MODULE 1

Introductory Concepts of Databases and Information Systems:

1.1 INTRODUCTION
In the present time, database systems are used to electronically store all the data of an
organization. Databases allow data sharing and integrate data of an organization. In this unit,
we are going to be introduced to the basic concepts of database systems. This is an
introductory unit where we are going to learn about the definition of a database, its
characteristics, classification, functions and the user types which are involved in using the
database.

1.2 OBJECTIVES
Upon completion of this unit you should be able to:
- - Describe what a database is and how it functions. Outline various properties of a database.
9 Database System-Basic Concepts and Models
- - Explain the roles of different database end users. Compare and contrast the different
databases based on their classification.

1.3 DATABASES: DEFINITION AND CHARACTERISTICS

database introduction and concepts:

A database is an organized collection of structured information, or data, typically stored
electronically in a computer system. A database is usually controlled by a database management
system (DBMS).

concepts of database management system:

A DBMS serves as an interface between an end-user and a database, allowing users to create,
read, update, and delete data in the database. DBMS manage the data, the database engine, and
the database schema, allowing for data to be manipulated or extracted by users and other
programs.

concepts of database and database design:

Database design concepts. A database is better defined as a set of entities and relations as shown
in the next figure. Entities are objects with a physical (car) or conceptual (culture) existence.
Database design is the process to define and represent entities and relations.

important concepts of database:

Then, there are a bunch of important database concepts for a software engineer to

know: normalization, denormalization, SQL, No-SQL, ERDs, query optimization, etc. The list
goes on! In short, software engineering is for those who can do a little bit of everything while
paying a lot of attention and care to each task.

concept of database with example:

DEMS components

Databases often store information about people, such as customers or users. For example, social
media platforms use databases to store user information, such as names, email addresses and user
behavior. The data is used to recommend content to users and improve the user experience.

Secure personal health information

database concept and structure:

p @Study.com

A database is an organized collection of data. Instead of having all the data in a list with a
random order, a database provides a structure to organize the data. One of the most common data
structures is a database table. A database table consists of rows and columns.

concept of database design:

Database design is a collection of steps that help create, implement, and maintain a business's
data management systems. The primary purpose of designing a database is to produce physical
and logical models of designs for the proposed database system.

Modern information management rely heavily on database systems because they make it possible
to store, retrieve, and manipulate massive volumes of data effectively. Designing reliable and
scalable databases requires a thorough understanding of the principles and architecture of
database systems. The essential ideas and complexities of database systems will be covered in
detail in this article, along with examples from everyday life to show how they might be used in
real-world situations.

Concepts of Database Systems

e Data — Data is the central component of every database system. The information that has
to be handled and saved is represented by data. It could be structured, somewhat
structured, or not at all. Structured data is arranged into tables with rows and columns

according to a predetermined pattern. Examples include financial data, product
specifications, and client information. Data that is semi-structured, like JSON or XML,
has some structure but does not follow a strict standard. Text documents, photos, and
multimedia files are examples of unstructured data since they don't have a predetermined
structure.

e Database Management System (DBMS)— Software that makes it easier to create,
organize, and manipulate databases is known as a database management system (DBMS).
It offers a selection of tools and user interfaces for effective data management. Data
storage, data retrieval, data manipulation, data security, and concurrency control are
among a DBMS's essential features. Popular DBMS s include PostgreSQL, Oracle,
MySQL, and Microsoft SQL Server.

e Database — A database is a structured collection of data that is maintained and organized
by a database management system (DBMS). It is made up of one or more tables, each of
which represents a different entity or idea. Each row in a table represents one instance of
the entity, and each column in a table represents a particular quality or trait. Rows and
columns make up a table.

e Schema — A database schema outlines the logical organization and structure of a
database. The tables, connections between tables, restrictions, and other information are
all described. A schema outlines the structure and storage requirements for the data. Let's
look at an illustration.

Assume we have an online storefront with the following tables —

Customers (Customer Id, Name, Email)

Orders (Order Id, Customer Id, Order Date, Total Amount)

Products (Product Id, Name, Price)

The tables, their columns, and any connections or restrictions between them would all be
specified by the schema.

e Query Language — : A query language enables users to access, manage, and alter data
from databases by sending queries. The most used query language for relational
databases is Structured Query Language (SQL). For building, editing, and querying
databases, it offers a set of commands and syntax.

Take the following SQL query, for instance —

SELECT Customers.Name, Orders.OrderDate, Orders.Total Amount
FROM Customers
JOIN Orders ON Customers.Customerld = Orders.Customerld

WHERE Customers.Country = "USA'

Input Table- Customers

| John Doe | USA

| Jane Smith | USA

| Mark Johnson | Canada
| Sarah Wilson | USA

| Robert Brown | USA

| Lisa Thompson | Canada
| James Lee | USA

| Emily Davis | USA

| Michael Clark | Canada

| Emma Harris | USA

| 2023-05-01 | $100.00
| 2023-05-10 | $250.00
| 2023-05-15 | $180.00
| 2023-05-20 | $300.00
| 2023-05-05 | $150.00
| 2023-05-12 | $220.00
| 2023-05-03 | $180.00
| 2023-05-18 | $280.00
| 2023-05-07 | $120.00
| 2023-05-09 | $200.00
2023-05-22 | $350.00
110 |2023-05-14 | $190.00

Output Table

Customers.Name | Orders.OrderDate | Orders.Total Amount

John Doe | 2023-05-01 | $100.00
Jane Smith | 2023-05-10 | $250.00
Jane Smith | 2023-05-15 | $180.00
Sarah Wilson |2023-05-05 | $150.00
Sarah Wilson |2023-05-12 | $220.00
Robert Brown |2023-05-03 | $180.00
Robert Brown |2023-05-18 | $280.00

James Lee |2023-05-07 | $120.00

Emily Davis | 2023-05-09 | $200.00
Emily Davis | 2023-05-22 | $350.00
Emma Harris | 2023-05-14 | $190.00

For all orders placed by clients in the USA, this query returns the customer name, order date, and
order total.

For all orders placed by clients in the USA, this query returns the customer name, order date, and
order total.

Database System Architecture

The general structure and parts of a database system are described by the database system
architecture. It includes the following essential elements —

e User Interface — Users can communicate with the database system using the user
interface. It could take the form of a web-based interface, a GUI, or a command-line
interface. Users may submit queries, enter data, and see query results or reports via the
user interface.

A web-based e-commerce program, for instance, may offer a user interface that enables
users to look for items, make orders, and check their order histories.

® Query Processor — The query processor executes and optimizes SQL queries after
receiving them from users or applications. In order to get the required data and carry out
any necessary activities, it analyses the query, chooses the most effective execution plan
and communicates with other components. In order to reduce resource consumption and
boost speed, the query processor makes sure that queries are processed as effectively as
possible.

