two finger swipes significantly suffer from the user not fully
lifting up their finger when performing the next gesture, as left
and right swipes get confused for each other ~20% of the time.

These results were expected, as one can reason about the
shortcomings of a 1D sensor array (can only see fingers in 1D,
not lifting up a finger when performing another gesture can
mess up the gesture classification, etc.).

B. Experiment 2: Finger Displacement Accuracy

To measure if we can properly measure how much a finger
moves, we ran another experiment. In this experiment, a user
placed a 150mm by 50mm grid on their forearm, marked with
intervals of 25mm. The user performed 50mm horizontal and
vertical one and two finger swipes 10 times and we recorded
how much our model thought the finger moved. We ran this
experiment to make sure our model translations were

18-500 Final Project Report: Team D5 - 05/07/2022

proportional to finger displacements. A high error rate on this
experiment would mean we are unable to distinguish between
a long swipe vs a short swipe, which means our actions will
not scale proportionally to finger movements. The error rate
was calculated using:

|D,—D,|
D_A x 100

Where Dy, is the measured displacement of the finger(s) by
our model and D, is the actual displacement of the fingers,
which was always 50mm in this test.

Gesture Distance
Error (%)

Swiping across sensors 20.29

Swiping along sensors 19.40

Two finger swiping across sensors 13.42

Table 1. Finger tracking distance error table.

According to Table 1, we have a maximum of 20%
distance error, which means our measurements are at most
20% off of the actual finger displacements. We aimed for
15%, but 20% error is tolerable. Errors in sensor accuracy,
approximations, and sensor update speed all factor into this
~20% error.

C. Experiment 3: Latency

The latency of our system was measured using timestamps
collected at every step of the pipeline. Every 100 sensor data
frames when the wearable was in use (user was swiping), we
found the average of the differences of the timestamps
between each step of the pipeline and recorded it in Table 2
below. The data was collected with all devices connected with
the same WiFi network.

Pipeline Step Latency (ms)
Time to collect all sensor datas 40

Wearable — Edge Server 29

Edge Server — WebApp 34

Total 103

Table 2. Latency table.

According to Table 2, we have a total latency of 103ms,
which gives us an approximate 10 Hz update rate. This was
just shy of meeting our requirements. It appears that collecting
all 10 sensor values in a round robin fashion takes the most
time. This is because when there is nothing in front of a
VL6180X sensor, it takes almost twice as long to collect data.

So for gestures where not all sensors need to fire to detect a
finger, it takes much longer to collect sensor data than it really
should.

D. Engineering

As mentioned before, portability is an important aspect of
our project. We are able to attach Tony to an exercise band.
The band does not obstruct data input. Although it is slightly
bigger than a smart watch, it does not exceed the width of the
exercise band, which is something that people are used to
wearing comfortably.

As part of our demonstration, we wanted to show that we
could use the device anywhere in a room. We visited the
lecture hall in Wean 7500 and were able to demonstrate that
the device could send data to the computer from the farthest
corner in the room.

E. User Experience

Overall, we received positive feedback from users on our
project. For the wearable device, when asked to rate how
comfortable they are wearing the device from 1-5, the average
rating was 3.75. Furthermore, each user was asked to perform
each gesture 5 times. The accuracies are listed below. Due to
time constraints from the users, the correctness and latency
were not recorded. As shown, the rotation gestures had a
higher average accuracy than the zooming gestures.

User Testing Accuracy
100.00%

75.00%

50.00%

Percentage Correct

25.00%

0.00%

Rotate Right Rotate Left Rotate Up Rotate Down Zoom In Zoom Out

Gesture

Fig. 14. Average user accuracies from each gesture.

F Live Demonstration

During our demonstration, we qualitatively observed new
user’s enjoyment levels when using the wearable and viewing
the 3D hologram. Many users seemed to be able to use our
project with some explanation. We had to tell them that the
gestures had to be extremely deliberate, but once we
demonstrated, all users were able to understand how to use it.

One finger swipes were the most successfully detectable and
enjoyable for the users. Almost all the time and for all users,
one finger swipes were able to rotate the 3D model.

Two finger swipes were not always successful. This gesture
was much less intuitive for users to understand. Many users
had to swipe multiple times in order to successfully scale the
model, but after a couple tries and false detections, the model
would perform a zoom in or out. The success rate of two

18-500 Final Project Report: Team D5 - 05/07/2022

finger swipes was highly variable. However, when it did work,
the user was almost always impressed.

Many users experienced almost no noticeable delay and we
received many compliments on how fast our system was. The
choice of an SVM, finger detection, and local WiFi
connections seemed to successfully give us low latency.

