

Homework 1C (CS 17/111/112/19): Lists and
Mutation

Due: Thursday, February 9th, 2023 at 11:59pm ET

Note: In order to complete this assignment, you must have already completed HW1B. In this
homework, we’ll be building on top of classes that we’ve created in the previous homeworks, and
you will need to copy your class implementations from previous assignments.

Collaboration Policy: You may collaborate as much as you want on this assignment (this
is more flexible than the normal course policy). The goal is to get everyone up to speed
on functional programming. You are required to turn this in, but it will be weighted lightly
in final grades. That said, we strongly encourage you to actively try writing these on your
own while collaborating, as assignments after we come back together will assume you
can do these sorts of problems on your own.

Learning Objectives

●​ To practice working with Java’s built-in lists
●​ To practice structuring code around access modifiers
●​ To practice using Java types to control the ability to perform certain

computations

Setup

Using this GitHub Classroom link, accept the assignment and clone on your machine.
(This assignment should be a continuation of homework 1B, you can use your code
from homework 1A, and homework 1B as a start).

If you’re having trouble with IntelliJ, our First Time Setup Guide includes a common
bugs/FAQ section.

https://docs.google.com/document/d/1masJBaMeuCIGHCCXIyQEJrjp6UYfQJi30yR2CH1HWp4/edit?usp=sharing
https://classroom.github.com/a/QuSGAUzU
https://docs.google.com/document/d/1lpLXh4J2P6V_BIyNp8qL1_RE9_XKCkfE67v7KXwH-u8/edit?usp=sharing

Please make sure to read our Gradescope submission guide before handing in your
assignment!

Style Expectations

For all future assignments, including this one, we expect your code to conform to the
CS200 Java Style Guide.

Important: When comparing fields between classes, it is good object-oriented code
organization to not use getters and setters. This means that your classes should not
have methods where the only purpose is returning an inputted field (“getting” a value”)
or changing an inputted field’s value (“setting” a value).

Problems

In the last assignment, we created a GradeReport class. Now, it’s time to set up the
gradebook for an entire class, as well as the ability to manage (and update) grades. We
also want to support Faculty teaching multiple courses.

More Courses

Task 1: Edit your Faculty class so that the field that stores what they are teaching is a
LinkedList of Course rather than a single Course. You’ll have to update the
constructor and perhaps other methods that worked on the previous field type as well.

Reminder that to use this, you will need the following import statement at the top of
your Faculty.java:

01|​ import java.util.LinkedList;

If you need to check whether a specific Course object is in a faculty member’s list of
courses, use the LinkedList method contains which takes an object and returns a
boolean.

Creating a Gradebook

https://docs.google.com/document/d/1eM426oe_zrrDX6NeN9WCnDBmGrOV9afXlMFq4_kBoxk/edit?usp=sharing
https://docs.google.com/document/d/1tuYFV7uQfqaQ6LtmkAfpSOeZd9EEMNZIERC3klEgwfI/edit?usp=sharing

Task 2: Add a gradebook field to the Course class. It should be of type
LinkedList<GradeReport>. This field should be initialized to an empty list within
the Course constructor.

Don’t forget to import java.util.LinkedList in Course.java!

Adding Grades

Task 3: Add a method named storeGrade to the Course class. The method should
take in a Student and a valid grade (LetterGrade or SNCGrade from assignment
1B). The method should result in updating the Course’s gradebook to include a
GradeReport for the corresponding student. You may assume that the student doesn’t
already have a grade in the gradebook.

Looking up GradeReports

Task 4: Create a method findGradeReport in the Course class that takes the name
of a student and returns the GradeReport of the named student in the course. The
method should return null if the student is not in the course. Mark this method as
private (replacing public with private at the start of the method header.)

Updating Grades

Task 5: Add a method named updateGrade to the Course class. The method should
take in the name of a student (String) and a valid grade. The method should result in the
new grade being stored in the gradebook for the given student. If the student does not
have a grade, throw a RuntimeException with the message "no grade for
student".

Think about how to use methods you’ve previously written as helpers.

