APl Basics and API Testing!!

This document will provide you with an overview of APl and the API Testing process.
It details the types of API testing and its protocols, various HTTP methods, and
response codes.

APl Testing

i

Pricilla B
bpricilla@gmail.com
https://www.linkedin.com/in/pricilla-b/

What is an API?
Private APIs:
Public/Open APlIs:

Partner APIs:

Client Service Architecture:

What is API Testing?
Why API Testing?
Types of API Testing:
Types of API Protocols:
SOAP Examples:
REST Examples:
JSON:
HTTP methods:
GET
POST
PUT

DELETE

Table of Contents

Resources, Parameters, and Headers:

Response codes:

11

12

14

16

17

18

18

19

19

20

22

REST Specific Status Codes and the frequently used:

200 (OK)

201 (Created)

202 (Accepted)

204 (No Content)

400 (Bad Request)

401 (Unauthorized)

403 (Forbidden)

404 (Not Found)

405 (Method Not Allowed)

500 (Internal Server Error)
Best Practices/Random Advices:
Challenges in API Testing:
Tools available in the Market for API Testing:
Which tool is used in Roche/our project?
Installation/Configuration process (Workspaces):

Request access for the Business plan:

22

22

23

23

23

23

23

24

24

24

24

25

25

26

27

28

32

What is an API?

application——— interface

procirantming

APl is an acronym and it stands for Application Programming Interface. APl is a set of
routines, protocols, and tools for building Software Applications. APIs specify how one
software program should interact with other software programs.

Normally, API facilitates the reusability instead of developing something new. For example

1. | need to book a room in Hyatt Regency via Agoda. | can directly do it on the Hyatt
Regency website, or on travel booking websites like Agoda, Trivago, etc. So here the
Hyatt Regency develops an APl and provides specific(read/write) access to the travel
agencies via which they can view/book their hotels.

2. Well instead of having to create Google Maps all over again from scratch, you can
connect your app to Google Maps. And how do you do that? Connect it to Google
Maps API.

Private APIs:

Internal APIs are the opposite of open APIs in that they are inaccessible to external
consumers and only available to an organization’s internal developers. Internal APIs can
enable enterprise-wide initiatives from the adoption of DevOps and microservice
architectures to legacy modernization and digital transformation. The use and reuse of these
APIs can enhance an organization's productivity, efficiency, and agility.

An example of a reusable internal APl is if a call center team created a customer
information API used in a call center application to access their name, contact information,
account info, etc. That team can then reuse this same APl in a customer-facing web
application or mobile application.

Public/Open APIs:

Open APIs, on the other hand, provide external developers with easy access and integrate
information from one tool to another. An open or public APl saves developers time by
allowing them to connect their platform with previously existing tools, reducing the need to
create entirely new functions.

Eg: Google Maps

Partner APIs:

Partner APIs fall somewhere in the middle of internal and external APIs. They are APIs that
are accessed by others outside the organization with exclusive permissions. Usually, this
special access is afforded to specific third parties to facilitate a strategic business
partnership.

A common use case of a partner API is when two organizations want to share data with each
other — such as a county’s health department and a hospital within that county. A partner
API would be set up so each organization has access to the necessary data with the right set
of credentials and permissions.

YOU GET AN API

GET AN API

EVERYBODY GETS ANQ{L_

Client Service Architecture:

The client-server model, or client-server architecture, is a distributed application
framework dividing tasks between servers and clients, which either reside in the same
system or communicate through a computer network or the Internet. The client relies on
sending a request to another program in order to access a service made available by a
server. The server runs one or more programs that share resources with and distribute work
among clients.

The client-server relationship communicates in a request-response messaging pattern and
must adhere to a common communications protocol, which formally defines the rules,
language, and dialog patterns to be used. Client-server communication typically adheres to
the TCP/IP protocol suite.

