
 

Week 6 editorial 
 

Problem 6.1: Jash's Academic Crisis 

This problem asks whether a student, Jash, can complete all his courses without encountering a 
circular dependency in the prerequisite system. A circular dependency means that a set of courses 
forms a loop where each course requires another in the set, making it impossible to start any of 
them. 

Intuition:​
This is a classic problem that can be modeled as detecting cycles in a directed graph. Each course 
can be represented as a node, and a prerequisite relationship (course 'a' requires course 'b') can be 
represented as a directed edge from 'b' to 'a'. If a cycle exists in this graph, then a circular 
dependency is present, and Jash cannot graduate. If no cycles are found, it means a valid course ​
order exists (a topological sort is possible). 

Approach:​
We can use Depth-First Search (DFS) to detect cycles in the directed graph. 

1.​ Represent the graph: Create an adjacency list where adj[b] contains a if course a 
requires course b. This means an edge goes from b to a. 

2.​ Maintain states during DFS: For each course, we need to track three states: 
○​ unvisited: The course has not been visited yet. 
○​ visiting: The course is currently in the recursion stack of the current DFS traversal 

(meaning we are exploring its prerequisites). 
○​ visited: The course and all its prerequisites have been processed, and no cycle 

was found through this course. 
3.​ Perform DFS: 

○​ Iterate through all courses. If a course is unvisited, start a DFS from it. 
○​ In the DFS function: 

■​ Mark the current course as visiting. 
■​ For each prerequisite of the current course: 

■​ If the prerequisite is visiting, a cycle is detected. Return false 
(cannot graduate). 

■​ If the prerequisite is unvisited, recursively call DFS on it. If the 
recursive call returns false, propagate false upwards. 

■​ Mark the current course as visited. 
■​ Return true (no cycle found through this path). 

4.​ Final Result: If all DFS traversals complete without detecting any cycles, then Jash can 
graduate. Print "YES". Otherwise, print "NO". 

 



Time Complexity: 

●​ Time: O(N + M), where N is the number of courses and M is the number of prerequisite 
relationships. This is because each node and each edge will be visited at most once during 
the DFS traversal. 

Space Complexity: 

●​ Space: O(N + M) for storing the adjacency list and the visited array (or equivalent data 
structures for tracking states). 

Pseudo Code: https://pastebin.com/duumVRHB 

 

Problem 6.2: Jash's Stock Trading Adventure 

Jash wants to maximize profit from stock trading, but with a unique rule: after selling a stock, he 
cannot buy it again the very next day (a one-day cooldown). He can make multiple transactions. 

Intuition:​
This problem can be solved using dynamic programming. At any given day, Jash can be in one of 
two states: either he owns a stock, or he doesn't. The cooldown period adds a third consideration 
when he sells. We need to make decisions (buy, sell, or do nothing) that lead to the maximum profit. 

Approach:​
We can define a 2D DP array, dp[i][k], where i represents the current day and k represents the 
state: 

●​ dp[i][0] will store the maximum profit on day i if Jash does not own a stock. 
●​ dp[i][1] will store the maximum profit on day i if Jash owns a stock. 

We iterate backward from the last day to the first day to fill the DP table. 

1.​ If Jash owns a stock (k = 1): 
○​ He can either sell the stock today: prices[i] + dp[i + 2][0] (profit from 

selling today plus profit from day i + 2 because of the one-day cooldown). If i + 2 
is beyond the array bounds, it's just prices[i]. 

○​ Or he can choose to hold the stock: dp[i + 1][1] (profit from the next day if he 
continues to hold). 

○​ dp[i][1] will be the maximum of these two options. 
2.​ If Jash does not own a stock (k = 0): 

○​ He can either buy a stock today: dp[i + 1][1] - prices[i] (profit from the 
next day if he buys today, minus the cost of buying). 

○​ Or he can choose to do nothing (cooldown or simply not buy): dp[i + 1][0] (profit 
from the next day if he remains without a stock). 

○​ dp[i][0] will be the maximum of these two options. 

https://pastebin.com/duumVRHB


The base cases for the DP array are when i goes beyond the number of days. The final answer will 
be dp[0][0] (or dp[0][1] if we consider starting with the intent to buy on day 0, as in the 
provided code). 

Time Complexity: 

●​ Time: O(N), as we iterate through each day once, and for each day, we perform 
constant-time operations. 

Space Complexity: 

●​ Space: O(N) for the DP table. This can be optimized to O(1) by only storing the previous few 
days' states, as each day's calculation only depends on the next one or two days.\ 

Pseudo Code: https://pastebin.com/fUgP8Uuz 

 

Problem 6.3: Jash and the Sorting Challenge 

This problem asks for the minimum number of splitting operations to transform a sequence of 
positive integers into a non-decreasing order. A single card bearing number X can be fractured into 
precisely two new cards whose values sum to X. Every split inserts new cards, shifting subsequent 
elements. 

Intuition:​
To minimize operations, we should aim to make each number as large as possible while still 
satisfying the non-decreasing condition with the element to its right. This suggests a greedy 
approach working backward from the end of the array. For each element curr (at index i), we 
compare it with the prev element (which is the effective value of the element at index i+1 after 
potential splits). If curr is already less than or equal to prev, no operations are needed, and curr 
becomes the new prev. If curr is greater than prev, we must split curr. To minimize splits, we 
want to divide curr into parts that are as large as possible, but none of which can exceed prev. 
The optimal strategy is to split curr into parts such that each part is approximately prev (or 
slightly less for the last part if curr is not a multiple of prev). The number of parts will be 
ceil(curr / prev). This requires ceil(curr / prev) - 1 splits. After splitting, the largest 
possible value for the leftmost part of curr (which will now be at index i) will be curr / parts. 
This new value becomes the prev for the next iteration (i.e., for nums[i-1]). 