Note: Java has different kinds of exceptions for different kinds of errors. For now, we will use a
RuntimeException for any error related to the logic of the program or system being represented
(as opposed to IllegalArgumentException which we use when an input is not from an
expected set of values).

throw new RuntimeException(<insert error message>);

Hint: Use previous problems as helpers!

Finding Students in a Gradebook

Task 6: Add a method called gradeLookup to the Course class. The method should
take a Faculty or TA object and a student name as input.

●​ If gradebook has a GradeReport for the given student name, the method
should return a String representation of the grade.

●​ If the given Faculty or TA is not teaching the course, throw a
RuntimeException with the message "permission denied".

●​ If no such grade is found, a RuntimeException with the message "student
<NAME> not found" should be thrown (where "<NAME>" is replaced with the
student name being searched for).

In cases where both exceptions would apply, throw the permission denied
exception.

Think about how to reuse methods that you’ve already written.

Part of the point of the question is for you to think about how to take an argument that can
be Faculty or TA, but not a general Student. (We’ve covered everything you need in
order to do this. You may NOT use instanceOf).

Identifying Students in Trouble

Task 7: Add a method reportsWithC to the Course class. The method should return
a list of GradeReport from the course gradebook in which the grade is the letter C.

The point of this question is for you to practice using good object-oriented code
organization to check attributes of objects. You should NOT use getters to do this (by this,
we mean that your code should not pull a grade out of a gradebook to compare it to “C”).

Note: In order to write this, you will need to be able to check whether two grades are the same. Lab
2 gave a quick introduction to writing equals methods, but IntelliJ will also generate equals
methods for you automatically. If you start typing public boolean equals in a class, IntelliJ
will give you a popup that asks whether it should generate “equals and hashcode methods”. Click
through doing that (just ignore or delete the generated hashcode method).

Hint: The Equals methods for LetterGrade and SNCGrade ->

For LetterGrade.java

01|​ @Override
02|​ public boolean equals(Object o) {
03|​ if (this == o) return true;
04|​ if (o == null || this.getClass() != o.getClass()) return

false;
05|​ LetterGrade that = (LetterGrade) o;
06|​ return this.grade == that.grade;
07|​ }

For SNCGrade.java

01|​ @Override
02|​ public boolean equals(Object o) {
03|​ if (this == o) return true;
04|​ if (o == null || this.getClass() != o.getClass()) return

false;
05|​ SNCGrade sncGrade = (SNCGrade) o;
06|​ return this.pass == sncGrade.pass && this.passDistinction

== sncGrade.passDistinction;
07|​ }

Protecting Grade Information

Task 8: Grade information is sensitive, and hence should be kept private. Other
information may also be sensitive. Mark all of the fields in GradeReport, Student,
Faculty, and Course as private. If this breaks some of your existing code, create
additional methods as needed to restore your code to working.

Hint: Do this in stages: mark a couple of fields private and make sure your code will still run. Repeat
until you’ve marked all of the fields. If you followed the “no getters” rule until now, your code should
work without anything breaking.

Note: You will learn about private annotations in lab this week. In a nutshell, marking a field
private means that the field cannot simply be accessed from outside the class by writing
object.field. Instead, you have to provide a method in the field’s class that will perform the
desired computation (you should not just hand the field out through a simple “getter” method, for
those who already know that term).

Testing

Note: When writing your test suite, you should test only the methods we have asked you to write in
this handout. Do NOT reference in your tests fields or methods that are not required by the
assignment, or the autograder may fail.

Put your testing in the file Homework1CTest.java. You will submit this file to the
Homework 1C (17/111/112/19): Implementation assignment on Gradescope.

Task 9: Write a thorough set of tests for gradeLookup. You should develop a set of
tests that check the expected interactions among storeGrade, updateGrade,
gradeLookup, and reportsWithC. What do we mean? One might expect that
reportsWithC (for example) could return a different output after a call to
updateGrade. Good test suites therefore test the interactions between methods when
the changes made by one should affect (or not!) the output that comes from the other.
We’re asking you to develop a set of such interaction tests for these four functions.

