
Section 03: Recurrences and Trees

1. Modeling Code with Recurrences

Given the following code snippet, determine the recurrence relation that represents its

behavior:

1

2. Recurrence Diagrams

Given the following code snippet:

1) Determine the recurrence relation that represents its behavior.

2) Draw the first 3 levels and the final level of a recurrence diagram representing the

recurrence relation you determined. Include the non-recursive work next to each node.

2

3. LinkedDeque Trace

Given the following deque (with sentinel nodes):

Front Sentinel <-> 9 <-> 8 <-> 7 <-> 6 <-> 5 <-> 4 <-> 3 <-> 2 <-> 1 <-> Back Sentinel

Note: -> indicates .next, <- indicates .prev

Now consider the following operation:

deque.removeFirst();

Which pointers are updated during this operation? Name the nodes involved and explain how

their .next and .prev references change.

3

4. ArrayDeque Resize Trace

Trace through what happens when an ArrayDeque with elements [5, 6, 7, 8] (front=3, back=1,

size=4) needs to resize to capacity 14.

What are the size, index values & capacity of the final array? Explain why the circular array

approach makes this operation efficient. What should get(2) return after resizing?

4

5. Edge Case Handling

For an ArrayDeque with a single element (value 42, front=2, back=4, in an array of capacity

8), trace through what happens during a removeFirst() operation.

What special cases need to be considered to maintain correctness?

5

6. Bug Identification:

Review the following buggy implementation of addFirst() for LinkedDeque.

 public void addFirst(E element) {

 // Bring in new node, link it up to the front sentinel node

 // and the old first node

 Node<E> newNode = new Node<>(element, front, front.next);

 front.next = newNode;

 back.prev.prev = newNode;

 size += 1;

 }

In what situations does this LinkedDeque addFirst() code appear to work correctly? In what

situations does this code fail? Why? Identify the bug and explain how to fix the method.

6

