MIT 슈바르츠만 컴퓨팅 칼리지: Computing and Cognition 4년 전체 커리큘럼

계산과 인지의 융합을 통한 차세대 컴퓨팅 전문가 양성

1학년 1학기: 컴퓨팅과 인지과학 기초

기초 원리에서 응용까지의 통합적 접근

1주차: 컴퓨팅과 인지과학 입문

월요일: 컴퓨팅과 인지과학 개론

- 오전 (4시간):
 - 과정 소개 및 커리큘럼 개요
 - 컴퓨팅과 인지과학의 역사적 발전
 - 인공지능과 인간 지능의 관계
 - 학습 자료 및 강의 계획 검토
- 오후 (4시간):
 - 컴퓨팅 분야의 진로 탐색
 - 캠퍼스 투어: 컴퓨터과학과 인지과학 연구실
 - 컴퓨팅 도구 및 개발 환경 소개
 - 팀 빌딩 활동 및 자기소개

화요일: 수학적 사고와 논리

- 오전 (4시간):
 - 이산수학의 기초 개념
 - 논리와 증명 기법
 - ㅇ 집합론과 관계
 - 함수와 순열, 조합
- 오후 (4시간):
 - 수학적 귀납법
 - 그래프 이론 기초
 - 문제 해결 워크숍
 - 논리적 사고 연습

수요일: 인지과학 기초

- 오전 (4시간):
 - 인지과학의 정의와 범위
 - 인간의 정보 처리 모델
 - 지각, 주의, 기억의 메커니즘
 - 인지 아키텍처 개요
- 오후 (4시간):
 - 인지과학 실험 방법론
 - 실험실 견학: 인지과학 연구 기법
 - 인지 편향과 휴리스틱
 - 인지과학 시뮬레이션 데모

목요일: 프로그래밍 기초 I - Python

- 오전 (4시간):
 - 프로그래밍 개념과 계산적 사고
 - o Python 언어 소개
 - ㅇ 데이터 타입과 연산자
 - 기본 입출력과 변수
- 오후 (4시간):
 - 제어 구조: 조건문과 반복문
 - 프로그래밍 실습 및 문제 해결
 - 인지과학을 위한 Python 계산
 - 기술 문서화 입문

금요일:컴퓨터 시스템 개관

- 오전 (4시간):
 - 컴퓨터 하드웨어 아키텍처
 - 프로세서, 메모리, 저장장치
 - 운영체제의 역할
 - 컴퓨터와 뇌의 비교
- 오후 (4시간):
 - 시스템 소프트웨어 개요
 - 네트워크와 인터넷 기초
 - 컴퓨터 시스템 시뮬레이션
 - 1주차 리뷰 및 2주차 준비

2주차: 알고리즘적 사고와 인지 모델링

월요일: 알고리즘과 복잡도

- 오전 (4시간):
 - 알고리즘의 개념과 정의
 - 알고리즘 분석과 복잡도
 - Biq-O 표기법
 - 기본 정렬 알고리즘
- 오후 (4시간):

- 탐색 알고리즘
- ㅇ 재귀적 사고
- 알고리즘 설계 전략
- 문제 해결 워크숍

화요일: 인지 프로세스 모델링

- 오전 (4시간):
 - 인지 모델의 종류와 특성
 - 정보 처리 모델
 - 연결주의 모델
 - 기호적 vs 연결주의 접근법
- 오후 (4시간):
 - 간단한 인지 모델 구현
 - 인지 모델링 도구 소개
 - 실험실: 인지 과정 시뮬레이션
 - 모델 검증과 평가

수요일: 프로그래밍 기초 Ⅱ - 자료구조

- 오전 (4시간):
 - 리스트, 튜플, 딕셔너리
 - 문자열 처리
 - 파일 입출력
 - 모듈과 패키지
- 오후 (4시간):
 - 객체지향 프로그래밍 기초
 - 클래스와 객체
 - ㅇ 프로그래밍 실습
 - 버전 관리 시스템 입문

목요일: 확률과 통계 기초

- 오전 (4시간):
 - 확률의 기본 개념
 - 조건부 확률과 베이즈 정리
 - 확률 분포
 - 통계적 추론 기초
- 오후 (4시간):
 - 데이터 분석과 시각화
 - Python을 이용한 통계 계산
 - 실험실: 확률 시뮬레이션
 - 인지과학에서의 통계 응용

금요일: 인간-컴퓨터 상호작용 입문

- 오전 (4시간):
 - HCI의 기본 원리
 - 사용자 인터페이스 설계

- 인지적 부하와 사용성
- 접근성과 포용적 설계
- 오후 (4시간):
 - 사용자 경험 디자인
 - 프로토타이핑 도구
 - 사용성 테스트 기법
 - 2주차 리뷰 및 3주차 준비

3주차: 기계학습과 신경과학 기초

월요일: 기계학습 입문

- 오전 (4시간):
 - 기계학습의 개념과 유형
 - 지도학습, 비지도학습, 강화학습
 - 학습 알고리즘의 기본 원리
 - 특성 추출과 전처리
- 오후 (4시간):
 - 선형 회귀와 분류
 - 결정 트리
 - k-최근접 이웃
 - 실습: 간단한 분류 문제