Approach: 

1.​ Initialize ans (total operations) to 0. 
2.​ Set prev to the last element of the array (nums[n-1]). 
3.​ Iterate backward from the second-to-last element (i = n-2) down to the first element (i = 

0). 
4.​ In each iteration, let curr be nums[i]. 
5.​ If curr > prev: 

○​ Calculate parts = ceil((double) curr / prev). This is the minimum 
number of pieces curr must be split into. 

https://pastebin.com/fUgP8Uuz


○​ Add parts - 1 to ans (each split creates one new part, so parts parts require 
parts - 1 splits). 

○​ Update prev to curr / parts. This represents the largest possible value for the 
leftmost piece of curr after splitting, ensuring the non-decreasing order is 
maintained for the next comparison. 

6.​ Else (curr <= prev): 
○​ No splits are needed for curr. 
○​ Update prev to curr for the next comparison. 

7.​ Return ans. 

Time Complexity: 

●​ Time: O(N), as we iterate through the array once. The ceil and division operations are 
constant time. 

Space Complexity: 

●​ Space: O(1), as we only use a few variables to store the answer and previous element. 

Pseudo Code: https://pastebin.com/iGursnfQ 

 
Problem 6.4: Ryn Blackwood’s Adventure: Labyrinth of Lost Voices 

The naive way to solve this problem is to take each node (apart from s) as t and then check whether 
there is a path that will not coincide with each other. But this operation is very costly since N is 2e5. 

To optimise it, we use dfs with a from array, parent array and visited array which marks 3 states: 

●​ 0: node not visited​
 

●​ 1: node visited but not fully explored​
 

●​ 2: node fully explored (no more children left)​
 

For example, in the graph 1→2→3 and 1→4 (starting from s = 1): 

https://pastebin.com/iGursnfQ


​
 vis[1]=1 → vis[2]=1 → vis[3]=1, and since 3 has no children, vis[3]=2. Then backtrack: 
vis[2]=2, explore 4, set vis[4]=2, and finally vis[1]=2. 

During DFS, if we encounter a node that’s already explored (vis[u] = 2), it may indicate a valid 
target node. To verify this, we use the from array, where from[x] denotes the source node from 
which x was reached. 

To ensure paths don’t overlap, we check that from[u] ≠ from[v] for nodes u and v with vis[u] 
= 2. The parent array then helps reconstruct the final path. 

 

Time Complexity: 

O(n+m) as each node is visited just once and each edge is explored utmost once. All other 
operations are O(1) 

 
Pseudo code:  https://pastebin.com/SPS3wby5 
 
 

Problem 6.5: Cash & Clash 

This problem involves finding the minimum total cost to have the n-th fighter stand in an arena, 
given a set of fighters with various trait values and costs. The core challenge is to determine the 
shortest path from a starting fighter to a target fighter, considering that increasing an attribute of one 
fighter can help defeat another. 

Intuition:​
The problem can be modeled as finding the shortest path in a graph. Each fighter can be considered 
a node, and the ability of one fighter to defeat another (possibly after increasing an attribute) 
represents a directed edge. The cost of increasing an attribute would be the weight of this edge. A 
brute-force graph construction would be too slow. The key is to optimize graph construction by 
considering each attribute separately and using virtual nodes to represent attribute increases. 

Approach:​
The problem can be solved by constructing a specialized graph and finding the shortest path. 

1.​ Graph Representation: 
○​ Consider each fighter as a node. 
○​ An edge u -> v exists if fighter u can defeat fighter v . 

2.​ Optimized Graph Building (Attribute-wise): 
○​ Instead of brute-forcing all possible defeat scenarios, process each attribute 

independently. 
○​ For each attribute (e.g., the x-th attribute), create 2n virtual nodes: X1, ..., Xn and ​

https://pastebin.com/SPS3wby5


Y1, ..., Yn. 
○​ Sort all a_i, x values (trait values for the x -th attribute for all fighters). Let these 

sorted values be val_1, ..., val_n. 
○​ Add edges between virtual nodes:​

X_i -> X_{i+1} with a weight of (val_{i+1} - val_i) for 1 <= i < n. This represents the 
cost to increase an attribute to the next sorted value. 

○​ Connect real fighter nodes to these virtual nodes based on their attribute values. For 
example, if fighter j has attribute x value val_k, you might have edges like j -> X_k 
and Y_k -> j. 

○​ The goal is to find the shortest path from the n-th fighter to the 1st fighter in this 
constructed graph. This can be achieved using algorithms like Dijkstra's. 

Time Complexity: 

The time complexity will depend on the number of fighters (nodes), attributes, and the efficiency of 
the shortest path algorithm. Sorting attributes takes O(m * n log n). The shortest path algorithm 
(e.g., Dijkstra's) on the constructed graph (which has O(n * m) nodes and edges) would be roughly 
O(E log V), where V is the number of nodes and E is the number of edges. 

Space Complexity: 

The space complexity will be dominated by storing the graph, which would be O(n * m) for the 
adjacency list representation.​
​
Pseudo Code: https://pastebin.com/zpQ60DUw 

https://pastebin.com/zpQ60DUw

