
Hands-on DH methods tutorial - j.mp/dhh15ho

1. Exploration of Structured Data

1.1 Data cleanup in OpenRefine

1.​ Install OpenRefine
2.​ Run OpenRefine and go to http://localhost:3333/
3.​ Copy and paste the content of

https://raw.githubusercontent.com/dhh15/fnewspapers/f3d14a42596d41896e57e68ac1e186e
c638b65cb/data/timeseries2_others.csv as a new project into OpenRefine (create project
from clipboard). Remove the first line and add a heading line “year,word,frequency”)

4.​ Transform frequencies into numbers using Edit cells -> Common transforms -> To number
5.​ Create a facet for “frequency” using Facet -> Numeric facet
6.​ Search for overpowering frequencies
7.​ Create a facet for “word” using Facet -> Text facet
8.​ Limit to words with overpowering frequencies (“työ”)
9.​ Under “All”, remove all matching rows
10.​Under “word”, Edit cells -> Cluster and edit. Try different options for clustering, merge cells

that should be the same
11.​ Export the data as CSV

1.2 Data visualization in RAW

1.​ Copy and paste the exported CSV data (or
https://raw.githubusercontent.com/jiemakel/dhintro/dad05a321dee7ab37ec4269555de428d6b
aa358c/socialist-frequent-words-filtered-timeseries.csv) into RAW.

2.​ Select a suitable visualization (Bump Chart or Streamgraph)
3.​ Drag relevant fields into their positions, tune visualization (you can export the visualization as

an SVG file)
1.3 Data extension (using geocoding as an example) in OpenRefine

1.​ Copy and paste
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data
/Letters.txt as a new project in OpenRefine

2.​ Sort by one of the place fields
3.​ Select “Reorder rows permanently” from the sort menu that just appeared
4.​ Select “Blank down” from the edit cells menu in the place column so each place is mentioned

only once
5.​ Select “Place -> Facet -> Customized facets -> Facet by blank”. Filter by blank, and select “All

-> Edit rows -> Remove all matching rows” to remove extraneous rows
6.​ Follow the geocoding recipe at https://github.com/OpenRefine/OpenRefine/wiki/Geocoding to

add coordinates based on the place column
7.​ Export the place and coordinate fields as CSV using “Export -> Custom tabular exporter”

1.4 Data visualization in Palladio
1.​ Copy and paste

https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data
/Letters.txt into Palladio

2.​ Click on a place field, choose “Add new table” and copy and paste your geocoded place table
(or
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data
/Cities.tx)t as an extension to use the map view

http://j.mp/dhh15ho
http://openrefine.org/download.html
http://localhost:3333/
https://raw.githubusercontent.com/dhh15/fnewspapers/f3d14a42596d41896e57e68ac1e186ec638b65cb/data/timeseries2_others.csv
https://raw.githubusercontent.com/dhh15/fnewspapers/f3d14a42596d41896e57e68ac1e186ec638b65cb/data/timeseries2_others.csv
https://raw.githubusercontent.com/jiemakel/dhintro/dad05a321dee7ab37ec4269555de428d6baa358c/socialist-frequent-words-filtered-timeseries.csv
https://raw.githubusercontent.com/jiemakel/dhintro/dad05a321dee7ab37ec4269555de428d6baa358c/socialist-frequent-words-filtered-timeseries.csv
http://app.raw.densitydesign.org/#%2F
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/Letters.txt
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/Letters.txt
https://github.com/OpenRefine/OpenRefine/wiki/Geocoding
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/Letters.txt
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/Letters.txt
http://palladio.designhumanities.org/#/upload
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/Cities.txt
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/Cities.txt

3.​ Click on “author/recipient”, choose extend and copy and paste
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data
/People.txt as an extension table to enable facet filtering by person metadata. Do the same
for the remaining attribute

4.​ Fiddle around with the various views (you can often export a visualization as an SVG file, or
you can save the whole project to allow someone else to load your state)

https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/People.txt
https://raw.githubusercontent.com/humanitiesplusdesign/palladio-app/master/sample%20data/People.txt

2. Topic Modeling of raw texts using LDA

LDA is a topic modeling methodology, where we assume that in a set of documents, there are N
underlying topics that are being written about, which LDA tries to find out. What comes out are
statistical spreads, which give a distribution of 1) how much a topic is present in each of the
documents and 2) how probable are each of the words to occur in each topic.

1.​ Install RStudio
2.​ Install any missing packages if you are on a fresh install:

a.​ install.packages(c(“topicmodels”,”tm",”LDAvis”))
3.​ Paste in this script and point it to your corpus:

Required packages
library(topicmodels)
library(tm)
library(LDAvis)

Load corpus and preprocess
corpus <- VCorpus(DirSource("/srv/data/varieng/ceec-subcorpora/scot-1700-1719/"))
corpus <- tm_map(corpus,content_transformer(tolower))
corpus <- tm_map(corpus,removeNumbers)
corpus <- tm_map(corpus,removePunctuation)
corpus <- tm_map(corpus,removeWords,stopwords("SMART"))
corpus <- tm_map(corpus,stripWhitespace)
doc_term <- DocumentTermMatrix(corpus)

Do LDA
set.seed(43523) # for reproducibility
numtopics <- 20
lda <- LDA(doc_term, numtopics)

Write out LDA results
write.csv(posterior(lda)$topics,"lda-documents-topics.csv")
write.csv(topics(lda),"document-main-topic.csv")
write.csv(posterior(lda)$terms,"lda-terms-topics.csv")
write.csv(terms(lda,50),"topic-50-main-terms.csv")

json <- createJSON(phi = exp(lda@beta), theta = lda@gamma,
 doc.length = rowSums(as.matrix(doc_term)), vocab = lda@terms,
 term.frequency = colSums(as.matrix(doc_term)))
serVis(json)

4.​ Explore in the user interface. Of particular interest is the relevance metric adjustment slider

(λ), which allows you to weigh how much topic specificity (how much a term appears also in
other topics) is weighted against pure topic “relatedness”. Identification of what the different
topics actually mean will probably necessitate finding a suitable sweet spot using this tool.

5.​ Future versions will most probably support more functionality out of the box, so you don’t
have to e.g. look at the topic-document -matrix from separate csv files:
http://glimmer.rstudio.com/cpsievert/xkcd/ (I think you can actually now take the json
produced by the above script as well as the document-main-topic.csv and upload them to this
version for visualization)

http://www.rstudio.com/
http://glimmer.rstudio.com/cpsievert/xkcd/

	Hands-on DH methods tutorial - j.mp/dhh15ho
	1. Exploration of Structured Data