화요일: 신경과학 기초

- 오전 (4시간):
 - 뉴런의 구조와 기능
 - 신경 신호 전달
 - 시냅스와 신경 네트워크
 - 뇌의 구조와 기능 영역
- 오후 (4시간):
 - 신경과학 실험 기법
 - o fMRI, EEG 등 뇌 영상 기법
 - 실험실: 뇌파 측정 체험
 - 신경과학과 AI의 연결점

수요일:데이터 구조와 알고리즘

- 오전 (4시간):
 - ㅇ 스택과큐
 - ㅇ 트리 구조
 - ㅇ 그래프 자료구조
 - 해시 테이블
- 오후 (4시간):
 - 그래프 탐색 알고리즘
 - 동적 프로그래밍 입문
 - 알고리즘 실습
 - 효율적인 코드 작성법

목요일: 선형대수와 미적분

- 오전 (4시간):
 - ㅇ 벡터와 벡터 공간
 - 행렬 연산
 - ㅇ 고유값과 고유벡터
 - 주성분 분석 입문
- 오후 (4시간):
 - 미분과 편미분
 - 연쇄법칙과 그래디언트
 - 최적화기초
 - 수치 계산 방법

금요일: 계산 이론 기초

- 오전 (4시간):
 - 형식 언어와 오토마타
 - 튜링 머신과 계산 가능성
 - 복잡도 이론 입문
 - P vs NP 문제 개요
- 오후 (4시간):
 - ㅇ 계산 모델과 인지
 - 계산 복잡도와 뇌 처리
 - 계산 이론 시뮬레이션
 - 3주차 리뷰 및 4주차 준비

4주차: 인공 신경망과 인지 모델링

월요일: 인공 신경망 기초

- 오전 (4시간):
 - 퍼셉트론과 다층 퍼셉트론
 - 활성화 함수와 네트워크 구조
 - ㅇ 역전파 알고리즘
 - 신경망 학습과 최적화
- 오후 (4시간):
 - 신경망 구현 실습
 - TensorFlow/PyTorch 기초
 - 간단한 분류 문제 해결
 - ㅇ 하이퍼파라미터 튜닝

화요일:인지 아키텍처

- 오전 **(4**시간**)**:
 - o ACT-R 아키텍처
 - SOAR 시스템
 - 인지 아키텍처의 구성 요소
 - 작업 기억과 장기 기억
- 오후 (4시간):

- ACT-R 모델링 실습
- 인지 과제 모델링
- 모델 검증과 데이터 피팅
- 인지 모델의 예측 능력

수요일: 컴퓨터 그래픽스와 시각화

- 오전 (4시간):
 - 컴퓨터 그래픽스 기초
 - o 2D/3D 좌표계와 변환
 - 렌더링 파이프라인
 - 색상 모델과 디스플레이
- 오후 (4시간):
 - ㅇ 데이터 시각화 원리
 - o Matplotlib과 시각화 라이브러리
 - 인터랙티브시각화
 - 인지과학 데이터 시각화

목요일: 정보 이론과 엔트로피

- 오전 (4시간):
 - ㅇ 정보량과 엔트로피
 - 상호 정보량
 - 채널 용량
 - 데이터 압축 기초
- 오후 (4시간):
 - 정보 이론의 인지과학 응용
 - 뇌의 정보 처리량
 - 정보 이론 계산 실습
 - 코딩 이론 기초

금요일: 소프트웨어 개발 방법론

- 오전 (4시간):
 - 소프트웨어 개발 생명주기
 - 애자일 방법론
 - ㅇ 버전 관리와 협업
 - 테스트 주도 개발
- 오후 **(4**시간):
 - 코드 품질과 리팩토링
 - 디버깅과 프로파일링
 - 팀 프로젝트 계획
 - 4주차 리뷰 및 5주차 준비

5주차: 자연어 처리와 언어 인지

월요일: 자연어 처리 기초

오전 (4시간):

- ㅇ 자연어 처리 개요
- 토큰화와 전처리
- 형태소 분석
- o N-gram 모델
- 오후 (4시간):
 - ㅇ 언어 모델링
 - ㅇ 텍스트 분류
 - 감정 분석
 - NLTK를 이용한 실습

화요일: 언어와 인지

- 오전 (4시간):
 - 언어 습득과 발달
 - ㅇ 언어와 사고의 관계
 - o 언어 처리의 신경 기제
 - 이중언어와 인지
- 오후 (4시간):
 - 언어실험설계
 - 심리언어학 연구 방법
 - 언어 장애와 인지
 - 언어 처리 모델링

수요일:데이터베이스와 정보 시스템

- 오전 (4시간):
 - 데이터베이스 기본 개념
 - 관계형 데이터베이스
 - SQL 기초
 - 데이터베이스 설계
- 오후 (4시간):
 - NoSQL 데이터베이스
 - ㅇ 빅데이터 처리
 - 데이터 마이닝 기초
 - 실습:데이터베이스 구축

목요일: 운영체제와 시스템 프로그래밍

- 오전 (4시간):
 - ㅇ 프로세스와 스레드
 - ㅇ 메모리관리
 - ㅇ 파일 시스템
 - 입출력 시스템
- 오후 (4시간):
 - 동기화와 교착상태
 - 시스템 호출
 - 쉘 프로그래밍
 - 성능 모니터링