Take the prior SQL query, for instance —

SELECT Customers.Name, Orders.OrderDate, Orders.Total Amount
EFROM Customers

JOIN Orders ON Customers.Customerld = Orders.Customerld
'WHERE Customers.Country = "USA'

Input Table- Customers

| Adam Johnson | USA
| Emma Thompson | UK

| Sophia Lee | Canada

| Oliver Smith | Australia
| Mia Davis | USA

| Ethan Wilson | UK

| Ava Brown | Canada

| Noah Taylor | Australia
| Isabella Chen | USA

10 | Liam Hall | UK

| 2023-06-01 | $150.00
| 2023-06-05 | $200.00
| 2023-06-10 | $120.00
| 2023-06-15 | $250.00
| 2023-06-20 | $180.00
| 2023-06-25 | $300.00
| 2023-06-02 | $210.00
| 2023-06-07 | $160.00
| 2023-06-12 | $190.00
10 |10 [2023-06-18 | $230.00

Output Table

Customers.Name | Orders.OrderDate | Orders.Total Amount

Adam Johnson |2023-06-01 | $150.00
Emma Thompson | 2023-06-05 | $200.00
Sophia Lee | 2023-06-10 | $120.00
Oliver Smith |2023-06-15 | $250.00
Mia Davis | 2023-06-20 | $180.00
Ethan Wilson |2023-06-25 | $300.00
Ava Brown |2023-06-02 | $210.00
Noah Taylor | 2023-06-07 | $160.00
Isabella Chen |2023-06-12 | $190.00
Liam Hall ~ |2023-06-18 | $230.00

The "Customers" and "Orders" tables' necessary data is efficiently retrieved by the query
processor, which also analyses the query and chooses the best join technique.

Storage Manager — Managing the actual physical storage of data on discs or other
storage media is the responsibility of the storage manager. To read and write data, it
communicates with the file system or storage subsystem. To facilitate data access and
guarantee data integrity, the storage manager manages data archiving, retrieval, and
indexin

For instance, the storage manager oversees the allocation of disc space to guarantee
effective storage when a new order is placed in the e-commerce application. It also saves
the order details in the relevant tables.

Buffer Manager — Data transfer between memory and disc storage is controlled by the
buffer manager, an important component. It reduces disc I/O operations and boosts
efficiency by using a buffer cache to keep frequently used data pages in memory. The
buffer manager makes sure that data caching and replacement procedures are effective in
order to maximize memory consumption.

For instance, when a query is run that needs to access data from the disc, the buffer
manager pulls the necessary data pages into the buffer cache from the disc. The need for
disc access can be avoided by serving subsequent requests that access the same data from
memory.

Transactions Manager — Database transactions' atomicity, consistency, isolation, and
durability are all guaranteed by the transaction manager. To maintain data integrity and
concurrency management, it maintains concurrent access to the data, takes care of
transaction execution, and enforces transaction isolation levels.

For instance, the transaction manager makes sure that each order is executed as a separate
transaction when several clients place orders at once, ensuring data integrity and avoiding
conflicts.

Data Dictionary — The metadata regarding the database schema and objects are stored in
the data dictionary, sometimes referred to as the metadata repository. It includes details
on various database structures, including tables, columns, data types, constraints, indexes,
and more. The DBMS uses the data dictionary to verify queries, uphold data integrity,
and offer details on the database structure

For instance, the data dictionary keeps tabs on the names, columns, data types, and
constraints of the tables in the e-commerce application.

Concurrency Control — Multiple transactions can access and edit the database
simultaneously without resulting in inconsistent data thanks to concurrency control
methods. To regulate concurrent access and preserve data integrity, methods including
locking, timestamp ordering, and multi-version concurrency control (MVCC) are utilized.
Concurrency control measures, for instance, make sure that two consumers updating their
profiles in the same e-commerce application at the same time are serialized and applied
appropriately to maintain data consistency.

Backup and recovery — In order to safeguard against data loss and guarantee data
availability, database systems must have backup and recovery processes. In the case of

system failures or data corruption, recovery procedures are employed to restore the
database to a consistent condition. Regular backups are performed to create copies of the
database.

To guarantee that data can be restored in the event of hardware problems or unintentional
data loss, for instance, frequent backups of the e-commerce database are made.

Conclusion

In conclusion, building, implementing, and maintaining reliable and scalable databases requires
an understanding of the principles and architecture of database systems. We looked at the
essential ideas of data, DBMS, database, schema, and query language in this post. The
architecture of database systems was also covered in detail, with topics covered including the
user interface, query processor, storage manager, buffer manager, transaction manager, data
dictionary, concurrency management, and backup and recovery procedures.

MODULE 2:

Semantic Database Design:

Data is essentially facts or numbers stored electronically. However, to extract valuable insights
that drive business decisions, data must go through processes like collection, storage,
transformation, and processing. Different use cases involve diverse datasets, and comprehending
the interconnected relationships between these datasets allows organizations to leverage their
data more effectively. This is where semantic data modeling emerges as a powerful solution,
empowering organizations to unlock the true value of their data assets.

Semantic Data Modeling:

Semantic data modeling is a paradigm that focuses on capturing the meaning and context of data,
rather than just its structure. By leveraging ontologies and formal knowledge representation

8

techniques, semantic models can precisely define concepts, relationships, and rules within a
given domain. This approach not only facilitates data integration and interoperability but also
enables advanced reasoning and inference capabilities.

In this context, understanding “what is data management” becomes pivotal, as it underscores the
significance of semantic data modeling in efficiently organizing, interpreting, and extracting
actionable insights from diverse datasets.

How Do Semantic Data Models Work?

Semantic data models (SDMs) combine semantic elements with graphical visualization,
enhancing the value proposition of various data modeling approaches. The process of analyzing
input data necessitates an abstraction process, wherein specific qualities and aspects of reality are
selected while irrelevant ones are disregarded, aligning with the requirements of the specific
solution, project, model, or schema.

An SDM leverages three distinct types of abstraction:
Classification: This abstraction technique categorizes different objects in objective reality using

“instance of” relations. It involves grouping objects based on shared characteristics, such as
creating a group of employees.

Aggregation: Aggregation defines a new object by combining a set of component objects, using
“has a” relations. For example, an employer entity can be an aggregation of attributes like name,
age, or contact information.

Generalization: Generalization establishes a subset relationship between occurrences of two or
more objects using “is a” relations. For instance, an employer can be a generalization of the
concept of managers.

By employing these three abstraction methods, SDMs provide a robust framework for
representing and comprehending the intricate relationships and semantics within complex data
landscapes.