TCP protocol maintains a connection until the client and server have completed the message
exchange. TCP protocol determines the best way to distribute application data into packets
that networks can deliver, transfers packets to and receives packets from the network, and
manages flow control and retransmission of dropped or garbled packets. IP is a
connectionless protocol in which each packet traveling through the Internet is an
independent unit of data unrelated to any other data units.

Client requests are organized and prioritized in a scheduling system, which helps servers
cope with the instance of receiving requests from many distinct clients in a short space of
time. The client-server approach enables any general-purpose computer to expand its
capabilities by utilizing the shared resources of other hosts. Popular client-server
applications include email, the World Wide Web, and network printing.

There are four main categories of client-server computing:

One-Tier architecture: consists of a simple program running on a single computer without
requiring access to the network. User requests don’t manage any network protocols,
therefore the code is simple and the network is relieved of the extra traffic.

Two-Tier architecture: consists of the client, the server, and the protocol that links the two
tiers. The Graphical User Interface code resides on the client host and the domain logic
resides on the server host. The client-server GUI is written in high-level languages such as
C++ and Java.

Three-Tier architecture: consists of a presentation tier, which is the User Interface layer,
the application tier, which is the service layer that performs detailed processing, and the
data tier, which consists of a database server that stores information.

N-Tier architecture: divides an application into logical layers, which separate
responsibilities and manage dependencies, and physical tiers, which run on separate
machines, improve scalability and add latency from the additional network communication.
N-Tier architecture can be closed-layer, in which a layer can only communicate with the
next layer down, or open-layer, in which a layer can communicate with any layers below it.

THREE-TIER ARCHITECTURE

Client Server Database

Presentation tier Business Logic tier Data Storage tier

; SELECT*
reques
A FROM...
()
P —

response requested data

WHATIS APITESTING
{ ANDWHY SHOULD

WEBEUSINGIT?

Testing an API is as simple as submitting a request on behalf of an application (Client), using
another application’s API (Server), and checking that it returns the expected response.

API testing is about testing the APIs directly and also as a part of integration testing to check
whether the APl meets expectations in terms of functionality, reliability, performance, and
security of an application. In API Testing our main focus will be on a Business logic layer of
the software architecture. APl testing can be performed on any software system which
contains multiple APIs. APl testing won’t concentrate on the look and feel of the
application. API testing is entirely different from GUI Testing.

How is Ul testing different from API testing?

Ul (User Interface) testing is to test the graphical interface part of the application. Its main
focus is to test the look and feel of an application. On the other hand, API testing enables
the communication between two different software systems. Its main focus is on the
business layer of the application.

API testing is one of the most challenging parts of the chain of software and QA testing
because it works to assure that our digital lives run in an increasingly seamless and
efficient manner.

While developers tend to test only the functionalities they are working on, testers are in
charge of testing both individual functionalities and a series or chain of functionalities,
discovering how they work together from end to end.

APIs are what give value to an application. It’s what makes our phones “smart”, and it’s
what streamlines business processes. If an APl doesn’t work efficiently and effectively, it
will never be adopted, regardless if it is free or not. Also, if an APl breaks because errors
weren’t detected, there is the threat of not only breaking a single application, but an entire
chain of business processes hinged to it.

Why API Testing?

® APl Testing is time effective when compared to GUI Testing. APl test automation
requires less code so it can provide faster and better test coverage

® AP| Testing helps us to reduce the testing cost(shift-left defects). With API Testing we
can find minor bugs before the GUI Testing. These minor bugs will become bigger
during GUI Testing
API Testing is language independent
API Testing is quite helpful in testing Core Functionality

® API| Testing helps us to foresee and reduce the risks of the system

Types of API Testing:

Validation:

Validation testing is done immediately following the development process, specifically after
verification of the API’s constituent parts and functions is completed. Validation testing is
essentially a set of simple questions applied to the entirety of the project. These questions
include:

Schema: Is the API following the correct schema?
Ultimately, this test can be simply said to be an assurance of correct development against
the stated user needs and requirements.