금요일: 웹 기술과 인터넷

- 오전 (4시간):
 - 웹의 구조와 프로토콜
 - o HTML, CSS, JavaScript
 - 웹 서버와 클라이언트
 - 보안과 암호화
- 오후 (4시간):
 - 웹 애플리케이션 개발
 - o RESTful API
 - 클라우드 컴퓨팅 기초
 - 5주차 리뷰 및 6주차 준비

6주차: 컴퓨터 비전과 시각 인지

월요일:컴퓨터 비전 기초

- 오전 (4시간):
 - ㅇ 디지털 이미지 처리
 - 필터링과 변환
 - 특징 검출
 - 객체 인식 기초
- 오후 (4시간):
 - OpenCV를 이용한 실습
 - 이미지 분할과 분류
 - 기계학습을 이용한 비전
 - ㅇ 실시간 이미지 처리

화요일: 시각 인지와 지각

- 오전 (4시간):
 - 시각 시스템의 구조
 - 색깔 지각과 형태 지각
 - 깊이 지각과 운동 지각
 - 시각적 주의
- 오후 (4시간):
 - 시각 착시와 지각 원리
 - 시각 인지 실험
 - 계산적 시각 모델
 - 시각 장애와 보조 기술

수요일: 네트워크와 분산 시스템

- 오전 (4시간):
 - 네트워크 프로토콜
 - o TCP/IP와 인터넷
 - 분산 시스템 개념
 - 클라이언트-서버 아키텍처
- 오후 (4시간):

- 분산 알고리즘
- ㅇ 합의와 일관성
- 클라우드컴퓨팅
- 네트워크 프로그래밍 실습

목요일: 암호학과 보안

- 오전 (4시간):
 - 암호학 기초
 - 대칭키와 비대칭키 암호
 - 해시 함수와 디지털 서명
 - 네트워크 보안
- 오후 (4시간):
 - 컴퓨터 보안 위협
 - 접근 제어와 인증
 - 프라이버시와 익명화
 - 보안 프로그래밍

금요일:계산 복잡도와 최적화

- 오전 (4시간):
 - 최적화 문제 분류
 - 선형 프로그래밍
 - 정수 프로그래밍
 - 근사 알고리즘
- 오후 (4시간):
 - 메타휴리스틱 알고리즘
 - ㅇ 유전 알고리즘
 - 시뮬레이티드 어닐링
 - 6주차 리뷰 및 7주차 준비

7주차: 강화학습과 행동 모델링

월요일: 강화학습 기초

- 오전 (4시간):
 - 강화학습의 개념과 요소
 - ㅇ 마르코프 결정 과정
 - 벨만 방정식
 - 가치 함수와 정책
- 오후 (4시간):
 - Q-learning 알고리즘
 - 정책 그래디언트 방법
 - 강화학습실습
 - 게임과 시뮬레이션 응용

화요일: 행동과 학습의 인지 모델

• 오전 (4시간):

- 학습의 심리학적 이론
- 조건화와 강화
- 인지 학습과 메타인지
- 전이 학습과 일반화
- 오후 (4시간):
 - 행동실험설계
 - ㅇ 학습 곡선 분석
 - 개인차와 적응적 학습
 - 교육 기술과 AI

수요일: 컴파일러와 프로그래밍 언어

- 오전 (4시간):
 - 프로그래밍 언어 이론
 - ㅇ 구문 분석과 의미 분석
 - ㅇ 코드 생성과 최적화
 - 인터프리터와 컴파일러
- 오후 (4시간):
 - 함수형 프로그래밍
 - 객체지향 프로그래밍 심화
 - 메모리관리
 - ㅇ 언어설계원리

목요일: 확률적 모델링

- 오전 (4시간):
 - 베이지안 추론
 - 베이지안 네트워크
 - ㅇ 은닉 마르코프 모델
 - o MCMC 방법
- 오후 (4시간):
 - 확률적 프로그래밍
 - 불확실성 하에서의 추론
 - 인지 모델의 베이지안 접근
 - 확률 모델 구현 실습

금요일: 의료 정보학과 바이오인포매틱스

- 오전 (4시간):
 - 생물학적 데이터 분석
 - 유전체학과 컴퓨팅
 - 의료 영상 처리
 - 개인 맞춤 의료
- 오후 (4시간):
 - ㅇ 바이오인포매틱스 도구
 - 약물 발견과 AI
 - 의료 윤리와 프라이버시
 - 7주차 리뷰 및 8주차 준비

8주차: 멀티모달 학습과 감각 통합

월요일: 멀티모달 기계학습

- 오전 (4시간):
 - 멀티모달 데이터와 융합
 - ㅇ 교차 모달리티 학습
 - 시각-언어 모델
 - 음성과 텍스트 통합
- 오후 (4시간):
 - 멀티모달 신경망
 - 어텐션 메커니즘
 - o Transformer 아키텍처
 - 멀티모달 실습 프로젝트