Benefits of Semantic Data Modeling

The semantic model helps in overseeing the company’s comprehensive data management
services, thereby enhancing decision-making abilities. Its benefits include:

Enhanced Data Integration

Semantic models provide a common, shared understanding of data across different systems,
applications, and domains. This semantic interoperability enables seamless data integration,
reducing the need for complex mappings and transformations.

Improved Data Quality

By explicitly defining data semantics, semantic models help ensure data consistency, accuracy,
and completeness. They provide a framework for validating data against domain-specific rules
and constraints, minimizing errors and redundancies.

Richer Data Insights

https://intone.com/what-is-data-management-and-why-it-matters-in-the-digital-domain/
https://intone.com/intoneswift-data-management-service/
https://intone.com/intoneswift-data-management-service/

Semantic models capture the contextual meaning of data, allowing for more sophisticated data
analysis and interpretation. This enables organizations to derive deeper insights and uncover
hidden relationships within their data assets.

Increased Flexibility and Adaptability

Semantic models are designed to be extensible and adaptable, making it easier to incorporate
changes and evolve data structures as business requirements evolve. This flexibility ensures that
data models remain relevant and aligned with organizational needs.

Facilitated Knowledge Sharing and Reuse

By formalizing domain knowledge in a machine-readable format, semantic models foster
knowledge sharing and reuse across teams, departments, and even organizations. This
collaborative approach accelerates development cycles and promotes consistency.

Explore “5 Key Reasons Why Businesses Need Data Management Platforms™ for deeper insights
into the significance of semantic data modeling in optimizing business operations.

Semantic Data Modeling Approaches

Semantic data modeling involves representing data and its relationships in a way that captures
the underlying meaning or semantics of the information. There are several approaches to
semantic data modeling, each with its strengths and use cases. Here are some common
approaches:

One approach is the Ontology Model, which focuses on identifying and describing business data
entities, while also establishing the existing relationships among these data elements. Ontologies
provide a formal framework for defining the concepts, properties, and interrelationships within a
specific domain.

Another approach is the Knowledge Graph data model, which offers a visual representation of

real-world entities and their interdependencies. Data Knowledge Graphs depict entities as nodes
and the relationships between them as edges, creating a graphical model that facilitates
understanding and exploration of the data landscape.

Both Ontology Models and Knowledge Graphs aim to capture the semantics and context of data,
enabling more effective data integration, analysis, and utilization within an organization’s
decision-making processes.

Other approaches include:

Entity-Relationship Modeling (ER): ER modeling is a widely used approach in database

design, where entities (objects or concepts) and their relationships are represented graphically.
ER models can capture semantic relationships like inheritance, composition, and associations
between entities. While ER modeling is primarily used for database design, it can also be
employed for semantic data modeling by incorporating additional semantic constraints and rules.
Object-Role Modeling (ORM): ORM is a semantic data modeling approach that focuses on
representing the roles played by objects in various relationships. It uses natural language-based
representations and can capture complex relationships, constraints, and rules. ORM is
particularly useful for conceptual modeling and can be mapped to logical data models or
ontologies.

Topic Maps: Topic Maps are a semantic data modeling approach based on the concept of topics
(representing subjects or concepts), associations (relationships between topics), and occurrences

10

https://intone.com/5-data-management-best-practices-for-streamlined-business-operations/

(information resources relevant to a topic). Topic Maps are often used for knowledge
representation, information integration, and information retrieval applications.

Semantic Data Models for Specific Domains: Several semantic data modeling approaches have
been developed specifically for certain domains, such as the Gene Ontology (GO) for biology,
the SNOMED CT (Systematized Nomenclature of Medicine — Clinical Terms) for healthcare,
and the Friend of a Friend (FOAF) vocabulary for describing people and their relationships in
social networks.

The choice of the semantic data modeling approach depends on factors such as the complexity of
the domain, the intended use cases (e.g., data integration, knowledge representation, reasoning),
the required level of formality, and the existing standards or vocabularies in the domain. In some
cases, a combination of approaches may be used to leverage the strengths of different methods.
It’s worth noting that semantic data modeling is often accompanied by techniques like ontology
mapping, data integration, and reasoning engines to fully leverage the semantic representations
and derive meaningful insights from the data.

Real-World Examples of Semantic Data Modeling

Banking and Finance

Problem: Banks struggle to provide a consistent customer experience due to siloed data sources.
Solution: A semantic data model using knowledge graphs and ontologies like FIBO helps create
a common business language across the organization.

This enhances customer experience through personalized recommendations, self-service portals,
and automated query resolution.

Healthcare

Problem: Healthcare data comes from disparate sources, making it challenging to create a single
definition of master data.

An example is “Electronic Health Records” which are created from varied sources. This data
could come from the patient’s clinical records, hospital lab results, wearable devices, and more.
Here, a medical condition can be described in different ways.

For instance, what I call a “backache” might be referred to as “spondylitis” in medical
terminology. If the data doesn’t link these semantically equivalent terms, it could mistakenly
seem like I’'m suffering from two distinct conditions instead of just one.

Solution: Semantic models bring strong interoperability by creating a common vocabulary,
defining synonyms, and standardizing terminology across systems.

This ensures the accurate exchange of health records and prevents misdiagnosis due to
terminology differences.

Automation

Problem: Robotic Process Automation excels in automating simple and repetitive tasks, such as
back-office work. However, it struggles with unstructured, complex data that carries implicit
meanings. This leads to scalability issues as the data volume increases. This is where semantics
becomes crucial.

Solution: Semantic models provide structure and meaning to integrated data by analyzing
unstructured information, establishing relationships among data points, and feeding this semantic
understanding to automation tools, enabling them to scale.

Using High-Level Conceptual Data Models for Database Design

11

https://edmcouncil.org/training/#:~:text=The%20Financial%20Industry%20Business%20Ontology%20(FIBO)%20is%20a%20business%20conceptual,work%20in%20the%20financial%20industry.
https://www.healthit.gov/faq/what-electronic-health-record-ehr
https://intone.com/front-end-robotic-process-automation/

A simplified overview of the database design process. The first step shown is requirements
collection and analysis. During this step, the database designers interview prospective database
users to understand and document their data requirements. The result of this step is a concisely
written set of users’ requirements. These requirements should be specified in as detailed and
complete a form as possible. In parallel with specifying the data requirements, it is useful to
specify the known functional requirements of the application.