Users also positively took to the hologram tool. As quoted,
they were “surprised it works in the light”, as the area we were
testing in was generally lighted. This was a concern of ours as
the tool works best when the only light reflections are coming
from the monitor. When seeing the entire system come
together, a majority of users described our project as “cool.”

Overall, we received many glowing reviews and praise on
our system. Some users even spread the word about our
project to their colleagues and many people came to our booth
saying that their friend or colleague said to check us out.
Lastly, we ended up winning second place in Apple’s
competition!

VIL DESIGN TRADE STUDIES

A. Sensors

We considered many different types of sensors for our
project. For our purposes, we chose the VL6180X, an
IR-based ToF distance sensor made by STMicroElectronics,
amongst all the other sensors because of multiple factors.
Some of the other sensors we were considering were pressure
sensors, gyroscopes, and camera-based hand tracking sensors.
We deemed that these other sensors all affected user
experience in the scope of our project. Gyroscopes require
extreme hand gestures which would cause discomfort for the
user. Pressure sensors would take away the portability aspect
of our design and would make our device’s form factor be
quite large as it would have to be more of sleve than a
wristband. Since pressure sensors rely on a defined medium to
be attached to, it mimics a traditional trackpad. Finally
camera-based hand tracking sensors need to have the subject
in front of a camera or similar device in order to detect hand
motion. This would prevent the user from moving outside a
fixed range of space, which is not what we wanted. We
ultimately decided on distance sensors, since they are
lightweight and can be leveraged to detect finger movements.

Amongst distance sensors, we chose the VL6180X [4]
because of its short range of 20cm. We did not need a sensor
with a longer range than 40cm distance, and we thought that
having a shorter range would provide more accurate readings
at short distances and give us a smaller data payload. We
decided that 20cm would be a good size since it gives enough
space for a user to do a gesture, but also not too large since the
human forearm is only about 25cm on average. We included a
chart (Figure 15) that lists out the different distance sensors we
looked at and their feature comparison.

VL53L5CX

L K R X g

Partnumber VL6180XVONR/1 | VLG18OVINR/1 |VLS3LACOVODH/1 VLS3LOCKVODH/1| VLS3L1CXVOFY/1 |VLS3L3CXVODH/1| VL3LACXVODH/1 | VLSSLICBVOFY/1 | VLS3LSCXVOGE/1
Max distance 20cm 60cm 130 cm 200cm 400cm 500 cm 600cm 800cm 400cm
Close distance - , . = - =

Multi-target

detection

Multi-zone

Pr?rammahla

Fol

Lower Power

mode

Ambient Light

Sensing

Fig. 15. Comparison chart of different distance sensors taken from ST [4].

B. Communication

We decided to not use a wired approach like USB cables for
data communication, since it would defeat the purpose of our
project and its goals of mobility. Initially, we were deciding on
using Bluetooth for communication, but the BLE device we
had was a bit hard to get working to prototype, so we shifted
to WiFi. Since we want to integrate with Web technologies,
WiFi was the better option due to its ubiquity and long range.
We decided on the Particle Photon for our microcontroller,
since it is easy to program and contains a built-in WiFi chip.
For the WiFi communication protocol, we were deciding
between the Particle Cloud’s pub-sub system, HTTP requests,
or MQTT. For our case, MQTT seemed like the best fit. The
Particle Cloud is mostly a black box, and we wanted to have
some more control over deployment. Additionally, HTTP
requests are not as fast as MQTT and are typically used for
more document-based data rather than raw sensor data.
MQTT, which is popular for IoT applications, seemed to allow
high throughput communication and excels at sending small
quantities of data at a high rate. MQTT also allows for high
scalability, as any device can simply subscribe to an MQTT
topic and receive either a stream of our sensor array
measurements or our detected gestures and finger coordinates.

C. Web Application Backend

We thought about multiple web application frameworks,
such as Symfony, Express, Ruby on Rails, and Django.
However, amongst these, we decided to use Django. We
mainly chose Django because our members were most
familiar with it and because Django is used using Python. It
also provided all of the basic functionalities we needed. We
only needed an interface where we could store user data and
serve our Unity application, which we could do with Django.

D. Hologram

For the hologram pyramid, we noticed online that there
were many designs that had trapezoid panels with angles of
53-53-127-127. We initially started with that design to fit on
an iPad, as shown below.

18-500 Final Project Report: Team D5 - 05/07/2022
= LENY

Fig. 16. First prototyping of the hologram pyramid.

However we realized that if we wanted the projection be
more visible, we needed to a) increase the monitor size so that
the images themselves are more spread apart, b) increase the
size of the pyramid to have more slant to show the image, and
c) increase the smaller angle of the pyramid to increase the
height of the pyramid. We ultimately ended with the design
below to fit the size of a normal computer monitor, something
that most presenters have access to.