화요일: 감각 통합과 지각

- 오전 (4시간):
 - 다감각 통합의 신경 기제
 - 청각과 시각의 상호작용
 - ㅇ 공감각과 감각 대체
 - ㅇ 감각 처리 장애
- 오후 (4시간):
 - 감각 통합 실험
 - 가상현실과 감각 경험
 - 보조 기술과 감각 확장
 - 뇌-컴퓨터 인터페이스 기초

수요일: 병렬 컴퓨팅과 고성능 컴퓨팅

- 오전 (4시간):
 - 병렬 프로그래밍 모델
 - 공유 메모리와 분산 메모리
 - GPU 컴퓨팅과 CUDA
 - ㅇ 벡터화와 최적화
- 오후 (4시간):
 - 병렬 알고리즘 설계
 - 동기화와 통신
 - 성능 분석과 튜닝
 - 병렬 프로그래밍 실습

목요일: 음성 처리와 음성 인식

- 오전 (4시간):
 - 음성 신호 처리
 - 음성 특징 추출
 - 숨은 마르코프 모델
 - 신경망 기반 음성 인식
- 오후 (4시간):

- 음성 합성
- ㅇ 화자 인식
- ㅇ 다국어 음성 처리
- 음성 처리 실습

금요일: 소프트웨어 아키텍처와 설계 패턴

- 오전 (4시간):
 - 소프트웨어 아키텍처 원리
 - 설계 패턴
 - ㅇ 마이크로서비스 아키텍처
 - o API 설계
- 오후 (4시간):
 - 소프트웨어 품질과 메트릭
 - ㅇ 리팩토링과 코드 리뷰
 - 개발 도구와 환경
 - 8주차 리뷰 및 9주차 준비

9주차: 게임 이론과 의사결정

월요일: 게임 이론과 전략적 사고

- 오전 (4시간):
 - 게임 이론의 기본 개념
 - 내시 균형
 - 협력 게임과 비협력 게임
 - 반복 게임과 진화적 게임
- 오후 (**4**시간):
 - 경매 이론
 - 메커니즘 설계
 - 사회적 선택 이론
 - 게임 이론 시뮬레이션

화요일: 의사결정과 판단의 인지과학

- 오전 (4시간):
 - 의사결정 이론
 - 전망 이론과 행동 경제학
 - 인지 편향과 휴리스틱
 - 그룹 의사결정
- 오후 (4시간):
 - 의사결정 실험
 - 불확실성 하에서의 선택
 - 시간적 할인과 즉석 만족
 - AI 의사결정 지원 시스템

수요일: 모바일 컴퓨팅과 유비쿼터스 컴퓨팅

오전 (4시간):

- 모바일 플랫폼과 운영체제
- 모바일 애플리케이션 개발
- 센서와 컨텍스트 인식
- 위치 기반 서비스
- 오후 (4시간):
 - 웨어러블 컴퓨팅
 - IoT와 임베디드 시스템
 - ㅇ 에지컴퓨팅
 - 모바일 앱 개발 실습

목요일: 그래프 이론과 네트워크 분석

- 오전 (4시간):
 - 그래프 이론 심화
 - ㅇ 네트워크 분석 지표
 - 커뮤니티 발견
 - 네트워크 진화와 동역학
- 오후 (4시간):
 - 소셜 네트워크 분석
 - 추천 시스템
 - ㅇ 정보 확산 모델
 - ㅇ 네트워크 분석 도구

금요일: 창의성과 계산

- 오전 (4시간):
 - 창의성의 인지 과정
 - 계산적 창의성
 - 생성 모델과 창작
 - AI와 예술
- 오후 (4시간):
 - 창의성 평가 방법
 - 협업적 창의성
 - 창의적 문제 해결
 - 9주차 리뷰 및 10주차 준비

10주차: 복잡계와 창발

월요일: 복잡계 이론

- 오전 (4시간):
 - 복잡계의 정의와 특성
 - 창발과 자기조직화
 - 임계현상과 상전이
 - 혼돈 이론과 프랙탈
- 오후 (4시간):
 - 복잡계 모델링
 - 에이전트 기반 모델
 - 네트워크 동역학

○ 복잡계 시뮬레이션

화요일: 인지의 창발적 특성

- 오전 (4시간):
 - 인지의 창발 이론
 - 연결주의와 창발
 - ㅇ 집단지능
 - 분산 인지
- 오후 (**4**시간):
 - 인지 발달과 창발
 - ㅇ 언어의 창발
 - ㅇ 사회적 인지
 - 창발 모델링 실습

수요일: 양자 컴퓨팅 기초

- 오전 (4시간):
 - 양자 역학 기초
 - 큐비트와 양자 게이트
 - 양자 알고리즘
 - 양자 얽힘과 중첩
- 오후 (4시간):
 - 양자 컴퓨팅 프로그래밍
 - Qiskit 또는 Cirq 실습
 - 양자 기계학습
 - 양자 인지 모델

목요일: 진화 알고리즘과 생체 모방

- 오전 (4시간):
 - ㅇ 진화 연산의 원리
 - 유전 알고리즘
 - ㅇ 유전 프로그래밍
 - ㅇ 진화 전략
- 오후 (4시간):
 - ㅇ 개미 군집 최적화
 - 입자 군집 최적화
 - 신경진화
 - 진화 알고리즘 실습