Note: You cannot test private methods in Homework1CTest.java (because the test class
cannot “see” private methods). You may want to test that method before you make it private, but do
not include tests for private methods in your Homework1CTest.java file.

Pro Tip: If you find that you need to set up the same courses, students, etc for multiple tests, you
can write a single method to set up your data and tell JUnit to run it before each test method. Here’s
an example:

01|​ public class Homework1CTest {
02|​ Course c1, c2;
03|​
04|​ @Before
05|​ public void setup() {
06|​ this.c1 = new Course("VISA", 100, 1)
07|​ this.c2 = new Course("HIST", 310, 1)
08|​ }
09|​
10|​ @Test
11|​ public void testDept() {
12|​ Assert.assertEquals(c1.department,"VISA");
13|​ }
14|​ }

We create the variables for data as fields outside the methods. The @Before annotation tells JUnit
to run that method before running every test. This way, your tests can focus just on the conditions
to check, and you can set up the data just one time. This also restores the values of c1, etc before
each test, in case you have a test that needs to modify your data.

Handing In

Begin by cloning the GitHub repository found by clicking the above GitHub Classroom
link. The following files should be in the sol directory. You can move the files you wrote
in 1B into this directory.

●​ Course.java containing public class Course

●​ Faculty.java containing public class Faculty
●​ Student.java containing public class Student
●​ Person.java containing public abstract class Person
●​ TA.java containing public class TA
●​ GradeReport.java containing public class GradeReport
●​ IGrade.java containing public interface IGrade
●​ Letter.java containing public enum Letter
●​ LetterGrade.java containing public class LetterGrade
●​ SNC.java containing public enum SNC
●​ SNCGrade.java containing public class
●​ Homework1CTest.java containing public class Homework1CTest
●​ TestRunner.java containing public class TestRunner
●​ AutograderCompatibility.java containing public class

AutograderCompatibility

After completing this assignment, you should be ready to turn in (at least) the following
files to the Homework 1C-17/111/112/19: Implementation assignment on Gradescope
(make sure to exclude the AutograderCompatibility.java file from your
submission):

●​ Course.java containing public class Course
●​ Faculty.java containing public class Faculty
●​ Student.java containing public class Student
●​ Person.java containing public abstract class Person
●​ TA.java containing public class TA
●​ GradeReport.java containing public class GradeReport
●​ IGrade.java containing public interface IGrade
●​ Letter.java containing public enum Letter
●​ LetterGrade.java containing public class LetterGrade
●​ SNC.java containing public enum SNC
●​ SNCGrade.java containing public class SNCGrade
●​ Homework1CTest.java containing public class Homework1CTest

Note: You may also include other classes, interfaces, and abstract classes.

Once you have handed in your homework, you should receive an email, more or less
immediately, confirming that fact. If you don’t receive this email, try handing in again, or
ask the TAs what went wrong.

Note: There should be a class in the stencil code named
AutograderCompatibility. Using this class is required to ensure that your
submission is working correctly with the autograder. You will be penalized if your code
does not work with the autograder.

If Gradescope gives you the message “Could not run your code (0.0/0.0)," uncomment
the main method of AutograderCompatibility and check that it compiles and
runs. If the Gradescope autograder still doesn’t work, come to hours or post on Ed for
help.

FAQ

For examples of tests, see the Homework 1A FAQ. If you have other questions, feel
free to post on Ed or come to hours.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this
or any other CS200 document by filling out our anonymous feedback form!

https://docs.google.com/document/d/1yYzFCPqFkQXwfcWy8-kiDPjs-fXqsTcn5-ab8O-WoAg/edit#heading=h.yqc0xd7uafon
https://forms.gle/8HY7tDdgM98fk2e19

	Homework 1C (CS 17/111/112/19): Lists and Mutation
	Due: Thursday, February 9th, 2023 at 11:59pm ET

	Learning Objectives
	Setup
	Style Expectations
	Problems
	More Courses
	Creating a Gradebook
	Adding Grades
	Looking up GradeReports
	Updating Grades
	Finding Students in a Gradebook
	Identifying Students in Trouble

	
	Protecting Grade Information
	Testing
	Handing In
	FAQ

