Maglev

Attention: Externally visible, non-confidential

Author: jgruber@chromium.org, leszeks@chromium.org, verwaest@chromium.org
Status: Draft

Created: 2022-02-04
Tracking Bug: v8:7700
Link: go/v8-maglev

LGTMs needed

Name Write (not) LGTM in this row
hpayer LGTM

tebbi LGTM

saelo LGTM

<your name here>

Note: This is a long doc and incomplete on the design details. LGTMs are for the summary and
milestones.

TL,DR

Let's add a mid-tier optimising compiler designed mainly for compilation speed that can still
generate good code for straightforward JS.

Summary

Overview

We've previously made a case why four tiers in V8(ecdleintema) mgke sense to explain why
Sparkplug made sense in addition to Ignition, TurboProp and TurboFan. TurboProp was a
midtier compiler proposal based on TurboFan to significantly improve compilation speed while
compromising on the performance of the resulting code. With Sparkplug in place, however, the
design tradeoffs TurboProp made by being built on top of TurboFan didn’t end up panning out.
While the resulting compilation speed was a massive improvement over TurboFan, Sparkplug


mailto:jgruber@chromium.org
mailto:leszeks@chromium.org
mailto:verwaest@chromium.org
http://crbug.com/v8/7700
http://go/v8-maglev
https://docs.google.com/document/d/1VNUPPb2JQh0yg8SR2Y2SAk7hPooymfaWN9UKKl8JIk4/edit#

showed there was still a ~100x compilation speed gap between Sparkplug and TurboProp even
though that configuration of TurboProp did not inline functions at all. However, we still observed
that having TurboProp in the 4-tier configuration still improved performance, and would improve
performance further if it compiled faster.

Instead of finding a slimmer subset of TurboFan to use as a mid-tier, we propose to build a
minimal SSA-based optimising compiler from the ground up tuned for compilation speed. The
target is not more than 5-10x slower than Sparkplug.

The main properties of Maglev are:

Fast to optimise / reoptimise after deoptimisation

SSA macro-instructions in a CFG, with no distinction between high- and low-level
Phases are single-pass, forward graph walks where possible

Minimal number of passes over the IR

Efficient diff-based deopt/checkpoint encoding

Data-driven ICs to improve front-end performance

Designed for concurrency

Alternative Considered: Sparkplug with feedback

An alternative design we considered is adding IC feedback and speculation to Sparkplug; that is,
create a compiler which lowers each bytecode directly to machine code and maintains the
interpreter register frame, but additionally make the machine code lowering perform speculative
optimisations and allow it to deopt back down to the interpreter (or to non-speculating
Sparkplug).

This sort of compiler could do the obvious speculating optimisations (e.g. map check + direct
field load), and basic forward-propagation optimisations (like map check elimination, some
basic form of GVN). It would, however, struggle to do more advanced optimisations that require
code motion or backwards passes, like hoisting or representation analysis. We therefore
decided that it would be unlikely to provide a sufficient code-gen improvement over Sparkplug to
be worth an extra tier — we may revisit this decision in the future, however, either as a tier-3
Maglev alternative if we feel that Maglev compile costs are too high, or as a tier-2 Sparkplug
enhancement.

Milestones and Tasks

Upstreaming (Mid-to-late Feb 2022)

... the first version pushed to the main V8 repository. The code layout should be relatively stable
(to avoid churn on the main repo), and it compiles and runs basic example code + simple tests
on CQ. Code shall be pushed to the main V8 repository behind a gn/runtime flag. x64-only.


http://go/v8-sparkplug

e Basic implementation / code layout
e Simple tests which can run on the CQ

“Parallelisable work” MVP (Late Feb/Early March 2022)

... a base for further development. APIs and infrastructure are sufficiently complete s.t.
development can be increasingly parallelized and more developers can be pulled in. Still
x64-only.

e Basic APIs and implementation available for
o thelR
the graph processor
the register allocator (together with requirement specification on IR)
code dependencies

o O O

Full x64 prototype (2022Q2? 2022Q3?)

... a fleshed out version of the MVP. Runs multiple useful benchmarks line items in a realistic
setting. All Maglev components exist at least with a basic implementation.