금요일: 감성 컴퓨팅과 사회적 AI

- 오전 (4시간):
 - ㅇ 감정 인식과 생성
 - 감성 분석
 - 사회적 로봇
 - 공감적 **Al**
- 오후 (4시간):

- 문화와 AI
- 편향과 공정성
- o AI 윤리
- 10주차 리뷰 및 11주차 준비

11주차: 뇌-컴퓨터 인터페이스와 신경공학

월요일: 뇌-컴퓨터 인터페이스

- 오전 (4시간):
 - o BCI의 원리와 응용
 - 신호 획득과 처리
 - 분류 알고리즘
 - ㅇ 실시간 처리
- 오후 (4시간):
 - EEG 기반 BCI
 - 침습적 vs 비침습적 BCI
 - 신경 피드백
 - o BCI 실습

화요일: 신경공학과 신경 보철

- 오전 **(4**시간):
 - 신경 임플란트
 - ㅇ 망막 보철
 - 이 인공 와우
 - 운동 보철
- 오후 (4시간):
 - 신경 자극과 조절
 - 신경가소성과 재활
 - 윤리적 고려사항
 - 미래 신경 기술

수요일: 시계열 분석과 예측

- 오전 (4시간):
 - 시계열 데이터 특성
 - o ARIMA 모델
 - ㅇ 상태 공간 모델
 - 스펙트럼 분석
- 오후 (4시간):
 - 딥러닝을 이용한 시계열 예측
 - o LSTM과 GRU
 - 다변량 시계열
 - 시계열 분석 실습

목요일: 텍스트 마이닝과 정보 검색

● 오전 (4시간):

- 정보 검색 모델
- TF-IDF와 벡터 공간 모델
- 잠재 의미 분석
- ㅇ 토픽 모델링
- 오후 (4시간):
 - 웹 검색 엔진
 - ㅇ 추천 시스템
 - 텍스트 분류와 클러스터링
 - 정보검색실습

금요일: 지식 표현과 추론

- 오전 (4시간):
 - ㅇ 지식 그래프
 - 온톨로지와 시맨틱 웹
 - 논리적 추론
 - 규칙 기반 시스템
- 오후 (4시간):
 - ㅇ 지식 추출과 융합
 - 상식 추론
 - 설명 가능한 AI
 - 11주차 리뷰 및 12주차 준비

12주차: 로보틱스와 구현된 인지

월요일: 로보틱스 기초

- 오전 (4시간):
 - 로봇 운동학과 동역학
 - 센서와 액추에이터
 - 로봇 제어 시스템
 - 경로 계획과 내비게이션
- 오후 (4시간):
 - 로봇 프로그래밍
 - ROS (Robot Operating System)
 - 시뮬레이션 환경
 - 로보틱스 실습

화요일: 구현된 인지

- 오전 (4시간):
 - ㅇ 구현된 인지 이론
 - 감각운동 통합
 - 행동 기반 로보틱스
 - 발달 로보틱스
- 오후 (4시간):
 - ㅇ 인지 로보틱스
 - 사회적 로봇
 - 인간-로봇 상호작용

○ 구현된 AI 실험

수요일: 멀티에이전트 시스템

- 오전 (4시간):
 - 분산 문제 해결
 - 에이전트 통신
 - 협상과 경매
 - ㅇ 군집 행동
- 오후 (**4**시간):
 - 멀티에이전트 학습
 - ㅇ 합의와 조정
 - 분산 인공지능
 - 멀티에이전트 시뮬레이션

목요일: 블록체인과 분산 원장

- 오전 (4시간):
 - 블록체인 기술
 - 합의 메커니즘
 - ㅇ 스마트 컨트랙트
 - 암호화폐와 토큰
- 오후 (4시간):
 - 분산 애플리케이션
 - 블록체인 프로그래밍
 - 확장성과 성능
 - 블록체인 개발 실습

금요일: 디지털 윤리와 AI 거버넌스

- 오전 (4시간):
 - o AI 윤리 원칙
 - 알고리즘 편향과 공정성
 - 프라이버시와 감시
 - 자율성과 책임
- 오후 (4시간):
 - o AI 거버넌스와 정책
 - ㅇ 규제와 표준
 - 사회적 영향 평가
 - 12주차 리뷰 및 13주차 준비

13주차: 고급 기계학습과 딥러닝

월요일: 고급 신경망 아키텍처

- 오전 (4시간):
 - 합성곱 신경망 (CNN)
 - 순환 신경망 (RNN)
 - 장단기 메모리 (LSTM)

- 게이티드 순환 유닛 (GRU)
- 오후 (4시간):
 - 어텐션 메커니즘
 - Transformer 아키텍처
 - BERT와 GPT 모델
 - 고급 신경망 실습

화요일: 생성 모델

- 오전 (4시간):
 - 생성적 적대 신경망 (GAN)
 - 변분 오토인코더 (VAE)
 - ㅇ 정규화 흐름
 - ㅇ 확산 모델
- 오후 (4시간):
 - 이미지 생성
 - 텍스트 생성
 - 음성 합성
 - 생성 모델 실습