Fig. 17. Second to last prototyping of hologram pyramid.

E. Finger Detection Model

We went through several iterations of the data pipeline after
the sensors collected data. We had two schools of thought on
what the model can do after a user performs a gesture in front
of the sensors:

a) The model can directly determine the gesture that the
user just performed, or

b) The model can determine how many fingers are
present.

Even though we didn’t end up going through the models
described below, we did take features from each model and
incorporated them into the final model. In the following
sections, we will detail each approach we tried and the
trade-offs for each of them.

1. Curve Fitting

Before we looked into using machine learning, we wanted
to find a way to determine finger location based on
mathematically properties of the data. When there isn’t an
object in front of the sensors or if an object is more than 255
millimeters away, the sensors default to a reading of 255.
Otherwise, the sensors detect the distance of the closest object

to the nearest millimeters. Therefore, a differentiable equation
can be fit to the data. After that occurs, we determine the
minimums and maximums of the equation. When there is one
finger present, a U-shaped line is created, and the minimum of
the equation estimates where that finger is present. When there
are two fingers presented, a W-shaped line is created, and the
two local minimums represent where each finger is present,
and the intersection of the two U-shaped lines created by the
fingers intersect at the maximum of the equation. The curve
fitting [6], minimums [7], and maxes [8] were computed using
libraries from SciPy.

Accuracy

There is an argument n to the function where we can
dictate how many points from each side of a point to
determine the extrema. There is an argument polynomial to the
function that allows us to dictate the order of the polynomial
that the data is being fitted to. To determine which n and
which polynomial would yield the highest accuracy, we
collected data from the wearable placed on a table and
performed three gestures six times: pinch in, pinch out, and
swiping perpendicular to the sensors. After data collection, we
ran the curve fitting model on each frame from each instance
of the gesture, which guessed what gesture was occurring
based on that frame. Our results are shown below.

Pinch In Accuracies
-2 == 3 4 w= 5 == 6

100

75

50

25

2 3 4 5

number of sensors for determining extremas

Pinch Out Accuracies
-2 == 3 4 wm 5 == 6

100

75

50

25

2 3 4 5

number of sensors for determining extremas

18-500 Final Project Report: Team D5 - 05/07/2022

Swipe Perpendicular Accuracies
w2 wm 3 4 wm 5 == 6

100

75

50

25

2 3 4 5

number of sensors for determining extremas

Fig. 18. Accuracies for each gesture. Top is for pinch in, middle for pinch out,
and bottom for swipe perpendicular.

The highest accuracy for each gesture is detailed in the table
below.

Gesture n Polynomial | Accuracy
degree (%)
pinch in 2 5 94.4
pinch out 2 6 81.7
perpendicular swipe 2 3 83.3

Table 3. Highest accuracy of each gesture for polynomials of degree 3, 5, and
6.

Even though the highest n was the samest for each gesture,
there was no consistency in the degree of the polynomial. The
highest average of all gestures was 79.4% with n=2 and
polynomial=4, so there wasn’t a specific polynomial that we
could use. Therefore, we decided to not use the curve fitting
for determining the gesture, but we did use curve fitting to
determine the finger position when there is only one finger
present.

Latency

The curve fitting model is almost instantaneous, as it
doesn’t need to be processed by a complex machine learning
model. This was one of the biggest appeals of using a model
that didn’t require machine learning.

Correctness

At this stage, we weren’t concerned with correctness, just
whether we could identify which gesture was occurring.
However, we did look at the general correctness of the model.
Identifying where the finger is located when a user was
performing a swipe was the easiest, since only one point
needed to be determined out of all the points. However,
whenever a pinch was supposed to be detected, the model
would sometimes think that there was too much noise to be
classified as either gesture, the beginning of the pinch out was
a swipe, or the end of the pinch in was a swipe. Therefore, in
the duration of a pinch, it would be harder to determine where

10

the fingers were present since the accuracy of detecting the
gesture itself was low. Therefore, we decided not to use curve
fitting to determine finger location of the zoom gestures.

2. Support Vector Machines with Pinch and Swipe Data

Since the sensors were extremely close to each other, there
would be some overlap from the sensors due to the cone shape
of the lasers. From the naked eye, we could guess what gesture
was occuring, but something simple like curve fitting would
not be able to determine the differences between swipes and
pinches. Therefore, we decided to look into different machine
learning options.

A support vector machine (SVM) is a type of machine
learning that uses supervised learning mainly used for
classification of data. We decided to use the support vector
machine [9] and the grid search library [10] from scikit-learn ,
a Python machine learning tool. The model will attempt to
classify which gesture is occurring based on each data frame.