A real register allocator

Inlining

Graph building optimisations, e.g. map check elimination
Concurrent compilation

Representation inference

Code lifecycle / tiering

(Fast) deopts

Shared deferred code?

Efficient safepoint generation and encoding (delta-encoding?)
OSR?

Fuzzing and perf infrastructure

Architecture ports (EQY 20227?)

... the x64 prototype ported to other architectures. Work on the non-codegen parts of the
prototype can continue, but we push to make the backend work on the other supported
architectures.

Ready for production (2022? 20237?)

... a production quality implementation. Finching and the shipping process will likely start at this
milestone.

e Optimised heuristics (tierup, inlining, ...)
e All critical optimization passes implemented



e Thorough and robust benchmarking result

Design

Detailed design decision follow — these are subject to change as we go, so consider them a mostly
up-to-date summary of the current state rather than decisions set in stone

Overview

Maglev has a single SSA (static single assignment) CFG (control flow graph) IR (intermediate
representation), with no separation of “high” or “low” level nodes. In principle, any node
generated during graph building can be emitted during code generation.

Basic blocks are split into

e a“header” - currently just a list of Phi values entering this block
e a “body” - alist of the value/effect nodes (no control flow)
e a “control node” - a conditional or unconditional jump node with one or more targets.

Basic blocks are topologically sorted in control-flow order, so that all non-loop jumps are
forward jumps, and all non-loop phis refer to values in previous blocks. This sorting comes
naturally out of graph building, and the initial basic block layout order matches that of the
bytecode; later phases are expected to preserve this order.

Nodes are relatively large, with space for various annotations (e.g. register allocation), and it's
preferred to mutate/annotate nodes rather than replace them. They optionally provide a value,
and optionally have an effect. Nodes are strongly typed in C++, and we have a (mostly flat) class
hierarchy with a base Node class, and a subclass for each opcode.

Nodes have an opcode, an input count, and store a fixed-size set of input pointers (whose size is
fixed on Node construct time). Inputs are stored in memory in reverse order before the node -
this allows walking inputs in generic code without having to read and switch on the opcode
(only having to read the input count).

Phis have special handling compared to other values. Rather than being normal value nodes,
they are saved as a linked list in the basic block’s header. Each Phi has an input per predecessor
feeding into it — basic blocks that jump to a merge block (i.e. to a basic block with multiple
predecessors) store a “predecessor id” which corresponds to the index of the value this block
provides in the target’s phis’ input lists. Note that this means that only unconditional jumps can
provide phis, i.e. that only unconditional jumps can have merge targets. This is enforced by
splitting critical edges (edges where the predecessor has multiple successors, and the
successor has multiple predecessors) by inserting empty basic blocks.



Alternative Considered: Separate high-level and low-level IR

e Slimmer high-level nodes, by using side tables for the various node annotations, or
“pointer compressing” node pointers.
Requires copying and backlinking; more space for “surviving nodes”
May make sense to separate out low-level details if we want to reuse our IR as the
high-level IR for a faster fourth tier compiler. It might also not matter if we simply ignore
the additional data, and/or copy to a different IR.

Alternative Considered: Different basic block design

e TurboShaft style node management
o May not be necessary for the first IR in the compiler; we don't yet know how many
nodes we'll have; we can copy out anyway

Graph Building

The Maglev graph is built in a similar way to the Turbofan graph builder, as an abstract
interpretation of the bytecode with appropriate merging of jump targets.

Nodes

As we walk bytecode, we create a new SSA node for each value producing bytecode. For
operations that store/load registers, we maintain an InterpreterFrameState (IFS) which, for each
register (and the accumulator), stores a pointer to the Node currently stored in that register.

On control flow, the IFS is copied and stored in the “merge target” (keyed by bytecode offset), to
be picked up once that target bytecode is reached. When multiple jumps target the same
bytecode (or control flow falls through into a merge target), the IFS are “merged”, which means
creating a Phi for each register in the IFS. We create Phis "on demand”, i.e. only when the
register’s Node is different between the two IFS, to avoid creating Phis for values that stay
unchanged across the control flow.