Product: Did we build the correct product? Is the API itself the correct product for the issue
that was provided, and did the APl experience any significant code bloat or feature creep
that took an otherwise lean and focused implementation into an untenable direction?

Behavior: Is the APl accessing the correct data in a correctly defined manner? Is the API
accessing too much data, is it storing this data correctly given the confidentiality and
integrity requirements of the dataset?

Efficiency: Is the APl the most accurate, optimized, and efficient method of doing what is
required? Can any codebase be removed or altered to remove impairments to the general
service?

Functional Testing:

The purpose of functional testing is to ensure that you can send a request and get back the
anticipated response along with the status. This includes negative and positive testing. Make
sure to cover all of the possible data combinations.

There could be bugs rooted in the unit level or backend that wouldn’t be visible via Ul
testing. Error handling scenarios that are not feasible via the front end can be covered by
API testing.

Functional testing is still a very broad methodology of testing but is less broad than those
under Validation testing. Functional testing is simply a test of specific functions within the
codebase. These functions in turn represent specific scenarios to ensure that the API
functions within expected parameters, and that errors are handled well when the results are
outside of the expected parameters.

Security Testing:

The purpose of the security testing is to make sure that the communication with the API is
secure and that only the authorized user is allowed to make calls/access the API.

Need to check on the below points as part of security testing:
e To verify if the data is encrypted appropriately
e Type of Authentication used
e If tokens are used, then you need to test the validity of the token

Load Testing:

The purpose of performance testing is to ensure that the APl can handle user load and
determine what happens when it reaches that load limit.

Increase the number of API calls and then monitor response times and throughput.

Monitor for memory leaks by performing an endurance test. Stress the system out by loading
it down with calls - how does it respond to failures and breakage.

Load testing is thus typically done after the completion of a specific unit or the codebase as
a whole, testing whether the theoretical solution works as a practical solution under a given
load.

Integration Testing:

The purpose of integration testing is to verify success where multiple APIs are working
together. Focus on call sequencing and ensure data is returned promptly and accurately.

Documentation Testing:

The purpose of reviewing documentation is to validate that the documentation provides
enough information to interact with the API. This is typically done as you’re testing the API.

Do you have the information you need to successfully execute the testing? Would someone
consuming this information know how to interact with the API?
Ref: https://stripe.com/docs/api

Types of API Protocols:

While there are multiple types of API protocols, the most commonly used ones are SOAP and
REST.

sORF ¥~ Rrgn.

SOAP:

SOAP is an XML-based protocol for accessing web services over HTTP. It has some
specifications which could be used across all applications.

SOAP is known as the Simple Object Access Protocol, but in later times was just shortened to
SOAP v1.2. SOAP is a protocol or in other words, is a definition of how web services talk to
each other or talk to client applications that invoke them. The diagram below shows the
various building blocks of a SOAP Message.

(" SOAP-ENV: Envelope)

()
SOAP—-ENV: Header
_ J

4 p
SOAP-ENV: Body

_ J

= J

The SOAP message is nothing but a mere XML document that has the below components.

e An Envelope element that identifies the XML document as a SOAP message - This is
the containing part of the SOAP message and is used to encapsulate all the details in
the SOAP message. This is the root element in the SOAP message.

e A Header element that contains header information - The header element can contain
information such as authentication credentials which can be used by the calling
application. It can also contain the definition of complex types which could be used in
the SOAP message. By default, the SOAP message can contain parameters which could
be of simple types such as strings and numbers, but can also be a complex object
types.

e A Body element that contains call and response information - This element is what
contains the actual data which needs to be sent between the web service and the
calling application. Below is an example of the SOAP body which actually works on
the complex type defined in the header section. Here is the response of the Tutorial
Name and Tutorial Description that is sent to the calling application which calls this
web service.

