Introduction to Particle Swarm Optimization and its Application to Mobile Swarm Robotics

Outline

- Introduction, Thanks, Discussion
- The Story
 - First researched in undergraduate studies for swarm robotics work
 - 1st sem.
 - Began investigating robot collaboration solidifying the design of one robot
 - Job: seek light
 - Q-learning reinforcement technique
 - Starting with something simple so to remain scalable to more complicated targets and environments
 - 2nd sem., added localization (gps), communication (rf)
 - Realized the problem: moving the swarm intelligently
 - Wouldn't it be great if there was an intelligent way to choreograph the robots' movements without too much computational overhead or complexity, yet remain robust to significant changes in the environment?
 - Found PSO, researched and implemented, but not tested due to time constraints and platform issues
 - Revisited in graduate studies as project in optimal control theory class
- PSO Introduction [Kennedy]
 - Authors
 - James Kennedy (Social Psychologist, Bureau of Labor Statistics, Washington, DC)
 - Russell Eberhart (Electrical Engineer, Purdue School of Engineering and Technology, Indianapolis, IN)
 - Original paper in 1995, Proceedings of IEEE International Conference on Neural Networks.
 - Originally created to simulate social behavior models, inspired by "graceful but unpredictable choreography of a bird flock"
 - Component Methodologies
 - Artificial Life: bird flocking, bee swarming, fish schooling, group of seemingly intelligent units performing one task.
 - Evolutionary computation: genetic algorithms and evolutionary programming
 - Conceptually, this is what gives the algorithm its power. After all, science and technology inspired by nature, benefits from the millions of years of

development that has already happened.

- Growth and Applications
 - First published application: tuning artificial neural networks
 - Algorithm is general and can be applied to multiple areas
 - Riccardo Poli, Department of Computer Science, University of Essex, Colchester, UK
 - 1100 papers in ieee xplore, 650 cited papers, 26 top journal paper topics
 - Optimal Control
 - Investment Decision Making
 - Graphics and Visualization
- PSO Algorithm
 - There are many variation and hybridizations of the algorithm. Here we examine the original presented in the paper.
 - Definitions
 - $f: \mathbb{R}^n \to \mathbb{R}$, maps n-dim to 1
 - Fitness / cost function to be minimized
 - Takes a candidate solution, and assigns a fitness / cost
 - The gradient of *f* is not known
 - **S**, number of particles each with position $\mathbf{x}_i \in \mathbb{R}^n$ and velocity $\mathbf{v}_i \in \mathbb{R}^n$
 - **p**_i best known position for particle *i*
 - **g** best known position for the swarm
 - Tuning factors
 - Initialize
 - Uniformly distribute the particles' positions: $\mathbf{x}_i \sim U(\mathbf{b}_{lo}, \mathbf{b}_{up})$
 - Uniformly distribute the particles' velocities: $\mathbf{v}_i \sim U(-|(\mathbf{b}_{up} \mathbf{b}_{lo})|, (\mathbf{b}_{up} \mathbf{b}_{lo}))$
 - Over every particle:
 - Set each particle's best with it's starting position: p_i = x_i
 - If the particle's best is better than the global, update the global: g
 p_i
 - Iterate
 - Over every particle:
 - Generate uniformly distributed random values
 - Assign a new velocity based on factors of
 - Previous velocity
 - o The distance to the local best
 - The distance to the global best
 - Update the position based on the new velocity
 - If the new position is better than the local, update it
 - If the new position is better than the global, update it
 - So already you might be able to see some carry over into mobile robotics.
- Benchmark Behavior
 - Functions:

- Rastrigin Function: non-convex, 2D (could be more / less), "sagging egg-crate bed cushion", minimum at (0, 0), many discrete minimums and maximums
- Rosenbrock Function (1960, computer journal): non-convex, 2D, "banana valley", minimum at (1, 1), easy to find valley, [Rosenbrock]
- Benchmark Performance:
 - Marco Nobile (M.S. Evolutionary Computing and Complex Systems. Milano, Italy)
 - http://vimeo.com/17407010
- Qt Demo #1
 - Cost function, minimize: $f(x,y) = sqrt((t_x x)^2 + (t_y y)^2)$
 - 4 Hz or fps or iterations per s
 - o "Slow Approach"
 - \bullet $\omega = 0$ (previous velo)
 - $\phi_i = .025$ (distance to local)
 - $\phi_a = .025$ (distance to global)
 - Without investigating the algorithm further, we already have the foundation for a path finding or room mapping algorithm.
- Application: Path Finding / Room Mapping
 - Rafaelle Grandi, Computer Engineer, University of Bologna, Industrial robotics and swarms.
 - Tuning not known, cost function is 3D, position (x,y) and time robot is in a position
 - The video is left as an exercise for the student
 - o What if the goal moves?
- Five principles of swarm intelligence
 - o Millonas, (1994). Swarms, phase transitions, and collective intelligence
 - Proximity: "population should be able to carry out simple space and time calculations"
 - Quality: "population should be able to respond to quality factors of the environment", the principle that the population must be able to sense the appropriate stimuli in the environment
 - Diverse Response: "population should not commit its activities along excessively narrow channels", react in various ways to stimulus
 - Stability: "population should not change its mode of behavior every time the environment changes"
 - Adaptability: "population must be able to change behavior mode when it's worth the computational price." if there is a modest change in the environment, the population should be able to adapt to it
 - 4 and 5 are complementary, a trade-off must be balanced
 - Our optimizer can suitably operate as a swarm intelligence.
 - o What if our goal moves?
- Qt Demo #1 Revisit

- Move goal within the swarm
- Move goal outside the swarm, Uh oh!
- Wait, wait. How'd that path finding example work then?
- Consider the 3D gradient.
- Tuning Values [Pedersen]
 - Magnus Pedersen, HVass Laboratories, 2010, determined "good" choices for tuning values for a number of scenarios
 - Used a meta-optimization technique, PSO to find PSO values
 - General tunings
- Qt Demo #2
 - Our Get back to the question: What if the goal moves?
 - "Slow Approach"... Bad
 - o "Good"
 - ω = .3925 (previous velo)
 - $\phi_i = 2.5586$ (distance to local)
 - ϕ_{α} = 1.3358 (distance to global)
 - o What if the optimizer over-tunes?
- Qt Demo #3
 - o "Oscillations"
 - \blacksquare $\omega = 1$ (previous velo)
 - \bullet $\phi_i = 1$ (distance to local)
 - \bullet $\phi_a = 1$ (distance to global)
 - Unbounded, oscillates forever
 - o "Oscillations Modified"
 - \bullet ω = .99 (previous velo)
 - \bullet $\phi_i = 1$ (distance to local)
 - \bullet $\phi_a = 1$ (distance to global)
- Application: Original, seek robustly in changing environment
 - o Moving intelligently? Yes, the PSO follows the five principles of warm intelligence.
 - Is there considerable computational overhead and complexit? No, PSO iterations are simple, nonlinear calculations.
 - Is the swarm robust to significant changes in the environment? Yes, even with intentional oscillations, the PSO collapses to a solution.

References

Grandi, R. (2009). "Robot Swarm driven by Particle Swarm Optimization algorithm". https://www.youtube.com/watch?v=RLIA1EKfSys.

Kennedy, J.; Eberhart, R. (1995). "Particle Swarm Optimization". Proceedings of IEEE International Conference on Neural Networks. 1942–1948.

Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. In C. G. Langton, Ed., *Artificial Life III*. Addison Wesley, Reading, MA.

Nobile, Marco. (2010). "Particle Swarm Optimization". http://vimeo.com/17407010.

Pedersen, M.E.H. (2010). "Good parameters for particle swarm optimization". *Technical Report HL1001*. Hvass Laboratories.

Poli, R. (2008). <u>"Analysis of the publications on the applications of particle swarm optimisation"</u>. *Journal of Artificial Evolution and Applications*: 1–10.

Rosenbrock, H. H. (1960). <u>"An Automated Method for finding the Greatest or Least Value of a Function"</u>. *The Computer Journal*: 175–184.