Accuracy

We collected new data from Tony after it was attached to the
exercise band and performed the gesture on our arms. We
randomly allocate % of the data for training and '5 of the data
for testing. The model tunes three different parameters: the
type of kernel that the SVM uses, the regularization parameter
C, and the kernel coefficient gamma if the SVM uses a radial
kernel. The training accuracy of the gamma kernel is shown
below.

0.95
=1 0.90
L 0.85
c=10
L 0.80
H0.75
c=100
Lo.70
C=1000 r0.65
L 0,60

Fig. 19. Colormap of the SVM parameters.

After determining which parameters yield the highest
training accuracy, the model uses those parameters for testing.
The testing accuracy is shown below.

precision |recall fl-score [support
-1 1 1 1 53
0 0.85 0.81 0.83 48
1 0.82 0.86 0.84 49

18-500 Final Project Report: Team D5 - 05/07/2022

accuracy 0.89 150
macro avg |0.89 0.89 0.89 150
weighted

avg 0.89 0.89 0.89 150

Table 4. Accuracy of SVM on collected pinch and swipe data.

The green cell represents the average accuracy of the model.
-1 represents noise, 0 represents swipes, and 1 represents
pinches. Overall, the accuracy of the model was better than
curve fitting, although even after we determined the gesture,
we had no way to detect where the fingers were located. At
this point, we decided to use curve fitting to determine finger
location after we determine what gesture the user is attempting
to perform. Even though the accuracy on collected data was
decent, using this model in real-time yielded a lower accuracy.

Latency

The training for the model sometimes took hours, but that
would not be a part of the latency of the system. To determine
what gesture is occurring, the model took around 30
milliseconds to run. Even though this was a small time, this
was around %5 of the total latency we were aiming for the
system.

Correctness

Similar to the problem with curve fitting, since the real-time
accuracy was low, it was hard to detect the finger location
when most of the pinches were being classified as noise from
our SVM, so it was hard to determine the correctness of the
gesture.

3. Time Series Classification

We wanted to look into more accurate machine learning
models to determine what gesture was occurring on our
collected data. Time series classification is a type of machine
learning that uses supervised learning to classify time series
data. This way, we would be able to classify multiple data
frames instead of one data frame. We predicted this would
help with detecting pinches as pinches are easier to classify
once the data is observed over time rather than during the
duration of the gesture. There were five different
classifications of data we could now get: pinch in, pinch out,
swipe left, swipe right, and noise. We used the time series
classification library from the sktime [11] Python machine
learning framework.

Accuracy

One parameter that we could control is how many data
frames the model should look at. The drawback to this model
is that it cannot look at sets of data with unequal amounts of
data frames, so our algorithm divides each instance into
equal-sized windows to classify, and we tested the accuracy of
different size windows. The accuracy of the different windows
is shown below.

11

Time Series Classification Tradeoffs

0.933 1

os33 /N
x=24.000, y=0.923
0.733 4
0.633 4

0.533 4

0.433 4

Accuracy of Model

0.333 1

0.233 4

0.133 4

T T
0 5 10 15 20 25 30
Window of Time Size

Fig. 20. Accuracies of time series classification on collected data compared to
different time window sizes.

The highest average accuracy was 92.3% when the window
size was 24 data points. This was the highest accuracy so far.

Latency

To achieve that accuracy, there would need to be 24 data
frames before a gesture can be determined. This was mainly
because pinches on average require more data frames to
determine what gesture is occurring than swipes. When
running on collected data, it took around 280 milliseconds to
classify the data, and the latency would only increase in real
time as the model would need to wait 24 data frames on top of
the classification period.

Correctness

Because we can accurately determine what gesture is
occurring but not where the fingers are located, we began
theorizing other ways to map real life transformation to the
model transformation. We hypothesized that averaging each
data point in each data frame and comparing the averages
overtime would tell us what direction the gestures would need
to move. Although we didn’t test this directly with time series,
when running the data visualizations, we saw on average the
data increased as a user swiped away from the sensors and the
data decreased as a user swiped towards the sensors. After
seeing the results of the time series classification, we came to
the conclusion that any two finger gestures would either be
confused as noise or would need more data to classify as a
pinch, so we decided to switch the zooming gesture.

4. Support Vector Machines with One and Two Finger Data
We decided to revisit the support vector machine model. We
found it was easy for the model to detect the end of a pinch
out or the beginning of a pinch in since it was only during
those times that two fingers were obviously present.
Consequently, we changed the zooming gesture to be two
finger swipes so that we would be able to better recognize the
differences between the two types of gestures. Therefore, we
changed the type of data we collected to be one and two finger

18-500 Final Project Report: Team D5 - 05/07/2022

placements along the arm, with some data being actual swipes
in different areas of the arm. However, we used the same
machine learning library as before.

