* 21.4 Analysis of union by rank with path compression

As noted in Section 21.3, the running time of the combined union-by-rank and
path-compression heuristic is O(m a(n)) for m disjoint-set operations on n ele-
ments. In this section, we shall examine the function & to see just how slowly it
grows. Then we prove this running time using the potential method of amortized
analysis.

A very quickly growing function and its very slowly growing inverse

For integers £ > 0 and j > 1, we define the function Az (/) as

j+1 ifk=0,

A (j) = IAij_'iil}(j) k> 1,

where the expression A” 'H}{ J) uses the functional-iteration notation given in Sec-

tion 3.2. Specifically, A(m (j) = j and A{'L{j'} = A;,_l{A{‘_'I'){_;}} fori > 1. We
will refer to the parameter .i: as the level of the function A.

The function Ay () strictly increases with both j and £. To see just how quickly
this function grows, we first obtain closed-form expressions for A; () and Az ().

Lemma 21.2
For any integer j > 1, we have A, (j) = 2j + 1.

Proof We first use induction on i to show that &m(J} = j+1i. For the base case,
we have Au)(;] = j = j+ 0. For the inductive step, assume that A“ Y =
j+ (@ = 1). Then AY(j) = Ag(Ay~"(j)) = (j + (i = 1)) + 1 = j + i. Finally,
we note that A; (/) = AV (H=j+ G+ =2j+1. .

Lemma 21.3
For any integer j = 1, we have A2(j) =21 (j 4+ 1) - 1.

Proof We first use induction on i to show that A (j) = 2/(j 4+ 1) — 1. For
the base case, we have A%u}(j] = j = 2%j 4+ 1) — 1. For the inductive step,
assume that AV (j) = 271(j + 1) — 1. Then A (j) = A,(A" V() =
A2 G+ 1) = 1) = 2.2 1((;+1]-1)+1 =2(j+1)=2+1 _2*’{;+1}-1
Finally, we note that A;(j) = VHG 1) — 1. .

Now we can see how quickly A () grows by simply examining A, (1) for levels
k =0,1,2,3,4. From the definition of Ag(k) and the above lemmas, we have
Ao =14+1=2, A () =2-1+1=3,and A;(1) =2 . (14+1) -1 =T.
We also have
A1) = AP)
Az(Az(1))
A2(T)
.81
p AL |
2047

Ay = AP
A3(As(1))
A2(2047)
= AP(2047)

214 Analysis of union by rank with path compression 511

> A(2047)

= 224 2048 — 1
- 22043

= (2412

— lﬁﬁlz

» 100

which is the estimated number of atoms in the observable universe.
We define the inverse of the function A (n), for integer n = 0, by

a(n) =min{k : Ai(1) = n} .

In words, @(n) is the lowest level k for which Ag(1) is at least n. From the above
values of A;(1), we see that

0 forO<n<2,

1 forn=3,
an)=42 ford<n<T7,

3 for8 =n <2047,

4 for2048 = n < Ay(l).

It is only for impractically large valves of n (greater than A4(1), a huge number)
that w(n) > 4, and so e(n) < 4 for all practical purposes.

Properties of ranks

In the remainder of this section, we prove an @ (ma(n)) bound on the running time
of the disjoint-set operations with union by rank and path compression. In order to
prove this bound, we first prove some simple properties of ranks.

Lemma 21.4

For all nodes x, we have rank[x] < rank[p[x]], with strict inequality if x # p[x].
The value of rank[x] is initially O and increases through time until x # p[x]; from
then on, rank[x] does not change. The value of rank[p[x]] monotonically increases
over time.

Proof The proof is a straightforward induction on the number of operations, us-
ing the implementations of MAKE-SET, UNION, and FIND-SET that appear in
Section 21.3. We leave it as Exercise 21.4-1. "

Corollary 21.5
As we follow the path from any node toward a root, the node ranks strictly in-
crease.]

Lemma 21.6
Every node has rank at most n — 1.

Proaof Each node’s rank starts at 0, and it increases only upon LINK operations.
Because there are at most n — 1 UNION operations, there are also at most n — 1
LINK operations, Because each LINK operation either leaves all ranks alone or
increases some node’s rank by 1, all ranks are at most n — 1.]