수요일: 메타학습과 전이학습

- 오전 (4시간):
 - ㅇ 전이학습기법
 - ㅇ 도메인 적응
 - 메타학습 (학습을 위한 학습)
 - ㅇ 퓨샷 학습
- 오후 (4시간):
 - 지속 학습
 - 파라미터 효율적 전이학습
 - 모델 압축과 지식 증류
 - 전이학습실습

목요일: 설명 가능한 Al

- 오전 (4시간):
 - 해석 가능성과 설명 가능성
 - o LIME과 SHAP
 - ㅇ 어텐션 시각화
 - 모델 해석 기법
- 오후 (4시간):
 - ㅇ 인과 추론
 - 반사실적 설명
 - 공정성과 투명성
 - 설명 가능한 AI 실습

금요일: 프로젝트 발표 준비

● 오전 (4시간):

- 학기 프로젝트 완성
- 기술 문서 작성
- 발표 자료 준비
- 프레젠테이션 연습
- 오후 (4시간):
 - 팀 프로젝트 작업
 - ㅇ 동료 리뷰
 - 문제 해결 세션
 - 13주차 리뷰 및 14주차 준비

14주차: 대규모 언어 모델과 AI 시스템

월요일:대규모 언어 모델

- 오전 (4시간):
 - o Transformer 아키텍처 심화
 - o BERT, GPT, T5 出교
 - 사전 훈련과 미세 조정
 - 프롬프트 엔지니어링
- 오후 (4시간):
 - ㅇ 멀티모달 대규모 모델
 - 모델 확장 법칙
 - 효율적인 훈련 기법
 - ㅇ 대규모 모델 실습

화요일: AI 시스템 설계

- 오전 (4시간):
 - 프로덕션 AI 시스템
 - MLOps와 모델 배포
 - ㅇ 모델 모니터링
 - A/B 테스트와 실험
- 오후 (4시간):
 - 확장 가능한 AI 아키텍처
 - 실시간 추론 시스템
 - 분산 훈련
 - AI 시스템 설계 실습

수요일: 인간 중심 AI

- 오전 (4시간):
 - 인간-AI 협업
 - AI 보조 시스템
 - 사용자 경험과 AI
 - ㅇ 적응적 인터페이스
- 오후 (4시간):
 - o AI 리터러시
 - 참여설계
 - 문화적 고려사항

○ 포용적 AI 설계

목요일: 미래 컴퓨팅 패러다임

- 오전 (4시간):
 - 신경형태 컴퓨팅
 - ㅇ 광학 컴퓨팅
 - DNA 컴퓨팅
 - 생물학적 컴퓨팅
- 오후 (4시간):
 - 양자-고전 하이브리드 시스템
 - 가장자리 **Al**
 - 지속가능한 컴퓨팅
 - 미래 기술 탐색

금요일: 최종 프로젝트 발표

- 오전 (4시간):
 - 학생 프로젝트 발표
 - ㅇ 동료 평가
 - 질의응답 세션
 - ㅇ 프로젝트 데모
- 오후 (4시간):
 - 포트폴리오 발표
 - ㅇ 학습성찰
 - o **2**학기 준비
 - ㅇ 네트워킹 세션

15주차: 종합 리뷰 및 평가

월요일: 컴퓨팅 기초 리뷰

- 오전 (4시간):
 - 알고리즘과 자료구조 복습
 - ㅇ 프로그래밍 패러다임 정리
 - 컴퓨터 시스템 아키텍처
 - 문제 해결 전략
- 오후 (4시간):
 - 종합 문제 해결 워크숍
 - 그룹 스터디 활동
 - 자기 평가 연습
 - 질의응답 세션

화요일: 인지과학 통합 리뷰

- 오전 (4시간):
 - 인지 이론과 모델
 - 신경과학과 컴퓨팅
 - ㅇ 학습과 기억

- ㅇ 인지 아키텍처
- 오후 (4시간):
 - 통합 문제 분석
 - 사례 연구 검토
 - 실험 설계 리뷰
 - 개념 이해 평가

수요일: 기계학습과 AI 리뷰

- 오전 (4시간):
 - 기계학습 알고리즘
 - 신경망과 딥러닝
 - 자연어 처리와 컴퓨터 비전
 - AI 윤리와 사회적 영향
- 오후 (4시간):
 - 프로젝트 기반 학습 정리
 - 모델 비교와 선택
 - 성능 평가 방법
 - o AI 응용 사례 분석

목요일: 시스템과 응용 리뷰

- 오전 (4시간):
 - 소프트웨어 시스템 설계
 - 네트워크와 분산 시스템
 - ㅇ 보안과 프라이버시
 - 시스템 성능과 최적화
- 오후 (4시간):
 - 통합 시스템 분석
 - 실제 응용 사례
 - 기술 트렌드 논의
 - 시스템 설계 연습

금요일: 학기 종합 및 미래 계획

- 오전 (4시간):
 - 종합 시험 또는 최종 평가
 - 지식 통합 활동
 - 포트폴리오 완성
 - 전문 역량 개발 계획
- 오후 (4시간):
 - 최종 프로젝트 전시회
 - 과정 피드백과 성찰
 - 2학기 미리보기
 - 컴퓨팅 진로 상담

