Section 03: Recurrences and Trees

1. Modeling Code with Recurrences

Given the following code snippet, determine the recurrence relation that represents its
behavior:

1~ public static int f(int N) {

2~ if (N <= 1) {

3 return 0;

4 b

5 int result = 0;

6~ for (int i = @; i < N; i++) {

7~ for (int j = 0; j < i; j++) {

8 result++;

9 }

10 }

11 return 5 * f(N / 2) + 3 % result + 2 x f(N / 2) + f(N/ 2) + f (N / 2);

12}



2. Recurrence Diagrams

Given the following code snippet:

static void triple(int N) {
if (N> 1) {
for (int i = 1; i <N/ 2; i +=1) {
System.out.println(i);
s

triple(N /7 3);
triple(N / 3);
triple(N / 3);

for (int i =1; i <N/ 2; i+=1) {

System.out.println(i);
}

1) Determine the recurrence relation that represents its behavior.

2) Draw the first 3 levels and the final level of a recurrence diagram representing the
recurrence relation you determined. Include the non-recursive work next to each node.



3. LinkedDeque Trace
Given the following deque (with sentinel nodes):

Front Sentinel <-> 9 <-> 8 <->7<-> 6 <-> 5 <-> 4 <-> 3 <-> 2 <-> 1 <-> Back Sentinel
Note: -> indicates .next, <- indicates .prev

Now consider the following operation:
deque.removeFirst();

Which pointers are updated during this operation? Name the nodes involved and explain how
their .next and .prev references change.



4. ArrayDeque Resize Trace

Trace through what happens when an ArrayDeque with elements [5, 6, 7, 8] (front=3, back=1,
size=4) needs to resize to capacity 14.

I T

BACK =1 FRONT =3

What are the size, index values & capacity of the final array? Explain why the circular array
approach makes this operation efficient. What should get(2) return after resizing?



5. Edge Case Handling

For an ArrayDeque with a single element (value 42, front=2, back=4, in an array of capacity
8), trace through what happens during a removeFirst() operation.

null null null 42 null null null null
FRONT =2 BACK =1

What special cases need to be considered to maintain correctness?



6. Bug Identification:
Review the following buggy implementation of addFirst() for LinkedDeque.
public void addFirst(E element) {
// Bring in new node, link it up to the front sentinel node
// and the old first node
Node<E> newNode = new Node<>(element, front, front.next);
front.next = newNode;
back.prev.prev = newNode;
size += 1;
}

In what situations does this LinkedDeque addFirst() code appear to work correctly? In what
situations does this code fail? Why? Identify the bug and explain how to fix the method.



