

Universal Toolbox for Trust-Enhancing Technologies

About this document

subjects/goals:
– GA4GH 12th Plenary Connect session: Towards GA4GH-powered SPEs/TREs
–– proposing a GIF project around data security:
––– categorical and functional analysis of various trust-enhancing technologies
––– formal language for trust-enhancing tech definition through trust relations
––– universal middleware architecture => toolbox
— formalise: attested TLS protocol and other technologies

NOTE: The document has been shifting from `PETs` term (Privacy-Enhancing
Technologies) to `Trust-Enhancing Technologies` to better fit the goal of
describing a universal matrix of protection aspects as it broadens the scope
beyond privacy to include encryption’s role in ensuring identity, integrity, and
policy enforcement, where data privacy is one of several possible protection
aspects within a larger framework of security.

Licence: GPLv2

Contributing: We invite contributors to review the document’s goals and framework,
focusing on enhancing the Universal Toolbox for Trust-Enhancing Technologies.
Provide suggestions via comments, ensuring alignment with a focus on identity,
integrity, and policy enforcement across hardware, software, and data in all
possible contexts. Contributions should adhere to the aim of improving the
functional and categorial analysis within this universal framework.

Contributors: Pavel Nikonorov, Ravi Kiran Mahankali, Alex Kanitz

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 1

https://docs.google.com/document/d/1RgFCWumOtk-Ik8UftEqKUR53kuKCm5Y1/edit#heading=h.khdvvwrsbxu3

Abstract / Summary​

-​ policy/privacy <=> multi-party environment
-​ policy <=> trust
-​ trust definition
-​ encryption = trust establishment tool
-​ toolbox of trust-enhancing encryption technologies
-​ operationalise trust on the infrastructure level

​​ The concept of privacy implies a context where one’s information could be
observed, accessed, or infringed upon by other parties. The party that shares data
with another one mandates its privacy policy that outlines how information should
be collected, used, shared, and protected. These policies must be respected and
preserved by the receiving party, which requires trust from one to another. Trust
characterises the level of confidence in the receiving party’s ability to perform
certain functions or services correctly, fairly and impartially, along with the
assurance that the entity and its identifier are genuine.

​​ Encryption technologies are instrumental in establishing self-sustaining trust
relationships between different parties, as well as helping to prove and verify
identity and authenticity. This paper presents an architecture concept of a
Universal Toolbox for Trust-Enhancing Technologies (TETs) that implements a
formalised matrix of security aspects allowing various TETs to be operationalised
programmatically as a policy at the infrastructure level.

​​ Notably, the cryptographically-backed protection of some of these aspects is
enabled by technologies such as Homomorphic Encryption and Trusted Execution
Environments (TEEs). This toolbox can be implemented within a security policy
manager, allowing each cluster host to manage its hardware, data and software
usage policies within a multi-domain environment, and promises practical,
comprehensive, and enforceable policy protection across all data and software
states and their interactions in federated environments.

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 2

Introduction

Alice <== TET_protocol ==> Bob

TODO: practically,there is always one more party – Eve who manages the network infra.​
that’s why we need data-in-transit confidentiality protection (SSL/TLS)

Both Alice and Bob can possess their digital assets (hereinafter ‘secrets’) and
manage their privacy policy (access control).

The secrets can be categorised into:
-​ persistent: keys, passwords, data, software sources or executables;
-​ temporary: tokens, nonce.

There are three states of secrets: at-rest, in-transit, and in-use.

Any TET protocol consists of steps/actions and related handshake models. Possible
steps may be categorised into the following possible actions:

-​ generating secrets (explicitly or based on other secrets);
-​ sending/receiving secrets with another party (Alice/Bob or software agents);
-​ verifying secrets;
-​ storing secrets into controlled storage systems;
-​ retrieving secrets from the controlled storage systems;
-​ executing/stopping software agents.

Within a single TET protocol, steps involving secret generation or verification,
as well as sending, can leverage other TETs.