1학년 2학기: 알고리즘과 자료구조 심화

지능 시스템의 이론적 기초 구축

1주차: 고급 알고리즘과 자료구조

월요일: 고급 정렬과 탐색 알고리즘

- 오전 (4시간):
 - 고급 정렬 알고리즘 (힙 정렬, 병합 정렬, 퀵 정렬)
 - 정렬 알고리즘의 안정성과 복잡도 분석
 - 외부 정렬과 메모리 효율성
 - 정렬 알고리즘의 최적화 기법
- 오후 (4시간):
 - 이진 탐색과 변형
 - 해시 테이블과 충돌 해결
 - 균형 이진 탐색 트리 (AVL, Red-Black)
 - 탐색 알고리즘 실습과 성능 비교

화요일: 인지적 처리와 알고리즘

- 오전 (4시간):
 - 인간의 정보 처리와 알고리즘적 사고
 - 작업 기억의 한계와 알고리즘 설계
 - 주의 집중과 선택적 처리
 - 패턴 인식과 휴리스틱
- 오후 (4시간):
 - 인지 부하 이론과 알고리즘 복잡도
 - 청킹과 계층적 처리
 - 인지 편향과 알고리즘 설계
 - 인지 모델을 이용한 알고리즘 평가

수요일: 그래프 알고리즘

- 오전 (4시간):
 - 그래프 표현 방법 (인접 행렬, 인접 리스트)
 - 깊이 우선 탐색 (DFS)
 - 너비 우선 탐색 (BFS)
 - 위상 정렬
- 오후 (4시간):
 - 최단 경로 알고리즘 (Dijkstra, Bellman-Ford)
 - 최소 신장 트리 (Kruskal, Prim)
 - 네트워크 플로우 기초
 - 그래프 알고리즘 실습

목요일: 확률과 통계의 계산적 접근

- 오전 (4시간):
 - 몬테카를로 방법
 - 베이지안 추론의 계산
 - 마르코프 체인 몬테카를로 (MCMC)
 - 확률적 알고리즘
- 오후 (4시간):
 - 통계적 가설 검정
 - 회귀 분석과 최소제곱법
 - 주성분 분석 (PCA)
 - 확률 프로그래밍 실습

금요일: 기계학습 기초 알고리즘

- 오전 (4시간):
 - k-최근접 이웃 (k-NN) 심화
 - 나이브 베이즈 분류기
 - 의사결정 트리와 랜덤 포레스트
 - 서포트 벡터 머신 기초
- 오후 (4시간):
 - 클러스터링 알고리즘 (k-means, 계층적 클러스터링)
 - 차원 축소 기법
 - 모델 평가와 교차 검증
 - 1주차 리뷰 및 2주차 준비

2주차: 신경과학과 신경망

월요일: 신경계의 구조와 기능

- 오전 (4시간):
 - 중추신경계와 말초신경계
 - 뉴런의 종류와 특성화
 - 신경회로와 네트워크
 - 신경가소성과 학습
- 오후 (4시간):
 - 신경전달물질과 시냅스
 - 신경 신호의 전파와 통합
 - 신경 코딩과 정보 표현
 - 실험실: 신경 시뮬레이션

화요일: 인공 신경망의 생물학적 기초

- 오전 (4시간):
 - 뉴런 모델 (McCulloch-Pitts, Integrate-and-Fire)
 - 퍼셉트론과 생물학적 뉴런 비교
 - o 학습 규칙 (Hebbian, 경쟁 학습)
 - 네트워크 토폴로지와 연결성
- 오후 (4시간):
 - 스파이킹 신경망
 - 신경형태 컴퓨팅 기초

- 뇌에서 영감을 받은 알고리즘
- 신경망 시뮬레이션 실습

수요일: 다층 퍼셉트론과 역전파

- 오전 (4시간):
 - 다층 퍼셉트론 아키텍처
 - 역전파 알고리즘의 수학적 유도
 - 기울기 소실 문제
 - 활성화 함수의 선택
- 오후 (4시간):
 - 가중치 초기화 전략
 - o 정규화 기법 (L1, L2, Dropout)
 - ㅇ 배치 정규화
 - 신경망 구현 실습

목요일: 메모리와 학습의 신경과학

- 오전 (4시간):
 - 기억의 종류와 뇌 영역
 - 해마와 장기 기억 형성
 - 작업 기억과 전전두피질
 - 절차적 학습과 기저핵
- 오후 (4시간):
 - 기억 공고화와 재활성화
 - ㅇ 망각과 간섭
 - 메타 기억과 기억 모니터링
 - 기억 모델링 실험

금요일: 심층 신경망 기초

- 오전 (4시간):
 - 심층 학습의 역사와 발전
 - 합성곱 신경망 (CNN) 기초
 - 순환 신경망 (RNN) 기초
 - 네트워크 아키텍처 설계 원칙
- 오후 (4시간):
 - 최적화 알고리즘 (SGD, Adam, RMSprop)
 - ㅇ 하이퍼파라미터 튜닝
 - 모델 선택과 검증
 - 2주차 리뷰 및 3주차 준비

3주차: 언어 처리와 계산 언어학

월요일: 자연어의 구조와 특성

- 오전 (4시간):
 - 언어학의 기본 개념 (음성학, 음운론, 형태론)
 - 통사론과 구문 분석

- 의미론과 화용론
- ㅇ 언어의 보편성과 다양성
- 오후 (4시간):
 - 형식 문법과 생성 문법
 - 문맥 자유 문법과 파싱
 - 확률적 문법
 - ㅇ 언어 자원과 코퍼스