SOAP Examples:

Request:

<[?Pxml version="1.8" encoding="utf-8">
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<NumberToWords xmlns="http://www.dataaccess.com/webservicesserver/">
<ubiNum>568</ubiNum>
</MumberToWords>
</soap:Body>

00~ O B R

</soap:Envelope>

Response:

<?xml version="1.8" encoding="utf-8"7>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<m:MumberTolWlordsResponse xmlns:m="http://www.dataaccess.com/webservicesserver/">
<m:NumberTokiordsResult>five hundred </m:NumberToWordsResult>

</m:NumberToWordsResponse>
</soap:Body>
</soap:Envelope>

0 o~ O B W N =

REST:

REST (Representational State Transfer) is an architectural style for providing standards
between computer systems on the web, making it easier for systems to communicate with
each other. REST-compliant systems, often called RESTful systems, are characterized by
how they are stateless and separate the concerns of client and server. Most commonly used
nowadays.

Separation of Client and Server

In the REST architectural style, the implementation of the client and the implementation of
the server can be done independently without each knowing about the other. This means
that the code on the client-side can be changed at any time without affecting the operation
of the server, and the code on the server-side can be changed without affecting the
operation of the client.

As long as each side knows what format of messages to send to the other, they can be
kept modular and separate. Separating the user interface concerns from the data storage
concerns, we improve the flexibility of the interface across platforms and improve
scalability by simplifying the server components. Additionally, the separation allows each
component the ability to evolve independently.

By using a REST interface, different clients hit the same REST endpoints, perform the same
actions, and receive the same responses.

Rest Web Service

Server
HTTP HTTP
Request Response
% D D o
Client

Statelessness

Systems that follow the REST paradigm are stateless, meaning that the server does not
need to know anything about what state the client is in and vice versa. In this way, both
the server and the client can understand any message received, even without seeing
previous messages. This constraint of statelessness is enforced through the use of resources,
rather than commands. Resources are the nouns of the Web - they describe any object,
document, or thing that you may need to store or send to other services. Because REST
systems interact through standard operations on resources, they do not rely on the
implementation of interfaces.

These constraints help RESTful applications achieve reliability, quick performance, and
scalability, as components that can be managed, updated, and reused without affecting the
system as a whole, even during the operation of the system.

Communication between client and server
In the REST architecture, clients send requests to retrieve or modify resources, and servers
send responses to these requests.

REST Examples:

Request in JSON format:

{
"match": "Cup Final",

"against": "Academical”

h

Response in JSON format:

i
"args": {3,
"data": "This is expected to be sent back as part of response body.",
“files™: {},
"form™: {},

"headers”: {
"x-forwarded-proto”: "https”,
"x-forwarded-port": "443",
"host": "postman-echo.com",
"x-amzn-trace-id": "Root=1-602f4bd6-177c96687bba712@5cc5d18b",
"content-length": “s58",
"content-type”: "application/json”,
"user-agent”: "PostmanRuntime/7.26.10",
"accept": "F/*",
"cache-control”: "no-cache",
"postman-token": "4c66bed9-8ab9-4008-b37c-4b48ad6251ca”,

To know about the SOAP and REST differences please check here.

https://blog.postman.com/soap-vs-rest/

Use in Technology
driven sectors

-
ﬁﬂ

REST | SOAP |

+ Social Media « Financial
« Web Chat « Telecommunication
= Mobile + Payment Gateways

JSON:

JSON]}

JavaScript Object Notation

JSON (JavaScript Object Notation) is an open-standard file format or data interchange
format that uses human-readable text to transmit data objects consisting of attribute -
value pairs and array data types (or any other serializable value). It is a very common data
format, with a diverse range of applications, such as serving as a replacement for XML in
AJAX systems.

JSON is a language-independent data format. It was derived from JavaScript, but many
modern programming languages include code to generate and parse JSON-format data. The
official Internet media type for JSON is application/json. JSON file hames use the extension
.json .

A JSON object contains data in the form of a key/value pair. The keys are strings and the
values are the JSON types. Keys and values are separated by a colon. Each entry (key/value
pair) is separated by a comma. The { (curly brace) represents the JSON object. An example
of JSON is provided below.