Lemma 21.6 provides a weak bound on ranks. In fact, every node has rank at
most [lgn] (see Exercise 21.4-2). The looser bound of Lemma 21.6 will suffice
for our purposes, however.

Proving the time bound

‘We shall use the potential method of amortized analysis (see Section 17.3) to prove
the O (ma(n)) time bound. In performing the amortized analysis, it is convenient to
assume that we invoke the LINK operation rather than the UNION operation, That
is, since the parameters of the LINK procedure are pointers to two roots, we assume
that the appropriate FIND-SET operations are performed separately. The following
lemma shows that even if we count the extra FIND-SET operations induced by
UNION calls, the asymptotic running time remains unchanged.

Lemma 21.7

Suppose we convert a sequence S’ of m" MAKE-SET, UNION, and FIND-SET op-
erations into a sequence S of m MAKE-SET, LINK, and FIND-SET operations by
turning each UNION into two FIND-SET operations followed by a LINK. Then, if
sequence S runs in O (m a(n)) time, sequence S’ runs in Q(m’ @(n)) time.

Proof Since each UNION operation in sequence §' is converted into three opera-
tions in S, we have m’ = m < 3m’, Since m = O(m’), an O(m w(n)) time bound
for the converted sequence § implies an O (m’ @(n)) time bound for the original
sequence S’ .

In the remainder of this section, we shall assume that the initial sequence of m’
MAKE-SET, UNION, and FIND-SET operations has been converted to a sequence
of m MAKE-SET, LINK, and FIND-SET operations. We now prove an O (m «(n))
time bound for the converted sequence and appeal to Lemma 21.7 to prove the
O(m’ @ (n)) running time of the original sequence of m’ operations.

214 Analysis of union by rank with path compression 513

Potential function

The potential function we use assigns a potential ¢,(x) to each node x in the
disjoint-set forest after ¢ operations. We sum the node potentials for the poten-
tial of the entire forest: &, = }__¢(x), where &, denotes the potential of the
forest after g operations. The forest is empty prior to the first operation, and we
arbitrarily set &g = 0. No potential &, will ever be negative.

The value of ¢,(x) depends on whether x is a tree root after the gth operation.
If it is, or if rank[x] = 0, then ¢y(x) = e(n) - rank[x].

Now suppose that after the gth operation, x is not a root and that rank[x] = 1.
We need to define two auxiliary functions on x before we can define ¢, (x). First
we define

level(x) = max {k : rank[p[x]] = A (rank[x])} .

That is, level(x) is the greatest level k for which A,, applied to x’s rank, is no
greater than x’s parent’s rank.
We claim that

0 < level(x) < a(n) , (21.1)
which we see as follows, We have
rank[p[x]] = rank[x]+1 (by Lemma 21.4)

= Ag(rank[x]) (by definition of Ag(j)) ,
which implies that level (x) > 0, and we have
Agim(ranklx]) = Agm(l) (because Ag()) is strictly increasing)
n (by the definition of a(n))

> rank[p[x]] (by Lemma 21.6) ,

which implies that level(x) < «(n). Note that because rank[p[x]] monotonically

increases over time, so does level(x).
The second auxiliary function is

v 1

iter(x) = max {i : rank[p[x]] = Afi};dm (rank[x])} .

That is, iter(x) is the largest number of times we can iteratively apply Ajevelix)s
applied initially to x’s rank, before we get a value greater than x's parent’s rank.
We claim that

1 < iter(x) < rank[x] ., (21.2)
which we see as follows. We have

rank[plx]] = Ayer(rankx]) (by definition of level(x))
= Afiﬂﬂm(mnk[x 1) (by definition of functional iteration) ,

which implies that iter(x) > 1, and we have

Alcvaie) V(ranklx)) = Aiwae1(rank[x]) (by definition of A¢(j))
> rank[p[x]] (by definition of level(x)) ,

which implies that iter(x) < rank[x]. Note that because rank[p[x]] monotonically
increases over time, in order for iter(x) to decrease, level(x) must increase. As long
as level(x) remains unchanged, iter(x) must either increase or remain unchanged.