REQUIREMENTS

COLLECTION AND

Functional Requirements Data Requirements
FUNCTIONAL ANALYSIS | | concepTuaL DESIGN |
High-Level Transaction Conceptual Schema
Specification {In a high-level data model)

Y

LOGICAL DESIGN
(DATA MODEL MAPPING)

T DBEMS-independent

l DBMS-specific

Logical (Conceptual) Schema
{In the data model of a specific DBMS)

;

PHYSICAL DESIGN |

v Y

APPLICATION PROGRAM
DESIGHN

TRANSACTION - Internal Schema
IMPLEMENTATION
Figure 7.1

A simplified diagram to illustrate the

Hpplication game main phases of database design.

These consist of the user-defined operations (or transactions) that will be applied to the
database, including both retrievals and updates. In software design, it is common to use data flow
diagrams, sequence diagrams, scenarios, and other techniques to specify

functional requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts.

12

Once the requirements have been collected and analyzed, the next step is to create a conceptual
schema for the database, using a high-level conceptual data model. This step is

called conceptual design. The conceptual schema is a concise description of the data
requirements of the users and includes detailed descriptions of the entity types, relationships, and
constraints; these are expressed using the concepts provided by the high-level data model.
Because these concepts do not include implementation details, they are usually easier to
understand and can be used to communicate with nontechnical users. The high-level conceptual
schema can also be used as a reference to ensure that all users’ data requirements are met and
that the requirements do not conflict. This approach enables database designers to concentrate on
specifying the properties of the data, without being concerned with storage and implementation
details. This makes it is easier to create a good conceptual data-base design.

During or after the conceptual schema design, the basic data model operations can be used to
specify the high-level user queries and operations identified during functional analysis. This also
serves to confirm that the conceptual schema meets all the identified functional requirements.
Modifications to the conceptual schema can be introduced if some functional requirements
cannot be specified using the initial schema.

The next step in database design is the actual implementation of the database, using a
commercial DBMS. Most current commercial DBMSs use an implementation data model—such
as the relational or the object-relational database model—so the conceptual schema is
transformed from the high-level data model into the implementation data model. This step is
called logical design or data model mapping; its result is a database schema in the
implementation data model of the DBMS. Data model mapping is often automated or
semiautomated within the database design tools.

The last step is the physical design phase, during which the internal storage structures, file
organizations, indexes, access paths, and physical design parameters for the database files are
specified. In parallel with these activities, application programs are designed and implemented as
database transactions corresponding to the high-level transaction specifications. We discuss the
database design process in more detail in Chapter 10.

We present only the basic ER model concepts for conceptual schema design in this chapter.
Additional modeling concepts are discussed in Chapter 8, when we introduce the EER model.

13

Introduction of ER Model

Peter Chen developed the ER diagram in 1976 .The ER model was created to provide a simple
and understandable model for representing the structure and logic of databases. It has since
evolved into variations such as the Enhanced ER Model and the Object Relationship Model

The Entity Relational Model is a model for identifying entities to be represented in the database
and representation of how those entities are related. The ER data model specifies enterprise
schema that represents the overall logical structure of a database graphically.

The Entity Relationship Diagram explains the relationship among the entities present in the
database. ER models are used to model real-world objects like a person, a car, or a company and
the relation between these real-world objects. In short, the ER Diagram is the structural format of
the database.

Why Use ER Diagrams In DBMS?

e ER diagrams are used to represent the E-R model in a database, which makes them easy to
convert into relations (tables).

e ER diagrams provide the purpose of real-world modeling of objects which makes them
intently useful.

e ER diagrams require no technical knowledge and no hardware support.

These diagrams are very easy to understand and easy to create even for a naive user.

e [t gives a standard solution for visualizing the data logically.

Symbols Used in ER Model

ER Model is used to model the logical view of the system from a data perspective which consists
of these symbols:

Rectangles: Rectangles represent Entities in the ER Model.

Ellipses: Ellipses represent Attributes in the ER Model.

Diamond: Diamonds represent Relationships among Entities.

Lines: Lines represent attributes to entities and entity sets with other relationship types.
Double Ellipse: Double Ellipses represent Multi-Valued Attributes.

Double Rectangle: Double Rectangle represents a Weak Entity.

14

https://iotap.geeksforgeeks.org/problems/what-is-the-difference-between-single-valued-and-multi-valued-attributes

Entity Sets with Other
Relationship Types

Double Ellipse

Multi-Valued
Attributes

Figures Symbols Represents
[] R Moder
0 AR ogel
: Relationships
Diamond O among Entities
. Attributes to Entities and
Line _—

Double Rectangle

Weak Entity

J

Symbols used in ER Diagram

Components of ER Diagram

ER Model consists of Entities, Attributes, and Relationships among Entities in a Database

System.
ER Model
' ' +
Entity Attribute Relationship

Strong Entity
Weak Entity

C

Components of ER Diagram

Entity

Key Attribute

Composite

Multivalued Attribute
Derived Attribute

15

One to One
Attribute One to Many
Many to One

Many to Many

An Entity may be an object with a physical existence — a particular person, car, house, or
employee — or it may be an object with a conceptual existence — a company, a job, or a university
course.

Entity are of two types

1.Tangible Entity — Which can be touched like car , person etc.
2.Non — tangible Entity — Which can’t be touched like air , bank account etc.

Entity Set: An Entity is an object of Entity Type and a set of all entities is called an entity set.
For Example, E1 is an entity having Entity Type Student and the set of all students is called
Entity Set. In ER diagram, Entity Type is represented as:

Student

Entity Type

Entity Set

Entity Set

We can represent the entity set in ER Diagram but can’t represent entity in ER Diagram because
entity is row and column in the relation and ER Diagram is graphical representation of data.

16

1. Strong Entity

A Strong Entity is a type of entity that has a key Attribute. Strong Entity does not depend on
other Entity in the Schema. It has a primary key, that helps in identifying it uniquely, and it is
represented by a rectangle. These are called Strong Entity Types.

2. Weak Entity

An Entity type has a key attribute that uniquely identifies each entity in the entity set. But some
entity type exists for which key attributes can’t be defined. These are called Weak Entity types.
For Example, A company may store the information of dependents (Parents, Children, Spouse)
of an Employee. But the dependents can’t exist without the employee. So Dependent will be

a Weak Entity Type and Employee will be Identifying Entity type for Dependent, which means
it is Strong Entity Type.

A weak entity type is represented by a Double Rectangle. The participation of weak entity types
is always total. The relationship between the weak entity type and its identifying strong entity
type is called identifying relationship and it is represented by a double diamond.

Employee Dependants

Strong Entity and Weak Entity

Attributes

Attributes are the properties that define the entity type. For example, Roll No, Name, DOB,
Age, Address, and Mobile No are the attributes that define entity type Student. In ER diagram,
the attribute is represented by an oval.

Attribute

1. Key Attribute

The attribute which uniquely identifies each entity in the entity set is called the key attribute.
For example, Roll No will be unique for each student. In ER diagram, the key attribute is
represented by an oval with underlying lines.

