WebAssembly architecture for Go

Richard Musiol - Document revision 1 - 28th February 2018

This documents describes the design decisions that went into the new WebAssembly
architecture (short “wasm”) for the Go compiler. The goal is to upstream it to the official Go
repository in the current development cycle, targeting Go 1.11. The WebAssembly
architecture will allow Go to become an alternative to JavaScript for writing code that runs in
a web browser. This new freedom of choice will hopefully have a positive impact on the
software engineering ecosystem overall. Discussion on golang-dev thread and the
#webassembly channel on the Gophers Slack.

Introduction to WebAssembly

WebAssembly is in many regards quite different from all other architectures. It is not
intended to be processed by a CPU directly, but instead is an intermediate representation
that is compiled to actual machine code by the WebAssembly runtime environment. Thus the
design of WebAssembly was not constrained by hardware considerations, and the authors
could instead focus on their goals of efficiency and output size.

This puts constraints on the logic that can be efficiently expressed in WebAssembly. These
constraints are sometimes hard to reconcile with Go’s existing design. One may hope that
future versions of WebAssembly will add features to fill these gaps. Nevertheless, the
current state of the WebAssembly architecture for Go passes all compiler and package tests
and supports all major Go features. There was a focus on keeping changes to existing
compiler and runtime code to a minimum.

WebAssembly specification
WebAssembly future features

Linear memory

WebAssembly features a linear memory with load and store instructions. The byte order is
always little endian. This is quite similar to normal memory pages, however it is currently not
possible to reserve pages without already allocating them. This will likely be available in the
future.

64-bit architecture

WebAssembly has full support for 64 bit integers (in contrast to JavaScript). However,
currently memory can only be addressed with 32 bit integers, thus limiting the memory to
4GB. However, the wasm architecture for Go has 64 bit pointers and a switchover to 64 bit
memory operations is planned when they are available.



https://groups.google.com/forum/#!topic/golang-dev/KXrkq0sqL-g
https://invite.slack.golangbridge.org/
http://webassembly.github.io/spec/core/index.html
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#finer-grained-control-over-memory
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#finer-grained-control-over-memory
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#linear-memory-bigger-than-4-gib
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#linear-memory-bigger-than-4-gib

Threads

Currently WebAssembly has no threads, but they are on the roadmap. Most Go code can
run fine on a single thread. The only drawback is that “sysmon” is not available, thus there is
no preemption of goroutines.

WebAssembly is a stack machine

All other architectures are register machines, but WebAssembly is not. Instead, it maintains
its own opaque stack and each function can have an arbitrary number of local variables.

Fully using WebAssembly’s stack is currently not an option, since Go needs to be able to
inspect the stack for garbage collection, stack traces, etc.

Instead, Go maintains its own stack on the linear memory as usual. Registers get mapped to
variables: SP, PC_F and PC_B (see below) are global variables. RO to R15 (64 bit integers)
and FO to F15 (64 bit floats) are local variables. The WebAssembly runtime is likely to map
those local variables to CPU registers.

Go’s SSA instructions only operate on registers. For example, an add instruction would read
two registers, do the addition and then write to a register. WebAssembly’s instructions, on
the other hand, operate on the stack. The add instruction first pops two values from the
stack, does the addition, then pushes the result to the stack. To fulfill Go’s semantics, one
needs to map Go’s single add instruction to 4 WebAssembly instructions:

e Push the value of local variable A to the stack

e Push the value of local variable B to the stack

e Do addition

e Write value from stack to local variable C

Now consider that B was set to the constant 42 before the addition:
e Push constant 42 to the stack
e \Write value from stack to local variable B

This works, but is inefficient. Instead, the stack is used directly by inlining instructions if
possible. With inlining it becomes:

e Push the value of local variable A to the stack (add)

e Push constant 42 to the stack (constant)

e Do addition (add)

e Write value from stack to local variable C (add)

Note that the two SSA instructions can not be generated sequentially anymore, because
their WebAssembly instructions are interleaved.


https://github.com/WebAssembly/design/issues/1073

Control structures

WebAssembly has no basic blocks or jump instructions, instead it has more high level
control structures resembling if-statements and loops. Unfortunately, it also does not
currently have any fallback construct like a goto instruction.

According to the authors of WebAssembly, this should not be an issue since most control
flow can be turned into high-level structures by the “relooper” algorithm. Unfortunately this is
not possible for Go, since resuming a goroutine continues execution at some arbitrary call in
a function, thus all those entry points must be reachable from the start of the function. One
can see that the assumption of the authors only holds if one is also fully using
WebAssembly’s stacks and their yet-to-be-added coroutine feature. One can hope that a
goto instruction will be added in the future.

In the meantime, Go generates the equivalent of a big switch statement and uses the PC_B
variable to jump to the desired basic block.

Functions

WebAssembly functions do not live in the same address space as the linear memory.
Instead, they have a 0-based index. This is reconciled with Go’s concept of a program
counter by splitting it into 2 parts: PC_F and PC_B. PC_F is the index of the function to be
executed. PC_B is the index of the basic block to be executed. When a single 64-bit PC
value is needed it currently gets built as follows: PC_F<<16 + PC_B.

Garbage collection

Go’s garbage collection is fully supported. WebAssembly is planning to add its own garbage
collection, but it is hard to imagine that it would yield a better performance than Go’s own GC
which is specifically tailored to Go’s needs.

Syscalls

System calls are implemented via calls to the JS environment. Most file system operations
are mapped to Node.js’ “fs” module. In the browser, file system operations are currently not
available. Network operations are currently simulated internally, not touching the real
network, just like with the nacl architecture used by the Go playground. This needs to be

improved in the future.

JavaScript interoperability

Interoperability with the JavaScript environment is still in an early state. A few operations are
available in the runtime/js package and are currently used by the syscall implementations.
However, this package is likely to change in the future.


https://github.com/WebAssembly/design/blob/master/Rationale.md#control-flow
https://github.com/kripken/emscripten/blob/master/docs/paper.pdf?raw=true
https://github.com/WebAssembly/design/issues/796
https://github.com/WebAssembly/design/issues/1079
https://github.com/WebAssembly/design/issues/1079

Conclusion

It works, supports the full Go specification and most major features that people love with Go.
There is still work to do to improve the performance. Especially a “goto” operation in
WebAssembly would be very helpful. Still, it is in a state where it should be good enough to
be merged upstream so more people can start experimenting and contributing.



	WebAssembly architecture for Go 
	Introduction to WebAssembly 
	Linear memory 
	64-bit architecture 
	Threads 
	WebAssembly is a stack machine 
	Control structures 
	Functions 
	Garbage collection 
	Syscalls 
	JavaScript interoperability 
	Conclusion 