With these auxiliary functions in place, we are ready to define the potential of
node x after ¢ operations:

a(n) - rank[x] if x is a root or rank[x] =0,
(x(n) — level(x))-rank[x] — iter(x) if x is not a root and rank[x] > 1.

Pglx) = [
The next two lemmas give useful properties of node potentials.

Lemma 21.8
For every node x, and for all operation counts g, we have

0 < ¢y(x) < aln) - rank[x] .

Proof If x is a root or rank[x] = 0, then ¢, (x) = a(n) - rank[x] by definition.
Now suppose that x is not a root and that rank[x] = 1. We obtain a lower bound
on ¢,(x) by maximizing level(x) and iter(x). By the bound (21.1), level(x) =<
a{n) — 1, and by the bound (21.2), iter(x) < rank[x]. Thus,
¢, (x) = (e(n)—(a(n)— 1)) - rank[x] — rank[x]

= rank[x] — rank|x]

0.

Similarly, we obtain an upper bound on @, (x) by minimizing level(x) and iter(x).
By the bound (21.1), level(x) = 0, and by the bound (21.2), iter(x) = 1. Thus,
pg(x) = (a(n)—0)-ranklx] -1

= ain) rank[x] -1

< an) - -rank(x] . []

Potential changes and amortized costs of operations

We are now ready to examine how the disjoint-set operations affect node potentials.
With an understanding of the change in potential due to each operation, we can
determine each operation’s amortized cost.

Lemma 21.9

Let x be a node that is not a root, and suppose that the gth operation is either a
LINK or FIND-SET. Then after the gth operation, ¢4(x) = ¢,_;(x). Moreover, if
rank[x] = 1 and either level(x) or iter(x) changes due to the gth operation, then
$y(x) = ¢y—1(x) — L. That is, x’s potential cannot increase, and if it has positive
rank and either level(x) or iter(x) changes, then x’s potential drops by at least 1.

Proof Because x is not a root, the gth operation does not change rank[x], and
because n does not change after the initial » MAKE-SET operations, ¢(1n) remains
unchanged as well. Hence, these components of the formula for x's potential re-
main the same after the gth operation. If rank[x] = 0, then ¢, (x) = ¢,_;(x) = 0.
Now assume that rank[x] = 1.

Recall that level(x) monotonically increases over time. If the gth operation
leaves level(x) unchanged, then iter(x) either increases or remains unchanged.
If both level(x) and iter(x) are unchanged, then ¢, (x) = ¢,_(x). If level(x)
is unchanged and iter(x) increases, then it increases by at least 1, and so
Pg(x) = @g1(x) — L.

Finally, if the gth operation increases level(x), it increases by at least 1, so
that the value of the term (a(n) — level(x)) - rank[x] drops by at least rank[x].
Because level(x) increased, the value of iter(x) might drop, but according to the
bound (21.2), the drop is by at most rank[x] — 1. Thus, the increase in potential
due to the change in iter(x) is less than the decrease in potential due to the change
in level(x), and we conclude that Pg(x) = Pga(x) — L. []

Qur final three lemmas show that the amortized cost of each MAKE-SET, LINK,
and FIND-SET operation is O(w(n)). Recall from equation (17.2) that the amor-
tized cost of each operation is its actual cost plus the increase in potential due to

the operation.

Lemma 21.10
The amortized cost of each MAKE-SET operation is O (1).

Proof Suppose that the gth operation is MAKE-SET(x). This operation creates
node x with rank 0, so that ¢,(x) = 0. No other ranks or potentials change, and
so &, = &, ;. Noting that the actual cost of the MAKE-SET operation is O(1)
completes the proof. []

Lemma 21.11
The amortized cost of each LINK operation is O (e (n)).

Proof Suppose that the gth operation is LINK(x, y). The actual cost of the LINK
operation 15 O(1). Without loss of generality, suppose that the LINK makes y the
parent of x.

To determine the change in potential due to the LINK, we note that the only
nodes whose potentials may change are x, y, and the children of y just prior to the
operation. We shall show that the only node whose potential can increase due to
the LINK is vy, and that its increase is at most ¢(n):

* By Lemma 21.9, any node that is y's child just before the LINK cannot have its
potential increase due to the LINK.

= From the defimition of ¢,(x), we see that, since x was a root just be-
fore the gth operation, ¢, 1(x) = a(n) - rank[x]. If rank[x] = 0, then
Pq(x) = ¢y_1(x) = 0. Otherwise,

Pg(x) = (ce(n) — level(x)) - rank[x] — iter(x)
< wn) - rank[x] (by inequalities (21.1) and (21.2)) .

Because this last quantity is ¢, _;(x), we see that x’s potential decreases.

- Because y is a root prior to the LINK, ¢,_i(y) = w(n) - rank[y]. The LINK
operation leaves y as a root, and it either leaves y's rank alone or it increases
y's rank by 1. Therefore, either ¢, () = ¢q-1(¥) or ¢y (y) = ¢g—1(y) + a(n).

The increase in potential due to the LINK operation, therefore, is at most «(n).
The amortized cost of the LINK operation is O (1) + a(n) = O(x(n)). []

Lemma 21.12
The amortized cost of each FIND-SET operation is O (e (n)).

Proof Suppose that the gth operation is a FIND-SET and that the find path con-
tains 5 nodes. The actual cost of the FIND-SET operation is O{s). We shall
show that no node’s potential increases due to the FIND-SET and that at least
max(0, s — (a(n) + 2)) nodes on the find path have their potential decrease by
at least 1.

To see that no node’s potential increases, we first appeal to Lemma 21.9 for all
nodes other than the root. If x is the root, then its potential is «(n) - rank[x], which
does not change.

Now we show that at least max(0, s — (x(n) 4+ 2)) nodes have their potential
decrease by at least 1, Let x be a node on the find path such that rank[x] = 0
and x is followed somewhere on the find path by another node y that is not a root,
where level(y) = level(x) just before the FIND-SET operation. (Node y need not
immediarely follow x on the find path.) All but at most w(n) + 2 nodes on the find
path satisfy these constraints on x. Those that do not satisfy them are the first node

on the find path (if it has rank 0), the last node on the path (i.e., the root), and the
last node w on the path for which level(w) = &, foreachk =0,1,2,...,a(n)—1.

Let us fix such a node x, and we shall show that x’s potential decreases by at
least 1. Let k = level{x) = level(y). Just prior to the path compression caused by
the FIND-SET, we have

rank[p[x]] = Af‘““”{mnk[x]} (by definition of iter(x)) ,
rank[ply]l = Ai(rank(y]) (by definition of level(y)) ,
rank[yl = rank[p[x]] (by Corollary 21.5 and because
y follows x on the find path) .

Putting these inequalities together and letting { be the value of iter(x) before path
compression, we have

rank[plyll = Ai(rank[y])
= Ap(rank[p[x]]) (because Ay (j) is strictly increasing)
> AdAS™ (rank{x]))
= ﬂi””(mnk[x]}})

Because path compression will make x and y have the same parent, we know that
after path compression, rank[p[x]] = rank[p[y]] and that the path compression
does not decrease rank[p[y]]. Since rank[x] does not change, after path compres-
sion we have that rank[p[x]] = A{*" (rank[x])). Thus, path compression will
cause either iter(x) to increase (to at least i 4+ 1) or level(x) to increase (which
occurs if iter(x) increases to at least rank[x] + 1). In either case, by Lemma 21.9,
we have ¢, (x) < ¢,—1(x) — 1. Hence, x’s potential decreases by at least 1.

The amortized cost of the FIND-SET operation is the actual cost plus the change
in potential. The actual cost is O(s), and we have shown that the total potential
decreases by at least max(0, s — (a(n) 4+ 2)). The amortized cost, therefore, is at
most Q(5) — (5 — (e(n)+ 2)) = O(s) — 5 + Oe(n)) = O(a(n)), since we can
scale up the units of potential to dominate the constant hidden in O(s).]

Putting the preceding lemmas together yields the following theorem.

Theorem 21.13

A sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which are
MAKE-SET operations, can be performed on a disjoint-set forest with union by
rank and path compression in worst-case time O(m a(n)).

Proof Immediate from Lemmas 21.7, 21.10, 21.11, and 21.12. m

Courtesy : Introduction to Algorithms by Cormen et. al. (2nd Edition)