Loop Phis are created on loop header IFS allocation; we know where loop headers are from a
bytecode analysis prepass (the same bytecode analysis as in TurboFan). This prepass also
collects per-bytecode liveness information, and there’s a prepass that counts how many merge
targets each bytecode offset has, so that we can pre-size Phis.

Basic blocks

Nodes are emitted into basic blocks, which are built as we go. We start a new basic block at
each merge target (incl. loop headers) and end it at jumps (either because of a Jump* bytecode,
or because a merge target is hit and we start a new basic block). Merge targets keep a list of
predecessor basic blocks, and blocks that jump to a merge target are given a “predecessor id”
which represents their index in each Phi’s input list.



Note that this means that blocks jumping to merge targets can only have one successor (in
other words, that there can be no critical edges). We ensure this by inserting empty blocks
whenever the predecessor has conditional control flow.

Checkpoints / Interpreter state

Nodes optionally contain an eager or lazy deopt, which stores a snapshot copy of the full
interpreter frame at the time the node was emitted (eager deopts can be deduplicated with
earlier ones if there were no side effects between). Previously we considered a design where
this storage was incremental and reconstructed in later phases, but this proved to be less
efficient as we ended up eventually creating the flattened deopt anyway.

Immediate lowering

Whenever we visit a bytecode with feedback, we immediately process that feedback and try to
lower that bytecode to as specific an operation as possible. This is currently the only use of
feedback in the compiler, and is likely to stay that way, with subsequent passes relying on static
analysis rather than feedback data.

The plan here is to use as much IC information as possible, e.g. using the data cached in
handlers to decide what nodes to generate, rather than re-calculating it from the Maps in the
feedback. This will hopefully be slightly faster, since the ICs already did all the hard work.

Code dependencies are handled the same as in TurboFan, reusing the heap broker’s
dependency mechanism.

Optimisation phases

Yup, we'll definitely have some of these. It's not yet decided what they’ll be though, the current
thinking is some forms of representation analysis, GVN and potentially a minimal amount of
loop hoisting.


https://en.wikipedia.org/wiki/Control-flow_graph#:~:text=a%20critical%20edge%20is%20an%20edge%20which%20is%20neither%20the%20only%20edge%20leaving%20its%20source%20block%2C%20nor%20the%20only%20edge%20entering%20its%20destination%20block

Node processing

The plan is for the majority of these operations to be single forward passes over the graph. To
assist with this, we have a node processing API which allows one to write a per-opcode Node
processor/visitor that encapsulates the per-Node logic, and then pass that to a graph processor
which walks the graph, switches on the current Node’'s opcode, and dispatches to the Node
processor. The graph processor can also handle maintaining the implicit bytecode frame state
for checkpoints, and the transitions between different basic blocks.

Additionally, there’s a Node multi-processor which applies a set of Node processors in sequence
to a Node. This can then be passed to the graph processor as a single Node processor, to allow
performing multiple processing operations in one forward pass.

The graph processor and node multi-processor are both templated on the node processors, so
hopefully the C++ compiler will be able to inline, hoist, and deduplicate the node processing
code where it can.

Code Generation

Machine code is generated in three final phases: preprocessing, register allocation, and finally
actual machine code generation. These are all done in a single pass using the above Node
processing API.

Preprocessing

Preprocessing is a single linear pass which does three things: assigns monotonically increasing
IDs to nodes, calculates live ranges of nodes, and resolves input/output requirements.

Assigning IDs

Assignment of monotonically increasing IDs is self explanatory — all nodes, whether effect,
value or control, receive an ID. We use these IDs later for specifying and comparing nodes’ live
ranges. We have to do this now instead of during graph building in case there was any hoisting
previously.

Calculating live ranges

Calculating live ranges is done ignoring control flow. Each node is assumed to start its live
range at its location in the CFG, and end it at the last use of that node — the start and end are the
IDs created above. This means that we can calculate live ranges simply by walking forwards and
updating the “last use” ID each time it is used.

The special cases here are Phis and deopts. Phis set their inputs’ last use to the predecessor
block’s control flow node, with the dual intention of a) restricting the input’s lifetime to the point
where it is assigned to the Phi (i.e. the end of the predecessor basic block), and b) ensuring that



inputs into loop Phis have their last use at the end of the loop (after their definition), not at the
start of the loop.