17

https://www.geeksforgeeks.org/difference-between-strong-and-weak-entity/
https://www.geeksforgeeks.org/weak-entity-set-in-er-diagrams/
https://www.geeksforgeeks.org/types-of-attributes-in-er-model/

Key Attribute

2. Composite Attribute

An attribute composed of many other attributes is called a composite attribute. For example,
the Address attribute of the student Entity type consists of Street, City, State, and Country. In ER
diagram, the composite attribute is represented by an oval comprising of ovals.

Composite Attribute

3. Multivalued Attribute

An attribute consisting of more than one value for a given entity. For example, Phone No (can
be more than one for a given student). In ER diagram, a multivalued attribute is represented by a
double oval.

Phone_ No

18

Multivalued Attribute

4. Derived Attribute

An attribute that can be derived from other attributes of the entity type is known as a derived
attribute. e.g.; Age (can be derived from DOB). In ER diagram, the derived attribute is
represented by a dashed oval.

'*‘____-n.-..._

- -
* 5
’ 1
¥ i
. Age)
iy -~ - - &
Derived Attribute

The Complete Entity Type Student with its Attributes can be represented as:

DOB

@ Phone_No " Age K

Student

Address

Entity and Attributes

19

Relationship Type and Relationship Set

A Relationship Type represents the association between entity types. For example, ‘Enrolled in’
is a relationship type that exists between entity type Student and Course. In ER diagram, the
relationship type is represented by a diamond and connecting the entities with lines.

Student Enrolled in Course

Entity-Relationship Set

A set of relationships of the same type is known as a relationship set. The following relationship
set depicts S1 as enrolled in C2, S2 as enrolled in C1, and S3 as registered in C3.

S1 E1 1

S2 E2 C2

S3 E3 C3
Relationship Set

Degree of a Relationship Set
The number of different entity sets participating in a relationship set is called the degree of a
relationship set.

20

https://www.geeksforgeeks.org/degree-of-relations-in-dbms/
https://www.geeksforgeeks.org/degree-of-relations-in-dbms/

1. Unary Relationship: When there is only ONE entity set participating in a relation, the
relationship is called a unary relationship. For example, one person is married to only one

person.

Person

(Married to

Unary Relationship

2. Binary Relationship: When there are TWO entities set participating in a relationship, the
relationship is called a binary relationship. For example, a Student is enrolled in a Course.

Student

Enrolled in

Binary Relationship

Course

~_

3. Ternary Relationship: When there are n entities set participating in a relation, the
relationship is called an n-ary relationship.

Cardinality

The number of times an entity of an entity set participates in a relationship set is known
as cardinality. Cardinality can be of different types:

1. One-to-One: When each entity in each entity set can take part only once in the relationship,
the cardinality is one-to-one. Let us assume that a male can marry one female and a female can
marry one male. So the relationship will be one-to-one.
the total number of tables that can be used in this is 2.

21

https://www.geeksforgeeks.org/cardinality-in-dbms/

Surgeon Headed by | HOD

one to one cardinality

Using Sets, it can be represented as:

Set Representation of One-to-One

2. One-to-Many: In one-to-many mapping as well where each entity can be related to more than
one entity and the total number of tables that can be used in this is 2. Let us assume that one

22

surgeon department can accommodate many doctors. So the Cardinality will be 1 to M. It means
one department has many Doctors.

Surgeon

Department Doctors

one to many cardinality

3. Many-to-One: When entities in one entity set can take part only once in the relationship set and
entities in other entity sets can take part more than once in the relationship set, cardinality is many to
one. Let us assume that a student can take only one course but one course can be taken by many
students. So the cardinality will be n to 1. It means that for one course there can be n students but for
one student, there will be only one course.

The total number of tables that can be used in this is 3.

Multiple surgeries done by single surgeon

many to one cardinality

Using Sets, it can be represented as:

23

Set Representation of Many-to-One

In this case, each student is taking only 1 course but 1 course has been taken by many students.
4. Many-to-Many: When entities in all entity sets can take part more than once in the
relationship cardinality is many to many. Let us assume that a student can take more than one
course and one course can be taken by many students. So the relationship will be many to many.

the total number of tables that can be used in this is 3.

Empoyees

many to many cardinality

Using Sets, it can be represented as:

24

Multiple projects

al b1
a2 b2
a3 ~ b3

Many-to-Many Set Representation

In this example, student S1 is enrolled in C1 and C3 and Course C3 is enrolled by S1, S3, and
S4. So it is many-to-many relationships.

Participation Constraint

Participation Constraint is applied to the entity participating in the relationship set.

1. Total Participation — Each entity in the entity set must participate in the relationship. If each
student must enroll in a course, the participation of students will be total. Total participation is
shown by a double line in the ER diagram.

2. Partial Participation — The entity in the entity set may or may NOT participate in the
relationship. If some courses are not enrolled by any of the students, the participation in the
course will be partial.

The diagram depicts the ‘Enrolled in’ relationship set with Student Entity set having total
participation and Course Entity set having partial participation.

25

https://www.geeksforgeeks.org/structural-constraints-of-relationships-in-er-model/

Student Enrolled in Course

Total Participation and Partial Participation

Using Set, it can be represented as,

Set representation of Total Participation and Partial Participation

Every student in the Student Entity set participates in a relationship but there exists a course C4
that is not taking part in the relationship.

How to Draw ER Diagram?
The very first step is Identifying all the Entities, and place them in a Rectangle, and labeling
them accordingly.
The next step is to identify the relationship between them and place them accordingly using
the Diamond, and make sure that, Relationships are not connected to each other.
Attach attributes to the entities properly.
Remove redundant entities and relationships.
Add proper colors to highlight the data present in the database.

26

Enhanced ER Model

Introduction of ER Model

Today the complexity of the data is increasing so it becomes more and more difficult to use the
traditional ER model for database modeling. To reduce this complexity of modeling we have to
make improvements or enhancements to the existing ER model to make it able to handle the
complex application in a better way.

Enhanced entity-relationship diagrams are advanced database diagrams very similar to regular
ER diagrams which represent the requirements and complexities of complex databases.

It is a diagrammatic technique for displaying the Sub Class and Super Class; Specialization and
Generalization; Union or Category; Aggregation etc.

Generalization and Specialization: These are very common relationships found in real entities.
However, this kind of relationship was added later as an enhanced extension to the classical ER
model. Specialized classes are often called subclass while a generalized class is called a
superclass, probably inspired by object-oriented programming. A sub-class is best understood
by “IS-A analysis”. The following statements hopefully make some sense to your mind
“Technician IS-A Employee”, and “Laptop IS-A Computer”.