Accuracy
We tested in a similar fashion to when our data was swipes
and pinches. The data is shown below.

precision [recall fl-score |support
0 0.93 0.91 0.92 138
1 0.95 0.97 0.96 264
accuracy 0.95 402
macro avg (0.94 0.94 0.94 402
weighted
avg 0.95 0.95 0.95 402

Table 5. Accuracy of SVM on collected one and two finger data.

The green cell indicates that this model has an average of
95% accuracy. Instead of classifying one, two, and noise, we
only classified whether the data saw one or two fingers, with 0
and 1 respectively. We decided to filter noise on the web
application when it received the finger detection data, which
gives us more power to determine what to do with the model
output. This was definitely a bigger increase from our
previous SVM model, and as shown in the testing section,
performed reatime at around the metrics we initially aimed for.

Latency
The latency of the system was around 30 milliseconds.

Correctness

Since determining the gesture was a lot more accurate than
before, it was easier to test for correctness. We decided to take
features from our previous models to compute the
mathematical translations.

If there was only one finger present, we know the user is
performing a rotation, so we used curve fitting and found the
minimum to determine the finger position. After that, we
found the deltas of the fingers and determined to move the
model that much. Because of the higher accuracy with one
finger, we had more liberties with rotations, which is why we
introduced rotations in two more directions. If there were two
fingers present, we took the idea of taking the average of the
data points and applied that to the zooms.

Overall, the translations were more proportional to the
actions.

Accuracy |Latency
Model (%) (ms) Correctness
Curve Fitting 79 0

12

SVM of swipes vs

pinches 89 ~30
Time Series

Classification 92 ~280 (ms)
SVM of one vs two

fingers 94 ~30

Table 6. Summary of Finger Detection Model.

VIII.
A. Schedule
Our tentative schedule is attached on page 12 (Figure 21).

PRrOJECT MANAGEMENT

B. Team Member Responsibilities

Even though there are five blocks, there are six main parts
of the capstone. Edward worked on PCB creation,
programming the wearable, gesture and finger detection, and
communication between components. Joanne worked on the
Unity code, Web application, and hologram. Anushka worked
on gesture and finger detection and prototyping the wearable
and hologram. Although each member on our team is
specialized in at least one part, we all worked together on each
block since there are a lot of dependencies from one block to
another. A more extensive breakdown of responsibilities is
documented in our schedule (Figure 21).

C. Bill of Materials and Budget
Our Bill of Materials is shown in Table 7.

D. Risk Mitigation Plans

We are planning to create a custom PCB to accommodate
our wristband size. However due to the term of our project, the
shipping of the PCB after design is one huge risk factor we
had to consider. It would be hard to have multiple iterations of
our PCB because of time constraints. We planned to mitigate
this risk by first modeling our PCB off an already existing
PCB. We also got a professor to check our PCB before we
ship it off.

One issue we ran into the day before demonstrations was
that our battery broke. Although we had a spare battery with
us, we realized that this could be an issue for users.
Fortunately, since Tony can be charged while being wired to
the computer, we were able to still use Tony while we didn’t
have access to the battery before the demonstration. We have
learned that in the future, we have to be careful with wiring
but also should order spare parts if our budget allows us to.

E. Ethical Issues
Our project does not pose any significant risks to the user,
but there are very extreme cases that could occur.

1. Physical harm
Tony was attached to an exercise band and wrapped
around another layer of fabric so that there are no electronic
parts exposed to the skin. However, all the wiring sautered to
the board, and the battery is also in close proximity to the
body. If there were to be any electrical problems, the users’

18-500 Final Project Report: Team D5 - 05/07/2022

hand would be at the greatest risk. The person wearing Tony
would be affected adversely, but one mitigation technique
would be to build a better encasing system for Tony so that
there would be more protection. We haven’t tested our
product’s long term effects on users, so it would be interesting
to see if the product has any effect on arm or finger
movement.

2. Data communication channels

There is data being transferred from the sensors to the
edge server to the web application, which means there are
several areas where a hacker could send their own data and
somehow overpower the system. This would be more critical
if the sensor data were affecting more parts of the screen
rather than an isolated web application. A hacker could
potentially take control of the users’ computer. The person
who would be at the greatest risk is the person running the
edge server and running the web application. This could be
mitigated by using secure servers from trusted companies.

3. Web security

The web application does not have security, and this
might be a security risk in two main ways. One, the user has to
sign up to use the web application. It is important to make sure
whoever does sign up knows their data is secure and is only
being used for authentication purposes. The person at the
greatest risk is the user accessing the web application. This
could also be solved from the previous solution - by running
the servers on more secure platforms.