{
"book": [
{
"id":"444",
"language":"C",
"edition":"First",
"author":"Dennis Ritchie "
}s
{
"id":"555",
"language":"C++",
"edition":"second",
"author":" Bjarne Stroustrup "
}
]
}

Important benefits of using JSON:
e Provide support for all browsers

e Easy to read and write

Straightforward syntax

You can natively parse in JavaScript using eval() function

Easy to create and manipulate

Supported by all major JavaScript frameworks

Supported by most backend technologies

JSON is recognized natively by JavaScript

It allows you to transmit and serialize structured data using a network connection

You can use it with modern programming languages

JSON is text which can be converted to any object of JavaScript into JSON and send
this JSON to the server

HTTP methods:

HTTP POST GET PUT DELETE
SQL INSERT SELECT UPDATE DELETE

CREATE READ UPDATE DELETE

The HyperText Transfer Protocol - HTTP - defines several methods (referred to as "verbs")
that indicate the desired action to be performed on a resource. The resource is specified by
the URI (Uniform Resource Identifier), more commonly, the URL. This resource may be
pre-existing data or data that is generated dynamically, it depends on the server
implementation. The server can be configured to support any combination of methods.

The most common are: GET, POST, PUT, and DELETE.

The concept of idempotence is relevant to this discussion. If something is idempotent, then
no matter how many times you do it, the result will always be the same.

Hey, GET me a list of Posts >
I have 42 posts at the moment, with 200 comments written on them.
Sending you the list
-(
Nice. Well, can you post one for me?
Sure. Just a minute.
Hey Your post is live. Take a look. —
i SERVER
Ahh! Am | missing something?
Yeah! Got it. Can you update it for me?
Sure. Happy to help.
‘
- - -
This looks weird.
Just get rid of it.
Ok Mate. Deleterd.
..(

SOAP APIs, when sending over HTTP, can use only the POST verb, and the exact action
depends on the SOAP method that is being called. REST, being an architectural style and not
a standard, makes full use of all the available verbs. There is no definite answer to exactly
what each verb should or should not do. When testing a RESTful API, you can use the
following best practices as a starting point, but check with your in-house architect or
development lead to find out what exactly your project adheres to.

GET

The GET operation is normally used to only retrieve information from the system. Nothing is
added or changed, so it is more than idempotent, it is actually nullipotent - it has absolutely
no side-effect on the data, other than possibly logging. While sending the request usually
some parameters are sent along with the URL to fetch the particular record.

Eg: https://postman-echo.com/get?foo1=bar1&foo2=bar2

Generally, the body is empty which implies nothing is sent to update.

POST

POST is the only method that is assumed to be non-idempotent out of four methods. This is
the preferred method when creating new objects in an application, for example creating a
new order. Every POST method call should result in a new object being created (or possibly
deleted) in the database.

Here we will be passing the data into the request body in different formats as per the API
design.

Eg: postman-api-learner.glitch.me/info

And in the body it is mentioned as
{

"name": "Ryan"

PUT

The PUT method should be idempotent. The word “should” indicates that the server is able
to implement this method differently. A tester should flag such an implementation as an
inconsistency.

PUT can still be used for creating objects, although since it is idempotent, repeatedly
executing the same request will have the same end result as the first time. If the
Request-URI refers to an already existing resource - an update operation will happen,
otherwise, the create operation should happen if Request-URI is a valid resource URI.

Eg: postman-api-learner.glitch.me/info?id=2324

And in the body it is mentioned as
{

"name": "lan"

https://postman-echo.com/get?foo1=bar1&foo2=bar2

DELETE

The DELETE method is idempotent; multiple requests should result in only one thing being
deleted. As an example, consider the above scenario where multiple POST requests were
sent to the server for a new order, resulting in multiple orders of the same product. A
DELETE request should accept a unique identifier to remove only one of the products from
the order, thereby sending the same DELETE request will result in the correct idempotent
operation: the one instance of the product.