Protocol steps that verify received secrets are intended to lead to the trust
state update for the receiving party. Trust states may be categorised on:

-​ Undefined: not yet verified.
-​ Untrusted: verified with a negative result.
-​ Self-sustaining trust: relies solely on cryptography (homomorphic, SMC).
-​ Inferred trust: a logical consequence based on a system of other

verifications/pivots, relies on trust anchors such as CA, TEE CPU vendor or
software code auditor, which may be identified by a signature/domain;

Trust is non-transitional by its nature and always comes within the context. TETs
provide a mechanism of assurance of securing attributes such as identity,
integrity, and policy enforcement of subjects (e.g., hardware, software, or data)
in various contexts. Depending on the method, the context might imply a local or
remote subject location.

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 3

security attributes / protection aspects:

-​ identity (id) refers to the origin and authenticity of hardware, software,
or data, ensuring that the subject can be uniquely identified and verified.

-​ integrity (int) is also applicable to hardware, software, or data, and means
that it remains in its original, unaltered state, free from unauthorised
modifications throughout its lifecycle;

-​ policy (pp) applies in various dimensions to:

-​ hardware design: defines the behaviour and operational rules of
physical components, as outlined in their technical specification.
This includes how hardware handles data, communicates with other
systems, and enforces security measures (e.g., access control,
encryption measures, integrity checks, remote attestation).

-​ software licence: the software developer or intellectual property
rights owner’s policy on how the software can be distributed,
modified, and used, as well as by who, and on which terms.

-​ software design: defines the effective software’s policy on how it
collects, stores, analyses, erases, and protects data, including the
measures it has to preserve following the data owner’s privacy policy.

-​ data privacy: the data owner’s policy on how their data can be
collected, stored, analysed, or erased.

In remote contexts, some TETs might help Alice to ensure the security of data,
software, or hardware in Bob’s infrastructure, even when Alice does not have
direct control over it.

security attr. subject/object: hardware, software, or data context

identity origins, genuineness, authenticity each protection
aspect can be
considered in
both local and
remote context

integrity correctness and consistency without
unauthorised modification

policy hardware or software-designed behaviour;​
data owner’s policy; software licence;

Note: the protection of data integrity and confidentiality (which is one of the
privacy policy aspects) while it’s in transit effectively spans into a `remote`
context if it is transmitted over a 3rd-party network infrastructure.

Secrets revocability

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 4

Trust-Enhancing Technologies

Protection aspects notation:​
[aspect:id|int|pol|*]-[subject:hw|sw|da|*]-[location:loc|rem|*] (* – all)
Meaning: `aspect` is being protected for the `subject` in the `location`.

Category Function Algorithms Implementations Protection
Aspects

Hash Functions Converts data into a fixed-size hash value
for data integrity.

SHA-256, MD5, SHA-3 OpenSSL, GnuPG,
Libsodium

--loc

Symmetric
Encryption

Uses the same key for both encryption and
decryption

AES, DES, 3DES OpenSSL, NaCl,
Libsodium

--loc

Asymmetric
Encryption

Encryption public key for and a private key
for decryption

RSA, ECC, DSA

OpenSSL, GnuPG id-da-rem,
int-da-rem

Quantum
Encryption

uses quantum mechanics to securely generate
and distribute encryption keys, ensuring
tamper-evident communication

QKD OQS, QuISP, ​
ID Quantique

id-da-rem,
int-da-rem

Homomorphic
Encryption

Combines the strengths of symmetric and
asymmetric encryption.

Paillier, RSA, BFV,
BGV, Gentry’s
Scheme, LTV,
NTRUEncrypt, CKKS

MS SEAL,​
IBM HELib,
PALISADE,
Microsoft Seal

int-da-rem,
pol-da-rem,
id-da-rem

Zero-Knowledge
Proofs (ZKPs)

allows Alice to prove to Bob that a
statement is true without revealing any
information beyond the validity of the
statement

zk-SNARKs, zk-STARKs ZoKrates,
snarkjs,
StarkWare,
zkSync

id-da-rem,
int-da-rem

Secure
Multi-Party
Computation

Allows parties to jointly compute a function
over their inputs while keeping those inputs
private.

Garbled Circuits,
GMW

EMP-toolkit,
MP-SPDZ, ABY,
Sharemind

int-da-rem,
pol-da-rem

Distributed
Machine
Learning

Enables decentralised training of machine
learning models across multiple nodes while
ensuring data privacy and security

Federated Learning,
SWARM Learning,

Flower, PySyft,
TensorFlow
Federated

int-da-rem,
pol-da-rem,
id-da-rem

Differential
Privacy

Ensures individual data cannot be
reverse-engineered or identified within a
dataset, even when statistical analysis is
performed.

Laplace Mechanism,
Gaussian Mechanism,
Exponential
Mechanism

PySyft, Google
DP, IBM
DiffPriv, MS
SmartNoise,
PyTorch Opacus

int-da-rem,
pol-da-rem,
conf-da-rem

TEEs, ​
TEE Remote
Attestation

Provides hardware-isolated and remotely
verifiable environments to execute sensitive
computations securely.

RATS, DICE, TEEP,
TDISP

Intel SGX/TDX,
AMD SEV-SNP, ​
ARM TrustZone,​
Amazon
Graviton1, ​
NVIDIA H100

id–hw-*,
id-sw-*,
int-*-*

Attested TLS Allows to communicate with AI in clouds
without revealing all input data, as well as
the AI software and models itself

IRA-TLS, TLS-a CCC-PoC, ​
GENXT confido

id-*-*,
int-*-*,
pol-*-*

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 5

https://github.com/CCC-Attestation/attested-tls-poc

Both Alice and Bob can control the execution of one or more software agents or
storage systems. Software agents operating within TEE effectively become
independent data-controlling parties that, similar to Alice and Bob, can possess
their own secrets and manage their privacy policy.

[diagram: Alice/Bob executing TEE-based software agents / Trust Domains]

TEEs stand out from all other technologies by allowing software agents to:

-​ have remotely verifiable identities;
-​ possess their own secrets;
-​ control privacy policy; // thanks to hardware integrity protection and RA
-​ confidentiality. // thanks to memory isolation

universal trust-establishing protocol: definition/legend

SSS, {SSSx, SSSy}, [SSS, KKK] – secret, keypair/keychain, keystore object
AAA – software (sources or executable)
XXX – a party/agent controlling its data privacy policy // trust domain;
trust contexts = TC:

-​ HI = hardware integrity
-​ MI = memory isolation // data exposure fully depends on PP
-​ SI = software integrity // should we split the code itself and the code

that is being executed?
-​ PP = privacy preservation // strict purpose-limitation
-​ SA = secret authenticity

N. XXX sends[PET] SSS to YYY // protocol’s N step, sending secret using PET
N. AAA::XXX generates SSS // AAA uses XXX subsystem being in a single trust domain
N. XXX gets/puts SSS from/to YYY::VVV // VVV is a YYY subsystem
N. XXX runs AAA => YYY // executing YYY software agent
N. XXX verifies[PET] SSSx using SSSy // compute step resulting in (examples):

a.​@: XXX to SSSx : TC1=1 // trust pivot relying on the (@) verification step
b.​*: XXX to SSSx2: TC2=1 // explicit (*) trust within the TC context
c.​a: XXX to SSSx3: TC3=1 // trust pivot relying on (a) TC1-trust
d.​@: XXX to SSSx4: TC4=1, TC1=1 // inferred trust
e.​XXX to YYY: (TC)=0 // no trust to YYY within the TC context
f.​

note: can XXX explicitly trust some SSS? if it’s its secret?

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 6

Attested-TLS protocol (aTLS)

The aTLS protocol (“a” stands for “attested”) involves multiple trust pivots,
allowing Alice to establish a single trust domain within the software agents
executed on Bob’s side inside hardware-isolated and verifiable TEEs. The trust
context encompasses hardware integrity, memory confidentiality, software
integrity, privacy preservation integrity, and the authenticity of all secrets
involved. Alice maintains a zero-trust model for Bob and Bob’s software agents.