IX. RELATED WORK

There are many portable trackpads out there, such as the
Apple Magic Trackpad, Logitech Wireless Touchpad, which
could provide a similar gesture recognition function as our
wearable watch. However none of the existing trackpads out
in the market right now has a design where there is no actual
physical medium for a user to perform gestures on. Our
wristband makes use of distance sensors to detect gestures
made on our arm, thus adding a level of mobility and
portability that differs our product from the existing trackpads.

We are designing a hologram pyramid to visualize 3D
objects and manipulate them using gestures taken by our
wristband. When compared to the other existing 3D model
viewing technologies such as Autocad, Unity, three.js, many
of them require the user to view from a display. They are
limited to where they can view this 3d model. We provide this
hologram pyramid as a way for users to view their model from
any space and also be able to walk around it and manipulate
its view using our wristband. Thus also adding another level of
uniqueness from the existing trackpad technologies out there.

X. SuMMARY
Originally, we had planned to only rotate and zoom in two
directions using swipes and pinches respectively, which
guided our original accuracy prediction of 82.5% and
correctness error of 15%. However, since then, we have
included an all degree rotation while altering the user
experience to increase the accuracy and correctness.

13

Furthermore, we achieved our latency requirement. Since our
numbers are close, we consider our system a success.

We are hoping that this project will change the immersive
technology field in the future and to improve how we interact
with computer graphics and modeling. We are changing the
field of digital environments that will improve how
professionals give presentations. Presenters want to be able to
interact with their audience while also effectively engaging
with the content on their screens. Professors who prefer
moving around the classroom, engineers who want to provide
a more interactive experience to stakeholders, and doctors who
want to inspect MRI imaging in a more practical sense will be
able to use our product with ease and add value to their daily
work.

A. Future Work

In the future, we hope to see this project adapt to more
OS-level interface functionalities such as cursor movement
and text. We expect our project to become more widely
needed in the future as immersive technologies become more
ubiquitous, just as Iron Man envisioned.

B. Lessons Learned

Our system was either able to successfully meet or get close
to the design specifications. It was definitely able to pass the
use-case requirements, as we did create a system that allows
people to control a 3D hologram with their fingers and
forearm.

A large limit to our project was the communication latency.
We believe if we have chosen Bluetooth over WiFi we would
be able to reach much lower than 100ms latency. We
ultimately chose WiFi because it was the easiest to use for the
hardware we all on-hand, but WiFi is highly susceptible to
interference from other devices and campus WiFi is not
always the fastest. If we had no choice but to use WiFi, we
would probably have used UDP instead of MQTT, which uses
TCP. UDP is much faster than TCP and it would be ok to drop
some sensor data frames.

Another limitation of our system was the VL6180X’s slow
update rate when there is no object in front of it. Since the
round robin algorithm needs to wait for each sensor to finish
before reading from the next one, it has to wait for sensors
whose measurements might not even be important in finger
detection. For instance, when a user is swiping on the lower
part of their forearm towards the sensors, only half the sensors
will have valid readings and the other half will read nothing.
However, the round robin algorithm needs to read everything
before sending data to the edger server. So, it spends most of
the time waiting for empty data. If we were to do it again, we
would possibly pick a single sensor that can read a whole area
instead of 10 individual sensors.

Since we have a 1D distance sensor array, it is highly
susceptible to interference. If anything is in front of the
sensors, our system will say there is a finger. So, if there are
other fingers blocking a finger swiping on the forearm, there
may be a false two finger detection, when only one finger is
touching the skin. This is unfortunately impossible to mitigate

18-500 Final Project Report: Team D5 - 05/07/2022

given our implementation, but maybe adding a heat signature
sensor can at least distance between random objects blocking
the finger like clothes. This means users’ sleeves need to be
removed out of the way when using our device, as the system
may classify cloth as fingers or sleeves may block the sensors
entirely. It was a bit annoying for users to roll up their sleeves
during the demo.

If a student reading this report is planning to remake this
project in the future or tackle this application, we would
suggest changing the use case to an OS-interface rather than a
3D hologram. If you are to stick with a 3D interface, perhaps
use an AR headset since it would make more sense to use your
forearm as a touch interface when wearing a headset that is
always on your body. Overall, this was a very interesting
challenge to explore and a super fun project to make!

ACKNOWLEDGEMENTS

We would like to thank Professor Sullivan and Funmbi
Jaiyeola, our TA, for all the support over the semester! We
would also like to thank everyone who was excited about our
project during the demo and those who spread the word of our
project to their friends. We would also like to thank Apple for
the prizes and all the monetary support for 18-500 over the
years.

GLOSSARY OF ACRONYMS
PCB - Printed Circuit Board
MQTT — Message Queuing Telemetry Transport
ToF — Time of Flight
IR — Infrared

REFERENCES

[1] Team ISTE. “8 Classroom Uses for Holographic Technology,” ISTE,
2015,
https://www.iste.org/explore/ISTE-blog/8-classroom-uses-for-holographi
c-technology.