Eg: postman-api-learner.glitch.me/info?id=3422
Generally nothing is sent with the body.

So in a nutshell here is what each of these request types maps to:

GET Read or retrieve data

POST Add new data

PUT Update data that already
exists

DELETE | Remove data

Resources, Parameters, and Headers:

Request: URL + Method +

TR (N

Response: Resource +
Response Header + Status Code

Resources:

The fundamental concept in any RESTful API is the resource. A resource is an object with a
type, associated data, relationships to other resources, and a set of methods that operate
on it. It represents the collection, which can be accessed from the server.

Examples:
google.com/maps
google.com/search

Parameters:
Parameters are options you can pass with the endpoint (such as specifying the response
format or the amount returned) to influence the response. There are several types of
parameters: header parameters, path parameters, and query string parameters. Like a
sub-resource.

Examples:
https://google.com/docs/e818931

https://www.google.com/search?ei=FNwQYLCVKMnWz7sPjMgxwAQ&qg=Dbillennium+it+service
s&og=billennium+IT+&gs lcp=CgZwc3ktYWIQARgAMglIADOECAAQRZzoICC4QxWEQrwE6BASAEEM

6CwguEMcBEKSBEJMCOgYIABAWEB5Q4ldY22 JggXFoAHACeACAAawBiAH3BJIBAzZAUNJgBAKABAa
0BB2d3cy13aXrlAQjAAQE&sclient=psy-ab

Request Headers

Headers in the request contain meta-information about the request. It allows the client to
inform the server what format of the resource it is accepting, what encoding technique for
the resource it is accepting, what language it is accepting, and many more tiny details that
the server might need while creating and sending the response.

e Accept: This header is used to propose what content types the client would
understand. The server negotiates with the client with one of these content types by
sending the Content-type option in the response headers. The default one used is */*
for accepting any type. Other values used are application/XML or application/json.

e Accept-Encoding: This header is used to propose what encoding technique for the
content client understands. The server negotiates with the Content-Encoding option
in one of the response headers. Values that can be used are gzip, compress, br, etc.

e Authorization: This contains the credentials used to authenticate the client with the
server.

There are many more header fields available. And different headers are available for
Response as well.

https://google.com/search/chennai
https://www.google.com/search?ei=FNwQYLCVKMnWz7sPjMqxwA0&q=billennium+it+services&oq=billennium+IT+&gs_lcp=CgZwc3ktYWIQARgAMgIIADoECAAQRzoICC4QxwEQrwE6BAgAEEM6CwguEMcBEK8BEJMCOgYIABAWEB5Q4ldY22JgqXFoAHACeACAAawBiAH3BJIBAzAuNJgBAKABAaoBB2d3cy13aXrIAQjAAQE&sclient=psy-ab
https://www.google.com/search?ei=FNwQYLCVKMnWz7sPjMqxwA0&q=billennium+it+services&oq=billennium+IT+&gs_lcp=CgZwc3ktYWIQARgAMgIIADoECAAQRzoICC4QxwEQrwE6BAgAEEM6CwguEMcBEK8BEJMCOgYIABAWEB5Q4ldY22JgqXFoAHACeACAAawBiAH3BJIBAzAuNJgBAKABAaoBB2d3cy13aXrIAQjAAQE&sclient=psy-ab
https://www.google.com/search?ei=FNwQYLCVKMnWz7sPjMqxwA0&q=billennium+it+services&oq=billennium+IT+&gs_lcp=CgZwc3ktYWIQARgAMgIIADoECAAQRzoICC4QxwEQrwE6BAgAEEM6CwguEMcBEK8BEJMCOgYIABAWEB5Q4ldY22JgqXFoAHACeACAAawBiAH3BJIBAzAuNJgBAKABAaoBB2d3cy13aXrIAQjAAQE&sclient=psy-ab
https://www.google.com/search?ei=FNwQYLCVKMnWz7sPjMqxwA0&q=billennium+it+services&oq=billennium+IT+&gs_lcp=CgZwc3ktYWIQARgAMgIIADoECAAQRzoICC4QxwEQrwE6BAgAEEM6CwguEMcBEK8BEJMCOgYIABAWEB5Q4ldY22JgqXFoAHACeACAAawBiAH3BJIBAzAuNJgBAKABAaoBB2d3cy13aXrIAQjAAQE&sclient=psy-ab