Deopting operations don't store a direct list of Node pointers representing the interpreter frame
state, but instead are considered to use the current implicit frame state as collected via basic
block snapshots, StoreToFrame nodes, and Checkpoint nodes. Therefore, some care has to be
taken to also extend these lifetimes as appropriate.

Input/output requirement resolution

This phase is tightly coupled with code generation, and is a pre-register-allocation resolution of
what the requirements of the codegen are on the inputs and outputs — for example, whether a
Node takes an input via an arbitrary register or via a specific one, or whether it outputs its value
also into an arbitrary register. This phase fills in these requirements, which the register allocator
can then read and resolve to specific registers.

Register allocation

There is a custom, simple register allocator, which performs a linear scan over the Nodes. Each
Node has a canonical spill slot location from which it can be loaded, and its value may be
cached in a register. The spilling to the spill slot currently happens at Node creation, and can be
elided if the Node never needs to be spilled.

The current machine frame state is propagated forwards through the graph (similar to the
interpreter frame state in graph building), and used to discover what Nodes are currently cached
in which registers. On basic block merge points, the incoming machine frames are merged
(where values mismatch) by adding a “register merge” to the block.

This approach should be equivalent to “standard” linear scan implemented with a separate
mapping of use intervals, live ranges, etc., but instead of creating a parallel data structure
representing the graph, it reuses the existing Node SSA IR and adds an abstract machine
interpretation frame for propagating information forwards.

An additional capability is that Nodes can request a certain count of temporary registers as a
separate concept to inputs. The register allocator ensures that there are enough free registers to
fulfil this request, spilling as necessary.

Machine code generation

Machine code is generated in a final single pass, directly generating code with the
MacroAssembler, with a relatively fixed “template” for each Node (this is similar to Sparkplug).
The register allocator has already provided all the registers, so any register manipulation inside
this code template should make sure to restore previous register state.



The code generation is also implemented using the graph processor described above, and
therefore gets its interpreter frame simulation for free. This simulation is used for emitting
deopt points, which materialise the interpreter frame from the current state.

This phase is expected to generate any deferred code needed for its operation — this is more
similar to what Crankshaft used to do, and unlike TurboFan, which has an explicit “deferred” flag
in its IR. Deferred code generators are pushed to a queue, and emitted after the graph has been
visited - there is a JumpToDeferredIf helper for creating these deferred code generators from a
non-capturing lambda, with some magic to help pass in arguments, deep copying where needed
(in particular, deep copying interpreter frame states if the deferred code needs them for a
deopt).

Deoptimisation and StackMaps

Incomplete...
- Checkpoint management
- diff encoding deopt data

- raw & dead values in the stack

Try/Catch/Finally

Incomplete...
- CPS & lazy deopt info

- Initially just try/finally + deopt

Representation Inference

Incomplete...
- We presume we need it

- We don't have it yet

Inlining
Incomplete...
- Presume we need it.

- Aplace to be very careful since it easily explodes compilation times.



Compilation Dependencies

Incomplete...

- Two potential purposes: 1. guard assumptions during concurrent compilation, 2. install
deopting dependencies after compilation.

- Reuse TF's CompilationDependencies class (potentially with specialized subclasses for
TF/ML deps).

- Be careful not to create / install too many (TF has this issue).

- Use a generic create-commit workflow from the start (s.t. it's possible to abort a specific
optimization and release related deps without installing them).

Pipeline Design

Wis\ed‘ Optimised

Ignition Sparkplug Maglev Turbofan
7
""--. ____". ,.v' _ P

T e — —

With Maglev there are a total of four tiers, split into unoptimised (Ignition and SP) and optimised
(ML, TF) categories. The two unoptimised tiers roughly share frame layout and thus jump
between Ignition and Sparkplug almost at will (OSR from Ignition into a plain/non-specialised SP
Code object, deopt from SP into Ignition).

Unoptimised tiers tier up Maglev, Maglev tiers up to Turbofan. Both Maglev and Turbofan
deoptimise into the highest available unoptimised tier.