[2] “Pepper’s Ghost: Holgoram Illusion,” Science = World,
https://www.scienceworld.ca/resource/peppers-ghost-hologram-illusion/.

[3] Deber, Jonathan, et al. “How Much Faster Is Fast Enough?: User
Perception of Latency & Latency Improvements in Direct and Indirect
Touch.” Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, 2015, pp. 1827-1836.

[4] “Time of Flight Sensors,” ST,
https://www.st.com/en/imaging-and-photonics-solutions/time-of-flight-s
ensors.html.

[5] https:/mosquitto.org/

[6] “Curve Fitting.”
¢ fithtml

[71 “Argrelmin.”

in.html#scipy.signal.argrelmin
[8] “Argrelmax.”

ax.html#scipy.signal.argrelmax

[9] “Support Vector Classification.”
[10] “Grid Search Ccv.”

https://scikit-learn.org/stable/modules/generated/sklearn.model selection

.GridSearchCV.html

14

https://www.iste.org/explore/ISTE-blog/8-classroom-uses-for-holographic-technology
https://www.iste.org/explore/ISTE-blog/8-classroom-uses-for-holographic-technology
https://www.scienceworld.ca/resource/peppers-ghost-hologram-illusion/
https://www.st.com/en/imaging-and-photonics-solutions/time-of-flight-sensors.html
https://www.st.com/en/imaging-and-photonics-solutions/time-of-flight-sensors.html
https://mosquitto.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmin.html#scipy.signal.argrelmin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmin.html#scipy.signal.argrelmin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmax.html#scipy.signal.argrelmax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmax.html#scipy.signal.argrelmax
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://www.sktime.org/en/stable/api_reference/classification.html

18-500 Final Project Report: Team D5 - 05/07/2022

wrist/data/sensors

Fig. 4. MOTT Data Flow.

Sensor Data #1
Gesture: swipe
x: 130

y: 10

Timestamp: 1500

Sensor Data # 2
Gesture: swipe
x: 110

wrist/data/gestures

wrist/data/sensors

Web Application

Parses json received into
string for Unity parsing
function

y: 16

Timestamp: 2000

Fig. 9. Unity-Webapp Flow Chart.

wrist/data/gestures

Unity - Process Data Function

« Keeps track of incoming data
gestures

+ Noise filtering

« Starts execution of an actual
gesture after two data points of
same gesture classification by
setting flags

« Repeated nones = end of gesture

Update Function
« Gets called every 60fps in Unity

« Executes either a zoom or rotate from queue of
resepctive gestures when flag from Process Data is set.

MQTT topic
name

Legend

.\

15

18-500 Final Project Report: Team D5 - 05/07/2022

16

Item Name | Part# Manufacturer Quantity | Price Description Total
Custom PCB | n/a JLCPCB 1 $4.00 Custom-designed Printed $4.00
Circuit Board
Distance VL6180X STMicroelectroni | 10 $2.95 Proximity sensor and ambient $29.50
Sensors Time-of-Flight cs light sensing (ALS) module
distance sensors
Microcontrol | Particle Photon | Particle 1 $19.00 | WiFi-enabled board with $19.00
ler Board STM32 ARM Cortex M3
microcontroller (personal
device)
Wristband n/a 1 $2.50 Exercise Wristband to attach $2.50
electronics
Resistors 10K Ohm n/a 12 $0.00 10K Ohm Resistors and Wires | $0.00
and Wires (scrounged from lab spaces)
Total $55.00
Acrylic n/a 6 $7.50 Clear plastic sheets to cut $45.00
Sheets trapezoids out of for hologram
pyramids
Monitor 1 $0.00 $0.00
Total $45.00

Table 7. Bill of Materials and Budget.