Response codes:

HTTP Status Codes

| 1XX

')

' WA

INFORMATIONAL

3XX
REDIRECTION

4XX
CLIENT ERROR

BEXX
SERVER ERROR

REST APIs use the Status-Line part of an HTTP response message to inform clients of their
request’s overarching result.
The status codes are divided into the five categories.

e 1xx: Informational - Communicates transfer protocol-level information.

® 2xx: Success - Indicates that the client’s request was accepted successfully.

e 3xx: Redirection - Indicates that the client must take some additional action in
order to complete their request.

® 4xx: Client Error - This category of error status codes points the finger at
clients.

® 5xx: Server Error - The server takes responsibility for these error status codes.

REST Specific Status Codes and the frequently used:

200 (OK)

It indicates that the REST API successfully carried out whatever action the client requested
and that no more specific code in the 2xx series is appropriate. Unlike the 204 status code, a
200 response should include a response body. The information returned with the response is
dependent on the method used in the request, for example:

e GET an entity corresponding to the requested resource is sent in the response;

e HEAD the entity-header fields corresponding to the requested resource is sent in
the response without any message-body;

e POST an entity describing or containing the result of the action;

e TRACE an entity containing the request message as received by the end server.

201 (Created)

A REST API responds with the 201 status code whenever a resource is created inside a
collection. There may also be times when a new resource is created as a result of some
controller action, in which case 201 would also be an appropriate response.

The newly created resource can be referenced by the URI(s) returned in the entity of the
response, with the most specific URI for the resource given by a Location header field.

202 (Accepted)

A 202 response is typically used for actions that take a long while to process. It indicates
that the request has been accepted for processing, but the processing has not been
completed. The request might or might not be eventually acted upon, or even maybe
disallowed when processing occurs.

Its purpose is to allow a server to accept a request for some other process (perhaps a
batch-oriented process that is only run once per day) without requiring that the user agent’s
connection to the server persists until the process is completed.

204 (No Content)

The server has fulfilled the request but does not need to return an entity-body, and might
want to return updated metainformation. The response MAY include new or updated
metainformation in the form of entity-headers, which if present SHOULD be associated with
the requested variant.

400 (Bad Request)

400 is the generic client-side error status, used when no other 4xx error code is appropriate.
Errors can be like malformed request syntax, invalid request message parameters, deceptive
request routing, etc.

401 (Unauthorized)

A 401 error response indicates that the client tried to operate on a protected resource
without providing the proper authorization. It may have provided the wrong credentials or
none at all. The response must include a WWW-Authenticate header field containing a
challenge applicable to the requested resource.

403 (Forbidden)

A 403 error response indicates that the client’s request is formed correctly, but the REST API
refuses to honor it, i.e., the user does not have the necessary permissions for the resource.
A 403 response is not a case of insufficient client credentials; that would be 401
(“Unauthorized”).

Authentication will not help, and the request SHOULD NOT be repeated. Unlike a 401
Unauthorized response, authenticating will make no difference.

404 (Not Found)

The 404 error status code indicates that the REST APl can’t map the client’s URI to a
resource but may be available in the future. Subsequent requests by the client are
permissible.

405 (Method Not Allowed)

The API responds with a 405 error to indicate that the client tried to use an HTTP method
that the resource does not allow. For instance, a read-only resource could support only GET
and HEAD, while a controller resource might allow GET and POST, but not PUT or DELETE.