The use of a TEE can provide Alice with both a verifiable,
cryptographically-backed “fingerprint” of Bob’s software agents, as well as a
proof of its memory isolation (providing confidentiality and integrity
assurances). However, the TEE does not provide insights into how remote software
agents deal with Alice’s data before, during and after processing. For this
reason, Bob’s software should be well-known to Alice and identified by its hash
sums. Hereafter, “HashBox” is the operating system distributive solely designed to
execute TES (Task Execution System) and aTLS server agent, while restricting any
external access for Bob including SSH and serial console. Similarly, TES is
designed to execute tasks without exposing any secrets outside of the TEE
boundaries.

The following outlines an aTLS protocol implemented for executing Alice’s tasks
within a TEE-VM-based environment on Bob’s side. In this version, Bob’s hypervisor
is excluded from the TCB (Trusted Computing Base) for Alice. The only explicit
trust anchor in Alice’s TCB is the CPU vendor of the processors deployed in Bob’s
infrastructure. This trust includes confidence that the CPU(s) is implemented
strictly according to its specification and that the VCEK (Versioned Chip
Endorsement Key) infrastructure, hosted by the vendor, remains uncompromised.

1.​ Developers generate InfraSoftware = [OVMF/OpenHCL/vTPM, HashBox, TES]
a.​ @: Developer to InfraSoftware: SI=1, PP=1

2.​ Developer generates[HASH] InfraSoftwareMeasurements of InfraSoftware
a.​ @: Developer to InfraSoftwareMeasurements: SA=1

3.​ Auditor verifies InfraSoftwareMeasurements against InfraSoftware
a.​ @: Auditor to InfraSoftware: SI=1, PP=1
b.​ a: Auditor to InfraSoftwareMeasurements: SA=1

4.​ Auditor signs & puts InfraSoftwareMeasurements into TRS
5.​ Bob verifies HashBox against TRS // trusted repository service, hash-sums

store
a.​*: Bob to Auditor: SA=1 // additional context needed?
b.​a: Bob to Auditor.Signature: SA=1
c.​@: Bob to HashBox: SI=1, PP=1

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 7

6.​ Bob runs HashBox on CVM => HashBox // HashBox became an agent in the
Confidential VM

a.​*: Bob to CPU: HI=1
b.​a: Bob to VCEK-INFRA: SA=1
c.​a: Bob to HashBox: HI=1, MI=1, SI=1, PP=1

7.​ HashBox runs OpenHCL/vTPM in CVM::VMPL0 => TPM // OpenHCL is a VM FW
8.​ TPM generates {TPM_EK, TPM_AK} // endorsement and attestation keys
9.​ HashBox::CPU generates TEE_Report={Measurement, TPM_AK}
10.​HashBox::CPU puts TEE_Report into TPM::NVRAM
11.​HashBox runs TES => TES
12.​Alice generates ClientNonce
13.​Alice sends[LE-TLS] ClientNonce to TES // regular TLS using let’s encrypt

a.​Alice to TES: HI=0, MI=0, SI=0, DC=0, PP=0, SA=N/A // zero trust
14.​TES generates[TLS] TLSkeypair={TLSpubkey, TLSprivkey}

a.​*: TES to TLSkeypair: SA=1
15.​TES generates SuperNonce using [TLSpubkey, ClientNonce]
16.​TES::TPM generates TPM_Quote using SuperNonce
17.​TES gets TEE_Report from TPM::NVRAM
18.​TES generates Evidence = [TEE_Report, TPM_Quote, TLSpubkey]
19.​TES sends[LE-TLS] aTLS_response=[Evidence, TLSpubkey] to Alice
20.​Alice retrieves TEE_VCEK from VCEK-INFRA

a.​*: Alice to VCEK-INFRA: SA=1 // essential explicit trust
b.​a: Alice to VCEK: SA=1

21.​Alice verifies[SHA/RSA/ECDCA-TBA] Evidence.TEE_Report using VCEK
a.​@: Alice to TEE_Report: SA=1
b.​@: Alice to CVM: HI=1, MI=1, SI=1

22.​Alice verifies[HASH] Evidence.TEE_Report.Measurement against TRS
a.​@: Alice to HashBox: PP=1
b.​@: Alice to CVM::HashBox: HI=1, MI=1, SI=1, PP=1