17

18-500 Final Project Report: Team D5 - 05/07/2022

95 F% €2 | OEBTOCLZOTSTHZETCCIZOCELBLLLOLSIPLELZILLOLG B8 L 9 § ¥

€ 2 | }EOE 6282

ssaifiaig suoliang Bunsay Jasn
@ojdwog auohiang uolieussald pue Bujsay jeuly
Yoey) ey
aja(dwon [uBisopay
@9idwon L4 swaisfsans jo Bunsey feniul
ajgidwog Exysnuy Iyjuobje o) sasea uasayp Bupndwoo Ajeanewayey
Bunsaj ¢ esele
apedwo) [Buuses) auyoew yim swiiobje arosdw)
ajeidwog ¥ Elep 12310
aedwo) I~ uonzelep aimseb Joj wiyiuoBie wawe|dw
ajgdwog [uopaalap aunjsab Joj wippoble youeasay
@gidwog I ueppoaysp sebuy so wiyuoBje uawsidw)
ajjdwion 17 uoRoajap Jabuy Joj swiyOBIe YoIRasaY
e A L T K IS 4 LA |
ajeidwon piemp3 158 pue uojsioep Juaws|dw
sjeidwon pIEMp3 Loojanig sA LM yaseasay
ejeydwon piemp3 §/020)04d UOIENUNWILICD YIBSSAY
apidwon eyysnuy ouep uosjer dn jag
UO[BUNUILLICD UOSIEF .G 85Uy
ajeidwog ejysnuy 80d Uim uonesBaju|
ap|dwo) Byysnuy pueg Guyaseasey
PuEg LSIHM b SRl
ejeydwon BHYSNUY + SUUROM ‘@ausuadxa wesbojoy jsa)
a9idwon eyusnuy subisep weJBojoy Buidioiod
ajeidwon eyysnuy BuidAyojoid wesbojoy ey
ejgdwon Byysnuy suBisap pluesAd weiBojoy Buiyaieasey
weibojoy € eseyd
ajeidwo) euueor” Buuayyy esiony
al9idwon QUUBOL BIBP JUS UO POSEY IUSWBAOW [9POW JO) WipUoBly
ajeidwon auueor gem ay) u) JuawuoJaua Ayun Guniodw
apjdwo) auueor fnun oyl sindul [ewaxe Ind 0} Moy BUILIBIE
aeydwon auueor Apun unjuswuosinua wesbojoy Bunenuig
Aun g aselel
alejdwos plemp3 Gupsay [eny|
aje(dwod piemp3 JapJo Bupuas
an9idwo) piemp3 80d 81 Buubisaq
80d } eseyd
aordwoy auofiang siied JOp.o pue ISI| [eUaJEW sZ1jeuly

1292522 €222 1Z0Z6LBL LLOLSLYLELTLILOLG 8 L9 6 v € 2 L gzseeeszieczzzizocei et aaisirieiziiiore o L s e

51 8aM 1 Yoam £1 %eaM ZL oM 1L oo 01 YeoM R 8 %090 1%08M 9 %08 S %a8m %000 £ %00M smeig 13UMQ YseL aweN ysel
JUYMLIANS AHMLWNSAYMLIWNS M LILWNSIEMLAWNS 38MLIWNSIYMINNSAYMLINNSIEIMIWNS IEMLINNSIEMLIANS 38MLIINNS I8mMmLN
Aap Iudy | yasap Arenigoy | uopejuasaid [euld #Z judy
uoday uisag z yasepy
suokieny uopejuesald ubiseq oz Aenigey
auueor uonejuasald [esodold § Aenigas
piemp3 dmes esqem § Aenigey
Ejysnuy. sajeq enq juepiodu)
NO WD 10 %0(rD 19 HO 92 40 30|00 /20 82 YOI Z8 A (X4 M8 A8 N8 18 S8 |48 DA 48 08 N8WE 18 %8 ra 18 HE 98 38 38 08 08 88 V8 Zv AY XV MY AV [NV LV SY HY DV 4V |0V NV INV TV XV rY|IV HY O¥ Jv IV a¥[ovBv ¥ Z A XM A N L S ¥4|(D/d O N W T|(X " I H 9 4|3 a 2 1 v

Fig. 21. Schedule

and Task

Breakdown.

	I.​INTRODUCTION
	II.​USE-CASE REQUIREMENTS
	III.​ARCHITECTURE
	IV.​DESIGN REQUIREMENTS
	A.​Engineering
	B.​Gesture Classification Accuracy
	C.​Gesture Translation Correctness
	D.​Latency

	V.​SYSTEM IMPLEMENTATION
	A.​Wearable
	B.​Middleware and Gesture Recognition
	C.​Web Application
	D.​Hologram Pyramid

	VI.​TEST, VERIFICATION, AND VALIDATION
	A.​Experiment 1: Classification Accuracy
	B.​Experiment 2: Finger Displacement Accuracy
	C.​Experiment 3: Latency
	D.​Engineering
	E.​User Experience
	F.​Live Demonstration

	VII.​DESIGN TRADE STUDIES
	A.​Sensors
	B.​Communication
	C.​Web Application Backend
	E.​Finger Detection Model
	1. Curve Fitting
	2. Support Vector Machines with Pinch and Swipe Data
	3. Time Series Classification

	VIII.​PROJECT MANAGEMENT
	A.​Schedule
	B.​Team Member Responsibilities
	C.​Bill of Materials and Budget
	D.​Risk Mitigation Plans
	E.​Ethical Issues

	IX.​RELATED WORK
	X.​SUMMARY
	A.​Future Work
	B.​Lessons Learned