A 405 response must include the Allow header, which lists the HTTP methods that the
resource supports. For example: Allow: GET, POST

500 (Internal Server Error)

500 is the generic REST API error response. Most web frameworks automatically respond with
this response status code whenever they execute some request handler code that raises an
exception.

A 500 error is never the client’s fault, and therefore, it is reasonable for the client to retry
the same request that triggered this response and hope to get a different response.

Please refer to https://www.restapitutorial.com/httpstatuscodes.html for all response
codes.

Launch https://reqgres.in/ to see some sample dummy APIs hosted.

https://www.restapitutorial.com/httpstatuscodes.html
https://reqres.in/

Best Practices/Random Adyvices:

—est Practices for APl Testing

~

= (@) T © ves,

—~

= A9

Parameters to be used during testing should be called out in the test case

Be careful if you’re using the Delete or Purge functions - those are one-time calls
If you’re testing multiple APIs, consider the call sequencing

Start with outlining all test scenarios before beginning; group the tests accordingly
Try to automate the repetitive actions, which in turn increase the efficiency of
testing

Challenges in API Testing:

e Initial setup for Testing

e Documentation should be standard for any organization using APIs. However, that isn’t
always the case. Without proper documentation, you can’t adequately test

e Being able to understand and write scenarios for all of the parameter combinations
and call sequencing is tough. Especially if you get a large APl with many parameter
options intertwined with other APIs. In this case, you can use something like
Equivalence Partitioning Testing to avoid over-testing and a Decision Table to ensure
hitting all the combinations
Learning an API testing tool can be challenging
Exception and error handling are both challenging, as those things are rarely defined
for you. Need to work with your dev team to understand those exceptions

e It’s intimidating. APl testing is technical, some people tend to hesitate to start
something new. Start with the basic testing. Use parameterization using simple GET
calls

Tools available in the Market for API Testing:

API TESTING TOOLS
P, Katalon SoapUl X Tricentis
o POSTMAN # APACHE [v] Assertible
apigee P canarcos: © swegger

@ REST-ASSURED

Some of the tools used for API Testing are as follows:

Postman
Katalon Studio
SoapUl
Assertible
Tricentis Tosca
Apigee

JMeter
Rest-Assured
Karate DSL

API Fortress
Parasoft

HP QTP(UFT)
VREST

Airborne

API Science
APlary Inspector
Citrus Framework
Hippie-Swagger
HttpMaster Express
Mockbin

Ping API
Pyresttest

Rest Console
RoboHydra Server
SOAPSonar
Unirest
Weblnject

Reference Links:

https://www.katalon.com/api-testing/
https://apifriends.com/api-creation/different-types-apis/

https://itnext.io/api-calls-and-http-status-codes-e0240f78f585
https://rapidapi.com/blog/types-of-apis
https://www.mulesoft.com/resources/api/types-of-apis
https://www.programmableweb.com/news/private-partner-or-public-which-api-strat
egy-best-business/2014/02/21

https://techolution.com/types-of-apis/
https://www.gizmobolt.com/what-is-api-and-what-is-it-used-for-when-you-work-with

https://www.omnisci.com/technical-glossary/client-server

27

	Table of Contents
	What is an API?
	
	
	Private APIs:
	Public/Open APIs:
	Partner APIs:

	
	Client Service Architecture:
	What is API Testing?
	Why API Testing?
	Types of API Testing:
	
	Types of API Protocols:
	SOAP Examples:
	REST Examples:

	JSON:
	
	HTTP methods:
	GET
	POST
	PUT
	DELETE

	
	Resources, Parameters, and Headers:
	Response codes:
	REST Specific Status Codes and the frequently used:
	200 (OK)
	201 (Created)
	202 (Accepted)
	204 (No Content)
	400 (Bad Request)
	401 (Unauthorized)
	403 (Forbidden)
	404 (Not Found)
	
	405 (Method Not Allowed)
	
	500 (Internal Server Error)

	Best Practices/Random Advices:
	Challenges in API Testing:
	Tools available in the Market for API Testing:

