
Problem Summary
Beam Splittable DoFn is able to self-checkpoint on each element and send back residuals via
ProcessBundleResponse.DelayedBundleApplication. The runner should reschedule these
residuals later based on the provided resumeDelay.
Currently Dataflow runner has supported executing residuals for both batch and streaming by
using runner v2. We want to have Flink to support such functionality in order to fully support
executing splittable DoFn.

Beam on Flink
When FlinkPipelineRunner takes Beam pipeline proto, it will first expand splittable DoFn(if any)
into SDF/PairWithRestriction -> SDF/SplitAndSizeRestriction ->
SDF/ProcessElementAndSizeRestriction by using SplittableParDoExpander. Then it replaces
known PTransforms with native implementation and fuses the pipeline with
GreedyPipelineFuser into several ExecutableStage. Finally the FlinkPipelineRunner translates
the fused pipeline into Flink Operator and Function, where we have
ExecutableStageDoFnOperator to execute one fused Beam sub-graph in streaming execution
and FlinkExecutableStageFunction in batch processing by talking to Beam SDK harness over
fnapi.
SDF/ProcessElementAndSizeRestriction is the DoFn that can produce
DelayedBundleApplication and the FlinkPipelineRunner should feed residuals back to this
DoFn.

Potential Approaches
In order to feed residuals back to SDF/ProcessElementAndSizeRestriction,
SDF/ProcessElementAndSizeRestriction needs to be the root transform of one
ExecutableStage. That requires to insert a fusion break between SDF/SplitAndSizeRestriction
and SDF/ProcessElementAndSizeRestriction so that the graph looks like:

Inserting fusion break has been done via GreedyPCollectionFusers.

State and Timer can be used to reschedule residuals by setting the Timer with resumeDelay and
writing residuals to the state. When the timer is fired, we can retrieve the state and feed
residuals back to the ExecutableStage. There are 2 potential ways to feed them back.

Approach 1: Feed residuals back to itself
When the timer is fired, the Flink Operator/Function invokes the ExecutableStage with residuals
directly.

https://beam.apache.org/blog/splittable-do-fn/
https://github.com/apache/beam/blob/9b0941945545e71a949649309e05e405ca73aea2/sdks/java/core/src/main/java/org/apache/beam/sdk/transforms/DoFn.java#L1304
https://github.com/apache/beam/blob/cad0333d6e27a9646fb70289bc8d2dde770b55af/model/fn-execution/src/main/proto/beam_fn_api.proto#L222
https://github.com/apache/beam/blob/cad0333d6e27a9646fb70289bc8d2dde770b55af/model/fn-execution/src/main/proto/beam_fn_api.proto#L229
https://github.com/apache/beam/blob/cad0333d6e27a9646fb70289bc8d2dde770b55af/runners/flink/src/main/java/org/apache/beam/runners/flink/FlinkPipelineRunner.java
https://github.com/apache/beam/blob/e1852ca6af92d61467bfa7dac84e96a2924eefac/runners/core-construction-java/src/main/java/org/apache/beam/runners/core/construction/graph/SplittableParDoExpander.java#L68
https://github.com/apache/beam/blob/e1852ca6af92d61467bfa7dac84e96a2924eefac/runners/core-construction-java/src/main/java/org/apache/beam/runners/core/construction/graph/ExecutableStage.java#L49
https://github.com/apache/beam/blob/e1852ca6af92d61467bfa7dac84e96a2924eefac/runners/flink/src/main/java/org/apache/beam/runners/flink/translation/wrappers/streaming/ExecutableStageDoFnOperator.java
https://github.com/apache/beam/blob/e1852ca6af92d61467bfa7dac84e96a2924eefac/runners/flink/src/main/java/org/apache/beam/runners/flink/translation/functions/FlinkExecutableStageFunction.java
https://s.apache.org/beam-fn-api
https://github.com/apache/beam/blob/cfe81092952663dadec7110602121624d4652655/runners/core-construction-java/src/main/java/org/apache/beam/runners/core/construction/graph/GreedyPCollectionFusers.java#L62

Approach 2: Feed residuals back to the Shuffle
Instead of invoking the ExecutableStage directly inside the Flink Operator/Function, the
ExecutableStage can also output the residuals to the previous Shuffle step. The assumption is
that the Flink is able to run with a cyclic graph.

This is more about extendable support for dynamic split as well. The common part for dynamic
split and self-checkpoint is rescheduling residuals. Different from self-checkpoint, we want to
redistribute the work among different workers when dynamic split happens. That requires the
ExcutableStage can output residuals back to the Shuffle step.

There are some concerns around this cycle approach. First, not all runners support executing
the cyclic graph, thus this approach will be limited to Flink only. Besides, there are also some
limitations around cyclic graphs. Please refer to this thread for more detailed discussion around
this.

Decision
We decided to go with Approach 1 for simplicity and possibility to have the shared Java
implementation for OSS runners.

https://lists.apache.org/thread.html/r10864ea8d5bb099b1085a662c3740d64da39d1e24bcca20402652247%40%3Cdev.beam.apache.org%3E

Implementation Details(Approach 1)

Java Runner Shared Library
StateAndTimerBundleCheckpointHandler
A StateAndTimerBundleCheckpointHandler is designed for all Java runners to handle SDF
initiated checkpoint as long as the runner supports Timer and State. A timer is set to reschedule
these residuals and the delayed residuals will be written to the state.
To construct a StateAndTimerBundleCheckpointHander, 4 objects are needed:

●​ A TimerInternalsFactory, which is used to create a TimerInternals for each
DelayedBundleApplication.BundleApplication.element.

●​ A StateInternalsFactory, which is used to create a SateInternals for each
DelayedBundleApplication.BundleApplication.element.

●​ A window coder for the current bundle. This window coder is used to create
StateNamespace for both setting timer and writing state.

●​ An input coder for the current bundle. This coder is used to decode the residual element
into a windowed value, which is the key for TimerInternalsFactory.forKey() and
StateInternalsFactory.forKey().

Inside onCheckpoint(ProcessBundleResponse), several things happen for each
DelayedBundleApplication:

●​ StateAndTimerBundleCheckpointHandler creates a unique id, which is used as the id for
both the timer and state.

●​ A TimerInternals and a StateInternals are created for the decoded residual value.
●​ A processing time timer is set where:

○​ timestamp = now() + DelayedBundleApplication.RequestedTimeDelay
○​ outputTimestamp =

min(DelayedBundleApplication.BundleApplication.outputWatermarsMap)
If there is no output watermark, the outputTimestamp will be the
MIN_TIMESTAMP

●​ A ValueState is written where:
○​ The StateNamespcate is the same as the timer
○​ The id is the same as the timer
○​ The coder is the input coder.

StageBundleFactory
The BundleCheckpointHandler is exposed to the StageBundleFactory.getBundle() API just as
other handlers.

Flink Changes

Batch translation and execution

We use InMemoryTimerIntenrals and InMemoryStateInternals for any given keys in Batch,
which makes the batch case much simpler.

When the FlinklBatchPortablePipelineTranslator translating ExecutableStage, the input coder is
exposed to the FlinkExecutableStageFunction. The FlinkExecutableStageFunction keeps a
StateAndTimerCheckpointHandler if there is a splittable DoFn and requests processing the
bundle with the checkpoint handler.
When a bundle finishes processing, the FlinkExecutableStageFunction will check whether there
are any pending SDF timers. If so, the FlinkExecutableStageFunction retrieves the delayed
residual elements from state and invoke a new bundle to process these elements.

Streaming translation and execution

Different from batch processing, we use FlinkTimerInternals and FlinkStateInternals to work with
states and timers.

SdfByteBufferKeySelector
For a splittable DoFn, we already know that the format of the input should be KV<KV<element,
KV<restriction, watermarkState>>, size>, where we will use the element as the key for Flink to
use the timers and keyed state. The SdfByteBufferKeySelector is designed to extract such a key
from one given input of a splittable DoFn. The input DataStream will be keyed by this key
selector and the ExecutableStatgeDoFnOpeator will use the key selector to set the key for the
state backend.

SdfTimerInternals/SdfStateInternals and
SdfTimerInternalsFactory/SdfStateInternalsFactory
FlinkTimerInternals and FlinkStateInternals require the caller to set the key for the Flink state
backend and grab the lock before setting timers/states, thus a wrapper is needed for both.
SdfTimerInternals wraps the FlinkTimerInternals to deal with the key and lock, and
SdfTimerInternalsFactory is for creating a SdfTimerInternals with one given key. Similar to timer,
we also have SdfStateInternals and SdfStateInternalsFactory for the same reason.

During execution, the ExecutableStageDoFnOperator requests processing a bundle with the
StateAndTimerBundleCheckpointHandler. When an SDF timer is set, the FlinkTimerInternals
sets the watermarkHold by using the outputTimestamp from the SDF timer. We rely on Flink to
fire any SDF timer. When an SDF timer is firing, the ExecutableStageDoFnOperator will first
remove the watermarkHold and then retrieve states to invoke processElement().

	Problem Summary
	Beam on Flink
	Potential Approaches
	Approach 1: Feed residuals back to itself
	Approach 2: Feed residuals back to the Shuffle
	Decision

	Implementation Details(Approach 1)
	Java Runner Shared Library
	Flink Changes
	Batch translation and execution
	Streaming translation and execution