An entity is a specialized type/class of another entity. For example, a Technician is a special
Employee in a university system Faculty is a special class of Employees. We call this
phenomenon generalization/specialization. In the example here Employee is a generalized entity
class while the Technician and Faculty are specialized classes of Employee.

Example:

This example instance of “sub-class” relationships. Here we have four sets of employees:
Secretary, Technician, and Engineer. The employee is a super-class of the rest three sets of
individual sub-class is a subset of Employee set.

27

https://www.geeksforgeeks.org/database-management-system-er-model/

EMPLOYEE(ENO, NAME, SALARY)

SECRETARY(TYPING_SPEED)

1001 68

CHNICIAN(TRADE

1005

ELECTRICIAN

1001 Emp A 10500
1005 Emp B 27500
1007 Emp C 14500
1008 Emp D 10000
1009 Emp E 10200

1007

ELECTRONIC

1008

AUTOMOBILE

NGINEER(ENG_TYP

1009

ELECTRICAL

e An entity belonging to a sub-class is related to some super-class entity. For instance emp, no
1001 is a secretary, and his typing speed is 68. Emp no 1009 is an engineer (sub-class) and her

trade is “Electrical”, so forth.

e Sub-class entity “inherits” all attributes of super-class; for example, employee 1001 will have
attributes eno, name, salary, and typing speed.

Enhanced ER model of above example

28

TRADE UNION
—

BELONGS_T¢

?

SECRETARY JTECHNIC IL\N ENGINEER MANAGER

HOURLY EMP

Constraints — There are two types of constraints on the “Sub-class” relationship.

1. Total or Partial — A sub-classing relationship is total if every super-class entity is to be
associated with some sub-class entity, otherwise partial. Sub-class “job type based employee
category” is partial sub-classing — not necessary every employee is one of (secretary, engineer,
and technician), i.e. union of these three types is a proper subset of all employees. Whereas
other sub-classing “Salaried Employee AND Hourly Employee” is total; the union of entities
from sub-classes is equal to the total employee set, i.e. every employee necessarily has to be
one of them.

2. Overlapped or Disjoint — If an entity from a super-set can be related (can occur) in multiple
sub-class sets, then it is overlapped sub-classing, otherwise disjoint. Both the examples:
job-type based and salaries/hourly employee sub-classing are disjoint.

Note — These constraints are independent of each other: can be “overlapped and total or
partial” or “disjoint and total or partial”. Also, sub-classing has transitive properties.

Multiple Inheritance (sub-class of multiple superclasses) —
An entity can be a sub-class of multiple entity types; such entities are sub-class of multiple
entities and have multiple super-classes; Teaching Assistant can subclass of Employee and
Student both. A faculty in a university system can be a subclass of Employee and Alumnus. In
multiple inheritances, attributes of sub-class are the union of attributes of all super-classes.
Union —
Set of Library Members is UNION of Faculty, Student, and Staff. A union relationship
indicates either type; for example, a library member is either Faculty or Staff or Student.
Below are two examples that show how UNION can be depicted in ERD — Vehicle Owner is
UNION of PERSON and Company, and RTO Registered Vehicle is UNION of Car and Truck.

REGISTERED_VEHICL

LicensePlateNo DriverLicenseNo

PERSON

CStyle TStyle

TRUCK
Address

CModel TModel

Vehiclld Veliclld

30

You might see some confusion in Sub-class and UNION; consider an example in above figure
Vehicle is super-class of CAR and Truck; this is very much the correct example of the subclass
as well but here use it differently we are saying RTO Registered vehicle is UNION of Car and
Vehicle, they do not inherit any attribute of Vehicle, attributes of car and truck are altogether
independent set, where is in sub-classing situation car and truck would be inheriting the attribute
of vehicle class.

An Enhanced Entity-Relationship (EER) model is an extension of the original
Entity-Relationship (ER) model that includes additional concepts and features to support more
complex data modeling requirements. The EER model includes all the elements of the ER model
and adds new constructs, such as subtypes and supertypes, generalization and specialization, and
inheritance.

Here are some of the key features of the EER model:
Subtypes and Supertypes: The EER model allows for the creation of subtypes and
supertypes. A supertype is a generalization of one or more subtypes, while a subtype is a
specialization of a supertype. For example, a vehicle could be a supertype, while car, truck,
and motorcycle could be subtypes.
Generalization and Specialization: Generalization is the process of identifying common
attributes and relationships between entities and creating a supertype based on these common
features. Specialization is the process of identifying unique attributes and relationships
between entities and creating subtypes based on these unique features.
Inheritance: Inheritance is a mechanism that allows subtypes to inherit attributes and
relationships from their supertype. This means that any attribute or relationship defined for a
supertype is automatically inherited by all its subtypes.
Constraints: The EER model allows for the specification of constraints that must be satisfied
by entities and relationships. Examples of constraints include cardinality constraints, which
specify the number of relationships that can exist between entities, and participation
constraints, which specify whether an entity is required to participate in a relationship.
Overall, the EER model provides a powerful and flexible way to model complex data
relationships, making it a popular choice for database design. An Enhanced
Entity-Relationship (EER) model is an extension of the traditional Entity-Relationship (ER)
model that includes additional features to represent complex relationships between entities
more accurately. Some of the main features of the EER model are:
Subclasses and Superclasses: EER model allows for the creation of a hierarchical structure of
entities where a superclass can have one or more subclasses. Each subclass inherits attributes
and relationships from its superclass, and it can also have its unique attributes and
relationships.
Specialization and Generalization: EER model uses the concepts of specialization and
generalization to create a hierarchy of entities. Specialization is the process of defining
subclasses from a superclass, while generalization is the process of defining a superclass from
two or more subclasses.
Attribute Inheritance: EER model allows attributes to be inherited from a superclass to its
subclasses. This means that attributes defined in the superclass are automatically inherited by
all its subclasses.

31

e Union Types: EER model allows for the creation of a union type, which is a combination of
two or more entity types. The union type can have attributes and relationships that are common
to all the entity types that make up the union.

e Aggregation: EER model allows for the creation of an aggregate entity that represents a group
of entities as a single entity. The aggregate entity has its unique attributes and relationships.

e Multi-valued Attributes: EER model allows an attribute to have multiple values for a single
entity instance. For example, an entity representing a person may have multiple phone
numbers.

e Relationships with Attributes: EER model allows relationships between entities to have
attributes. These attributes can describe the nature of the relationship or provide additional
information about the relationship.

