

ELECTROSTATICS

Electrostatics is the study of **static electric charges**. A **static** charge means a **non-moving charge**. The **three ways** to make a static charge are:

- a) charging by **friction**
- b) charging by **contact**
- c) charging by **induction**

A) CHARGING BY FRICTION

When 2 substances are rubbed together, **one substance loses electrons and the other substance gains electrons**. Remember only **electrons** can move. To figure out which substance will lose electrons use a **triboelectric series table**. Sometimes this is called an **electrostatic series**. (p 398 Pearson text)

TRIBOELECTRIC SERIES TABLE

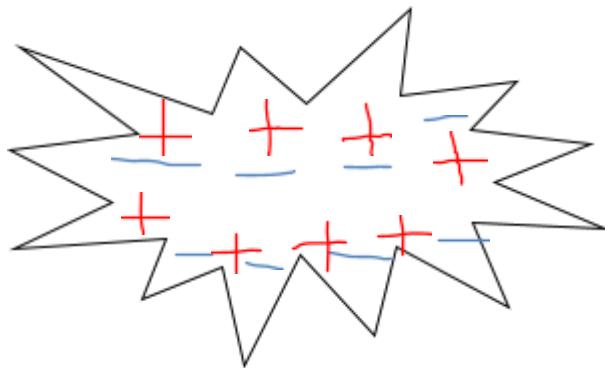
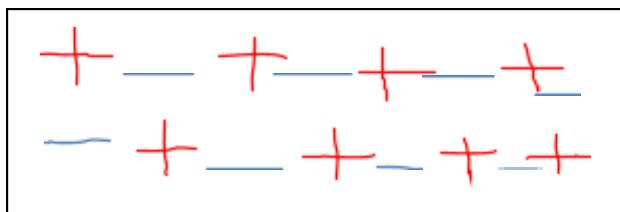
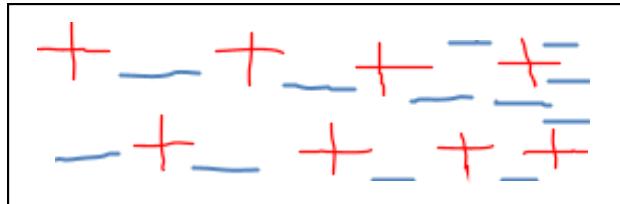


In this table, the substance at the top always loses electrons to the substance at the bottom when they are rubbed together. If cotton is rubbed on plastic the cotton loses electrons and has a positive charge. The plastic gains electrons and has a negative charge.

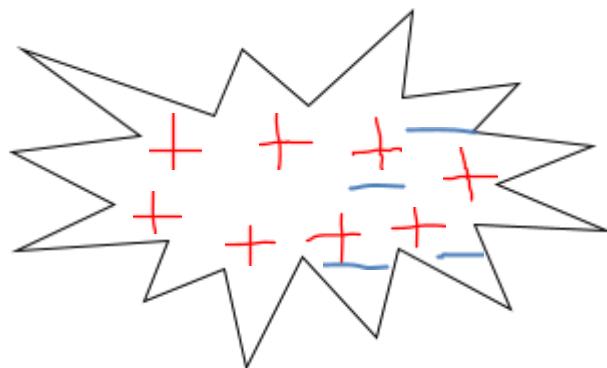
Table 10.1 A Triboelectric Series

Tend to lose electrons	(+)	Weak hold on electrons	Electrostatic Series
	human hands (dry)		acetate
	glass		glass
	human hair		wool
	nylon		fur, human hair
	cat fur		calcium, magnesium
	silk		silk
	cotton		aluminum, zinc
	steel		cotton
	wood		paraffin wax
	amber		ebonite
	ebonite		polyethylene (plastic)
	plastic wrap		carbon, copper
	Teflon®		rubber
Tend to gain electrons	(–)	Strong hold on electrons	sulfur

ELECTROSTATIC DIAGRAMS



Electrostatic diagrams are drawn to show how 2 objects are charged by friction. Here is the diagram showing a neutral plastic ruler rubbed with a neutral piece of cotton. Write down **how many** electrons and protons for each object. We will use 8 protons and 8 electrons for neutral objects. All diagrams should have WORDS, PICTURE and COUNT.

A) **Before** Friction $8+ 8 -$ $8+ 8 -$


Neutral plastic

Neutral cotton

FRICTION

Move half the electrons

Negative plastic

Positive Cotton

B) **After** Friction

- the objects have unlike charges and are attracted to each other

- note only electrons moved. Draw the protons in the same locations

Electrostatics

Electrostatics is the study of _____. A static charge means a _____.

