
Technical Interview Preparation

Suggested prepartion material to review:
[1] "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein
[2] "Five Essential Phone Screen Questions" by Steve Yegge
[3] “Sample Google Interview Questions”
[4] “Hangout on Air: Candidate Coaching Session”
[5] “Programming Interviews Exposed: Secrets to Landing Your Next Job” by John Mongan, Noah
Suojanen

What to expect from the interview:
Knowledge of computer science principles (data structures, algorithms, systems design, and Big O
notation etc.) and how they can be used in your solutions. The main areas of preparation to succeed:

Algorithm Complexity: You need to know Big-O. If you struggle with basic big-O complexity analysis,
then you are almost guaranteed not to get hired. To brush up on algorithms & data structures visit:
topcoder.com

Coding: You should know at least one programming language really well (preferably Python, C++ or
Java). Be sure to check out our Google code style guides.

Sorting: Know how to sort. Don't do bubble-sort. You should know the details of at least one n*log(n)
sorting algorithm, preferably two (say, quicksort and merge sort). Merge sort can be highly useful in
situations where quicksort is impractical, so it would be beneficial to take a look at it.

Hashtables: Arguably the single most important data structure known to mankind. Be able to implement
one using only arrays in your favorite language, in about the space of one interview.

Trees: Know about trees; basic tree construction, traversal and manipulation algorithms. Familiarize
yourself with binary trees, n-ary trees, and trie-trees. Be familiar with at least one type of balanced binary
tree, whether it's a red/black tree, a splay tree or an AVL tree, and know how it's implemented.
Understand tree traversal algorithms: BFS and DFS, and know the difference between inorder, postorder
and preorder.

Graphs: Graphs are really important at Google. There are 3 basic ways to represent a graph in memory
(objects and pointers, matrix, and adjacency list); familiarize yourself with each representation and its
pros & cons. You should know the basic graph traversal algorithms: breadth-first search and depth-first
search. Know their computational complexity, their tradeoffs, and how to implement them in real code. If
you get a chance, try to study up on fancier algorithms, such as: Dijkstra and A*.

Other data structures: Study up on as many other data structures and algorithms as possible. Especially
know about the most famous classes of NP-complete problems, such as traveling salesman and the
knapsack problem, and be able to recognize them when an interviewer asks you them in disguise. Find
out what NP-complete means.

Mathematics: Some interviewers ask basic discrete math questions. This is more prevalent at Google
than at other companies because we are surrounded by counting problems, probability problems, and

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11866
https://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions
http://www.careercup.com/page?pid=google-interview-questions
http://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be
http://topcoder.com/
https://code.google.com/p/google-styleguide/

other Discrete Math 101 situations. Spend some time before the interview refreshing your memory on (or
teaching yourself) the essentials of combinatorics and probability. Be familiar with n-choose-k problems
and their ilk – the more the better.