23.​Alice generates[SHA] SuperNonce using [Evidence.TLSpubkey, ClientNonce]
24.​Alice verifies Evidence.TPM_Quote using [Evidence.TEE_Report.AK, SuperNonce]

a.​@: Alice to Evidence.TPM_Quote: SA=1
b.​a: Alice to Evidence.TPM_Quote.PCRs: SA=1
c.​a: Alice to aTLS_response.TLSpubkey: SA=1

25.​Alice verifies[HASH] Evidence.TPM_Quote.PCRs against TRS
a.​@: Alice to HashBox: SI=1, PP=1
b.​@: Alice to OpenHCL/vTPM: SI=1, PP=1
c.​ab: Alice to HashBox: HI=1, MI=1, SI=1, PP=1 // boot_aggregate verification
d.​@c: Alice to TES: HI=1, MI=1, SI=1, PP=1 // IMA-LOG & PCR10

26.​Alice establish aTLS with TES using TLSpubkey
a.​@: Alice to aTLS: HI=1, MI=1, SI=1, DC=1, PP=1, SA=1

27.​Alice sends[aTLS] [TRS.TASK, DATA] to TES

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 8

a.​@: Alice to TASK: PP=1
28.​TES::TASK(DATA) generates RESULT
29.​TES sends[aTLS] RESULT to Alice

a.​@: Alice to RESULT: SA=1, MI=1, PP=1

universal toolbox: data structures

enum TrustType [explicit, self-sustaining, inferred];

struct TrustPivot {
​ type: TrustType,
​ a: Agent, // always Agent

b: Object, // Agent or Secret
context: Vec<TrustContext> // clarify

}

struct ProtocolStep {
​ a: Agent, // always Agent

b: Object, // Agent or Secret
c: Optional<Object>, // using c or against c - same

​ action: Action, // send, execute, generate, verify, establish
action_protocol: Optional<PET>, // SHA256, AES, TLS, aTLS
action_parameter: Secret,
trust: Vec<TrustPivot>,

}

// example definition
aTLS: PET = {

name: “aTLS”,
encryption-type: hybrid, // just meta-information
trust-context: {
​ id-*, int-*, pol-* // structure to be defined
},

​ protocol: Vec<ProtocolStep>,
// protocol as a set of steps/actions and handshake models:
// Each step leads to the trust model update

}

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 9

universal toolbox: sample entries

toolbox = [{
​ technology: aTLS,

vulnerabilities: [], // concept/design-level
implementations: [{
​ vendor: “GENXT LTD”,

name: “confido”,
link: {

client: “trs://somehost.org/genxt/confido-client”,
server: “trs://somehost.org/genxt/confido-server”,

},
vulnerabilities: [], // implementation-level

}, {
// could be other implementations

}]
}, {
​ "technology": "Homomorphic Encryption",
​ "vulnerabilities": [],
​ "implementations": [{
​ ​ "vendor": "Microsoft",
​ ​ "name": "Microsoft SEAL",
​ ​ "link": {
​ ​ ​ "client": "trs://somehost.org/microsoft/seal-client",
​ ​ ​ "server": "trs://somehost.org/microsoft/seal-server"
​ ​ },
​ ​ "vulnerabilities": []
 ​ }, {
​ ​ "vendor": "IBM",
​ ​ "name": "HELib",
​ ​ "link": {
​ ​ ​ "client": "trs://somehost.org/ibm/helib-client",
​ ​ ​ "server": "trs://somehost.org/ibm/helib-server"
​ ​ },
​ ​ "vulnerabilities": []
​ }]
}]

GENXT LTD. Incorporation Number 11786440.
AB318, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1DR 10

http://somehost.org/genxt/confido

	Universal Toolbox for Trust-Enhancing Technologies
	
	Abstract / Summary​
	Introduction
	Note: the protection of data integrity and confidentiality (which is one of the privacy policy aspects) while it’s in transit effectively spans into a `remote` context if it is transmitted over a 3rd-party network infrastructure.
	Secrets revocability
	Trust-Enhancing Technologies
	universal trust-establishing protocol: definition/legend
	
	Attested-TLS protocol (aTLS)
	universal toolbox: data structures
	

	universal toolbox: sample entries