The three ways to make a static charge are:

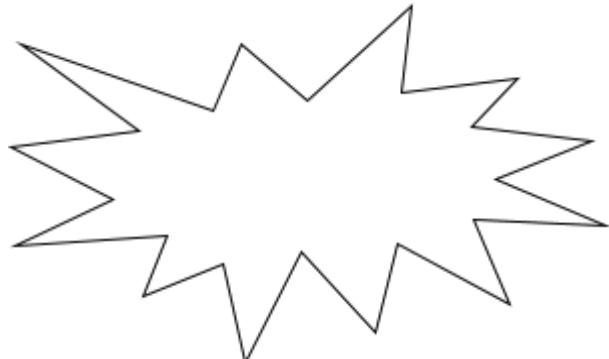
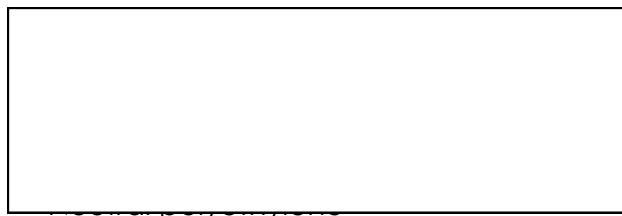
1. _____
2. _____
3. _____

Charging by Friction

When 2 substances are rubbed together, one substance _____ electrons and the other substance _____ electrons. Remember only _____ can move. To figure out which substance will lose electrons use a _____ table. Sometimes this is called an _____ series. (p 398 Pearson text)

TRIBOELECTRIC SERIES TABLE

In this table, the substance at the _____ always loses electrons to the substance at the _____ when they are rubbed together. If cotton is rubbed on plastic the cotton loses electrons and has a _____ charge. The plastic gains electrons and has a _____ charge.

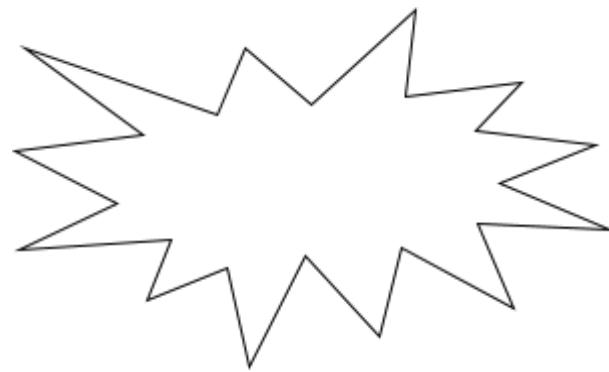
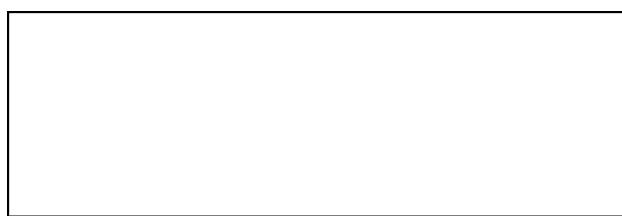


Table 10.1 A Triboelectric Series

Tend to lose electrons		(+)	Weak hold on electrons		Electrostatic Series	
		human hands (dry)			acetate	
		glass			glass	
		human hair			wool	
		nylon			fur, human hair	
		cat fur			calcium, magnesium	
		silk			silk	
		cotton			aluminum, zinc	
		steel			cotton	
		wood			paraffin wax	
		amber			ebonite	
		ebonite			polyethylene (plastic)	
		plastic wrap			carbon, copper	
		Teflon®			rubber	
		(-)			sulfur	
					platinum, gold	

ELECTROSTATIC DIAGRAMS

Electrostatic diagrams are drawn to show how 2 objects are charged by friction. Here is the diagram showing a neutral plastic ruler rubbed with a neutral piece of cotton. Write down **how many** electrons and protons for each object. We will use 8 protons and 8 electrons for neutral objects. All diagrams should have WORDS, PICTURE and COUNT.

A) **Before** Friction



Neutral plastic

Neutral cotton

FRICITION

Move half the electrons

Negative plastic

Positive Cotton

B) **After** Friction

- the objects have unlike charges and are attracted to each other
- note only electrons moved. Draw the protons in the same locations.