OSR may eventually be enabled for all optimisation edges. Initially, the Maglev prototype only
supports OSR from unoptimised tiers into Turbofan.

Debugging a function means tiering down to Ignition, in which we're able to set breakpoints, etc.



Heuristics are TBD but should be somewhat simplified / unified vs. the current implementation.
Ideally, tierup heuristics between all tiers should use a similar mechanism, with a scale factor
applied.

Relation to TurboShaft

Incomplete...

Performance

Compile time

Currently the early prototype for simple functions compiles in around 4x Sparkplug. While not
complete, since we do already have quite a bit of the infrastructure it seems plausible that we'll
manage to stay within 5-10x Sparkplug for simple functions; assuming we're thoughtful about
inlining.

Testing, Fuzzing, Performance Tracking

As a new compiler tier, Maglev will require thorough stability and performance testing.

Dedicated Maglev tests are in test/mjsunit/maglev/. These are used mostly as
development aids (e.g.: can we compile a loop?) and may or may not live beyond later
milestones.

The primary way to test Maglev will be to run our existing V8 test suites with dedicated Maglev
configurations:

e -—maglev -disable-turbofan. In this configuration the pipeline is
Ignition-Sparkplug-Magley, i.e. all code that currently exercises TF will exercise ML.

e Just -maglev. The pipeline is Ignition-Sparkplug-Maglev-Turbofan. This is the intended
final pipeline. In addition to the above, this also exercises tierups from ML to TF.

e The above, plus --always-maglev. To increase coverage, this could e.g. spawn ML
compile jobs whenever bytecode compilation completes. We miss out on feedback, but
gain more coverage of the compiler (this is useful since we know mjsunit tests have very
incomplete coverage of optimized code).

e The above, plus -no-concurrent-recompilation to test both concurrent and
non-concurrent optimization.



Out of the 8 possible configurations above, we should identify 2-3 critical ones to enable on
bots. | would suggest 1) a ‘always_maglev’ configuration as —maglev -always-maglev
—disable-turbofan, and 2) a ‘'maglev’ configuration which initially runs -maglev
—disable-turbofan but will later switch over to just —maglev.

Maglev can be enabled through a runtime flag -maglev (initially only on x64). New Maglev
testing variants should be added to selected x64 waterfall and CQ bots.

Sanitizer bots (TSAN, MSAN) and fuzzers should be extended to run the new Maglev flag
configurations. Especially TSAN is important for reducing bug-load for concurrent compilation.

For Chromeperf, it may be enough to piggy-back on top of --future, depending what else is
currently enabled there. If the overhead is reasonable, it would be much preferable to have a
dedicated --maglev mode to avoid interference from other in-progress work.

Finching: yes, once we get closer to completion.
UMA counters: yes, once we get closer to completion. Compile counts, times, ...

UMA profiler: Maybe? Can it easily be taught to distinguish between ticks SP/ML/TF code?



	Maglev 
	LGTMs needed 
	TL;DR 
	Summary 
	Overview 
	Alternative Considered: Sparkplug with feedback 

	Milestones and Tasks 
	Upstreaming (Mid-to-late Feb 2022) 
	“Parallelisable work” MVP (Late Feb/Early March 2022) 
	Full x64 prototype (2022Q2? 2022Q3?) 
	Architecture ports (EOY 2022?) 
	Ready for production (2022? 2023?) 


	Design 
	Overview 
	Alternative Considered: Separate high-level and low-level IR 
	Alternative Considered: Different basic block design 

	Graph Building 
	Nodes 
	Basic blocks 
	Checkpoints / Interpreter state 
	Immediate lowering 

	Optimisation phases 
	Node processing 

	Code Generation 
	Preprocessing 
	Assigning IDs 
	Calculating live ranges 
	Input/output requirement resolution 

	Register allocation 
	Machine code generation 

	Deoptimisation and StackMaps 
	Try/Catch/Finally 
	Representation Inference 
	Inlining 
	Compilation Dependencies 
	Pipeline Design 
	Relation to TurboShaft 

	Performance 
	Compile time 

	Testing, Fuzzing, Performance Tracking 