Generalization, Specialization and Aggregation in ER Model

Using the ER model for bigger data creates a lot of complexity while designing a database
model, So in order to minimize the complexity Generalization, Specialization, and Aggregation
were introduced in the ER model and these were used for data abstraction in which an
abstraction mechanism is used to hide details of a set of objects. Some of the terms were added
to the Enhanced ER Model, where some new concepts were added. These new concepts are:
e Generalization
e Specialization
e Aggregation
o Generalization
e Generalization is the process of extracting common properties from a set of entities and
creating a generalized entity from it. It is a bottom-up approach in which two or more
entities can be generalized to a higher-level entity if they have some attributes in
common. For Example, STUDENT and FACULTY can be generalized to a higher-level
entity called PERSON as shown in Figure 1. In this case, common attributes like
P NAME, and P_ ADD become part of a higher entity (PERSON), and
specialized attributes like S FEE become part of a specialized entity (STUDENT).

32

https://www.geeksforgeeks.org/difference-between-entity-and-object/
https://www.geeksforgeeks.org/types-of-attributes-in-er-model/

PERSON

FACULTY STUDENT

Specialization

In specialization, an entity is divided into sub-entities based on its characteristics. It is a
top-down approach where the higher-level entity is specialized into two or more

lower-level entities. For Example, an EMPLOYEE entity in an Employee management system
can be specialized into DEVELOPER, TESTER, etc. as shown in Figure 2. In this case, common
attributes like E NAME, E SAL, etc. become part of a higher entity (EMPLOYEE), and
specialized attributes like TES TYPE become part of a specialized entity (TESTER).

33

https://www.geeksforgeeks.org/difference-between-entity-entity-set-and-entity-type/

EMPLOYEE

DEVELOPER

Specialization

Inheritance: It is an important feature of generalization and specialization

e Attribute inheritance: allows lower level entities to inherit the attributes of higher level
entities and vice versa.

e in diagram: Car entity is an inheritance of Vehicle entity ,So Car can acquire attributes
of Vehicle example:car can acquire Model attribute of Vehicle.

e Participation inheritance: In participation inheritance, relationships involving higher level
entity set also inherited by lower level entity and vice versa.

e in diagram: Vehicle entity has an relationship with Cycle entity ,So Cycle entity can acquire
attributes of lower level entities i.e Car and Bus since it is inheritance of Vehicle.

34

D D G

Vehicle @ Cycle

IS-A

Car Bus

Bumper No.of.seats

Aggregation

An ER diagram is not capable of representing the relationship between an entity and a
relationship which may be required in some scenarios. In those cases, a relationship with its
corresponding entities is aggregated into a higher-level entity. Aggregation is an abstraction
through which we can represent relationships as higher-level entity sets.

For Example, an Employee working on a project may require some machinery. So, REQUIRE
relationship is needed between the relationship WORKS FOR and entity MACHINERY. Using
aggregation, WORKS FOR relationship with its entities EMPLOYEE and PROJECT is
aggregated into a single entity and relationship REQUIRE is created between the aggregated
entity and MACHINERY.

35

PROJECT = EMPLOYEE

REQUIRE

MACHINERY

Aggregation

Representing Aggregation Via Schema

To represent aggregation, create a schema containing the following things.
e the primary key to the aggregated relationship
e the primary key to the associated entity set
e descriptive attribute, if exists

Modeling of UNION types using categories

In DBMS, Superclass/subclass relationships with a single super-class. A shared subclass may be
represented in multiple superclass/subclass relationships, where each relationship has a single
superclass.

Understanding Superclass/Subclass Relationships in DBMS
A single superclass/subclass relationship using more than one superclass. Each superclass

represents a distinct entity type. Subclass represents a group of objects that is a subset of the
UNION of the distinct entity types. This subclass is known as union type or a category.

Example

36

https://www.geeksforgeeks.org/primary-key-constraint-in-sql/

Consider the scenario where we have three distinct entity types: PERSON, BANK, and
COMPANY. In a motor vehicle registration database, a vehicle owner can be classified as a
person, a bank holding a lien on the vehicle, or a company. To create a class (i.e., a collection of
entities). That encompasses all three entity types, we need to construct a subclass that represents
the union of the three sets, which we will call OWNER. This subclass is a category, also known
as a union type.

Category in an Entity-Relationship Diagram

To visually represent this subclass in an Entity-Relationship (EER) diagram, we use a circle with
the symbol "U" to denote the set union operation, which is connected to the superclasses
COMPANY, BANK, and PERSON. An arc with the subset symbol connects the circle to the
OWNER category, indicating that the OWNER category is a subclass of the union of the three
entity types. If necessary, we can display a defining predicate next to the line from the superclass
to which the predicate applies.

In Figure below, we can see two categories displayed in the EER diagram: OWNER and
REGISTERED VEHICLE. OWNER is a subclass of the union of PERSON, BANK, and
COMPANY, while REGISTERED VEHICLE is a subclass of the union of CAR and TRUCK.

37

:

| REGISTERED_VEHICLE |

M

Vehicle_id

CAR CK
G >

Comparison of Category and Shared Subclass: OWNER and ENGINEERING MANAGER

Category is a subclass. It has two or more superclasses representing distinct entity types.
Superclass/subclass relationships only have a single superclass. To better understand the
distinction between a category and other subclass relationships, let us compare the OWNER
category in Figure above with the shared subclass ENGINEERING MANAGER.

38

ﬁ Badggés
(Boan g_ ess)

e BANK

/-"” . .
\Prwer_llcensefr@

-

@ame ﬂA&J&%) @;n;g g(';‘.a:d:i;@
5 — _.\ s

(9@} PERSON COMPANY

Image drawn by www.tutorialspoint.com

OWNER

ENGINEERING MANAGER subclass is member of each of these superclasses: ENGINEER,
MANAGER, and SALARIED EMPLOYEE. Entity which is part of

ENGINEERING MANAGER must also exist in all three of its superclasses. So,
ENGINEERING MANAGER is subset of the intersection of the three classes. Engineering
manager must be an ENGINEER, MANAGER, and a SALARIED EMPLOYEE.

On the other hand, a category such as OWNER is a subset of the union of its superclasses. Entity
that is member of OWNER must exist in only one of its superclasses. In Figure above, an
OWNER entity may be COMPANY, BANK, or PERSON.

Attribute inheritance operates in the case of categories. In Figure above, each OWNER entity
inherits the attributes of COMPANY, PERSON, or BANK. It depends on superclass to which
entity belongs. In a shared subclass such as ENGINEERING MANAGER (Figure above), the
subclass inherits all the attributes of its superclasses SALARIED EMPLOYEE, ENGINEER,
and MANAGER.

39

Nk L=

MODULE 3:

Introduction of Relational Algebra in DBMS

Relational Algebra is a procedural query language. Relational algebra mainly provides a
theoretical foundation for relational databases and SQL. The main purpose of using Relational
Algebra is to define operators that transform one or more input relations into an output relation.
Given that these operators accept relations as input and produce relations as output, they can be
combined and used to express potentially complex queries that transform potentially many input
relations (whose data are stored in the database) into a single output relation (the query results).
As it is pure mathematics, there is no use of English Keywords in Relational Algebra and
operators are represented using symbols.