화요일: 계산 언어학과 자연어 처리

- 오전 (4시간):
 - 토큰화와 어간 추출
 - 품사 태깅과 개체명 인식
 - ㅇ 구문 분석 알고리즘
 - 의미역할라벨링
- 오후 (4시간):
 - 언어 모델과 n-gram
 - 텍스트 분류와 감정 분석
 - 정보 추출
 - NLTK를 이용한 실습

수요일: 심리언어학과 언어 인지

- 오전 (4시간):
 - ㅇ 언어 습득과 발달
 - 언어 이해와 생성
 - 단어 인식과 어휘 접근
 - 문장 처리와 구문 분석
- 오후 (4시간):
 - 담화 이해와 추론
 - 이중언어 처리
 - 언어 장애와 실어증
 - ㅇ 언어 처리 실험 설계

목요일: 벡터 공간 모델과 워드 임베딩

- 오전 (4시간):
 - TF-IDF와 벡터 공간 모델
 - 잠재 의미 분석 (LSA)
 - Word2Vec (CBOW, Skip-gram)
 - o GloVe와 FastText
- 오후 (4시간):
 - 워드 임베딩의 평가
 - ㅇ 서브워드 임베딩
 - 문맥화된 임베딩 (ELMo)
 - 임베딩 시각화와 분석

금요일: 순환 신경망과 언어 모델링

- 오전 (4시간):
 - 언어 모델링의 기본 개념
 - 순환 신경망 (RNN)
 - 장단기 메모리 (LSTM)
 - 게이티드 순환 유닛 (GRU)
- 오후 (4시간):
 - o 양방향 RNN
 - 시퀀스-투-시퀀스 모델
 - ㅇ 어텐션 메커니즘
 - 3주차 리뷰 및 4주차 준비

4주차: 컴퓨터 비전과 시각 시스템

월요일: 시각 시스템의 생물학적 기초

- 오전 (4시간):
 - 눈의 구조와 망막 처리
 - 시각 피질의 계층적 구조
 - 특징 검출기와 수용장
 - 시각 경로 (What vs Where)
- 오후 (4시간):
 - 색깔 지각과 색 항상성
 - 움직임 지각과 광학적 흐름
 - 깊이 지각과 양안 시차
 - 시각 착시와 지각 조직화

화요일: 디지털 이미지 처리

- 오전 (4시간):
 - ㅇ 디지털 이미지 표현
 - 공간 도메인 필터링
 - ㅇ 주파수 도메인 처리
 - 에지 검출과 특징 추출
- 오후 (4시간):
 - 이미지 분할과 영역 검출
 - 형태학적 연산
 - 이미지 복원과 향상
 - o OpenCV를 이용한 실습

수요일:특징 기반 비전

- 오전 (4시간):
 - 코너 검출 (Harris, FAST)
 - 스케일 불변 특징 (SIFT, SURF)
 - 특징 기술자와 매칭
 - 호모그래피와 기하학적 변환
- 오후 (4시간):
 - 이미지 정합과 모자이크
 - 스테레오 비전과 3D 재구성

- ㅇ 객체 추적
- 특징 기반 인식 시스템

목요일: 기계학습을 이용한 시각 인식

- 오전 (4시간):
 - 전통적 분류기 (SVM, 랜덤 포레스트)
 - Bag of Visual Words
 - 히스토그램 기반 기술자
 - 얼굴 검출과 인식
- 오후 **(4**시간):
 - 행동 인식
 - 장면 이해와 의미 분할
 - 객체 검출과 위치 추정
 - 성능 평가 지표

금요일: 합성곱 신경망 (CNN)

- 오전 (4시간):
 - CNN의 기본 구조
 - 합성곱 층과 풀링 층
 - 파라미터 공유와 지역성
 - o LeNet, AlexNet 아키텍처
- 오후 (4시간):
 - o VGG, ResNet, Inception
 - 전이 학습과 미세 조정
 - 데이터 증강
 - 4주차 리뷰 및 5주차 준비

5주차: 확률적 모델링과 베이지안 추론

월요일: 확률 이론의 기초

- 오전 (4시간):
 - 확률 공간과 확률 측도
 - 조건부 확률과 독립성
 - 베이즈 정리와 응용
 - 확률 변수와 분포
- 오후 (4시간):
 - 기댓값과 분산
 - 결합 분포와 주변 분포
 - 중심극한정리
 - 확률적 시뮬레이션

화요일: 베이지안 추론

- 오전 (4시간):
 - 베이지안 추론의 철학
 - 사전 분포와 우도

- 사후 분포와 예측 분포
- ㅇ 켤레 사전분포
- 오후 **(4**시간):
 - 베이지안 의사결정 이론
 - ㅇ 모델 선택과 비교
 - ㅇ 경험적 베이즈
 - 베이지안 추론 실습

수요일: 그래프 모델

- 오전 **(4**시간**)**:
 - ㅇ 베이지안 네트워크
 - ㅇ 마르코프 네트워크
 - 조건부 독립성
 - d-분리와 모럴

•