Fundamental Operators

These are the basic/fundamental operators used in Relational Algebra.

Selection(c)
Projection(m)
Union(U)

Set Difference(-)
Set Intersection(N)

Rename(p)
Cartesian Product(X)

1. Selection(o): It is used to select required tuples of the relations.
Example:

A BC
1 2 4
223
323

43 4

For the above relation, 6(¢>3)R will select the tuples which have ¢ more than 3.
A BC

1 2 4

43 4

Note: The selection operator only selects the required tuples but does not display them. For
display, the data projection operator is used.

40

https://www.geeksforgeeks.org/sql-tutorial/
https://www.geeksforgeeks.org/basic-operators-in-relational-algebra-2/
https://www.geeksforgeeks.org/select-operation-in-relational-algebra/
https://www.geeksforgeeks.org/difference-between-selection-and-projection-in-dbms/
https://www.geeksforgeeks.org/sql-union-operator/
https://www.geeksforgeeks.org/set-theory-operations-in-relational-algebra/
https://www.geeksforgeeks.org/sql-intersect-clause/
https://www.geeksforgeeks.org/rename-operation-in-relational-algebra/
https://www.geeksforgeeks.org/cartesian-product-operation-in-relational-algebra/

2. Projection(m): It is used to project required column data from a relation.
Example: Consider Table 1. Suppose we want columns B and C from Relation R.
n(B,C)R will show following columns.

B C
2 4

23

3 4

Note: By Default, projection removes duplicate data.

3. Union(U): Union operation in relational algebra is the same as union operation in set theory.

Example:

FRENCH

Student Nam Roll_Numbe
e r

Ram 01

Mohan 02

Vivek 13

Geeta 17
GERMAN

Student Nam Roll_Numbe
e r

Vivek 13

Geeta 17

Shyam 21

Rohan 25

Consider the following table of Students having different optional subjects in their course.
n(Student Name)FRENCH U n(Student Name)GERMAN

41

https://www.geeksforgeeks.org/set-operations/

Student Nam
e

Ram
Mohan
Vivek
Geeta
Shyam

Rohan

Note: The only constraint in the union of two relations is that both relations must have the same
set of Attributes.

4. Set Difference(-): Set Difference in relational algebra is the same set difference operation as
in set theory.

Example: From the above table of FRENCH and GERMAN, Set Difference is used as follows
n(Student Name)FRENCH - n(Student Name)GERMAN

Student_Nam
e

Ram

Mohan

Note: The only constraint in the Set Difference between two relations is that both relations must
have the same set of Attributes.

5. Set Intersection(N): Set Intersection in relational algebra is the same set intersection
operation in set theory.

Example: From the above table of FRENCH and GERMAN, the Set Intersection is used as
follows

n(Student Name)FRENCH N n(Student Name)GERMAN

Student_Nam
e

Vivek

Geeta

42

Note: The only constraint in the Set Difference between two relations is that both relations must
have the same set of Attributes.

6. Rename(p): Rename is a unary operation used for renaming attributes of a relation.
p(a/b)R will rename the attribute 'b' of the relation by 'a'.

7. Cross Product(X): Cross-product between two relations. Let’s say A and B, so the cross
product between A X B will result in all the attributes of A followed by each attribute of B. Each
record of A will pair with every record of B.

Example:

A

Ag
Name e Sex

Ram 14 M
Sona 15 F

Kim 20 M
B
ID Course

1 DS

2 DBMS
AXB
Ag
Name e Sex ID Course

Ram 14 M 1 DS

DBM

Ram 14 MZS

Sona 15 F 1 DS

DBM

Sona 15 F 2 S

Kim 20 M 1 DS

DBM
S

Note: If A has ‘n’ tuples and B has ‘m’ tuples then A X B will have ‘ n*m ° tuples.

Kim 20 M 2

43

Derived Operators
These are some of the derived operators, which are derived from the fundamental operators.

1. Natural Join()

2. Conditional Join
1. Natural Join(): Natural join is a binary operator. Natural join between two or more relations
will result in a set of all combinations of tuples where they have an equal common attribute.
Example:
EMP

Dept_Nam
Name ID e

A 120 IT
B 125 HR

C 110 Sales

D 111 IT
DEPT

Manage
Dept Name r
Sales Y

Production Z

IT A

Natural join between EMP and DEPT with condition :
EMP.Dept Name = DEPT.Dept_Name

EMP x DEPT
Dept Nam Manage
Name ID e r
A 120 IT A
C 110 Sales Y
D 111 IT A

2. Conditional Join: Conditional join works similarly to natural join. In natural join, by default
condition is equal between common attributes while in conditional join we can specify any
condition such as greater than, less than, or not equal.

Example:

R

44

https://www.geeksforgeeks.org/extended-operators-in-relational-algebra/
https://www.geeksforgeeks.org/sql-natural-join/
https://www.geeksforgeeks.org/extended-operators-in-relational-algebra/

Mark

ID Sex s

1 F 45
2 F 55
3 F 60
S

Mark

ID Sex s

10 M 20
11 M 22
12 M 59

Join between R and S with condition R.marks >= S.marks
R.I R.Se R.Mark S.I S.Se S.Mark

D X S D «x S

1 F 45 10 M 20
1 F 45 11 M 22
2 F 55 10 M 20
2 F 55 11 M 22
3 F 60 10 M 20
3 F 60 11 M 22
3 F 60 12 M 59

Basic Operators in Relational Algebra

Basics of Relational model: Relational Model

Relational Algebra is a procedural query language that takes relations as an input and returns
relations as an output. There are some basic operators which can be applied in relation to
producing the required results which we will discuss one by one. We will use

STUDENT SPORTS, EMPLOYEE, and STUDENT relations as given in Table 1, Table 2, and
Table 3 respectively to understand the various operators.

45

https://www.geeksforgeeks.org/relational-model-in-dbms/

Table 1: STUDENT SPORTS
ROLL N

o SPORTS

1 Badminto
n

2 Cricket

) Badminto
n

4 Badminto

n

Table 2: EMPLOYEE

EMP_N NAME ADDRES PHONE AG
O S E
1 RAM DELHI 9455123451 18
5 EARES HISAR 9782918192 22
6 SWETA RANCHI 9852617621 21
4 SURESH DELHI 9156768971 18

Table 3: STUDENT

gOLL—N NAME ADDRESS PHONE gc
| RAM DELHI 9455123451 18
2 EAMES GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

46

4 SURESH DELHI 9156768971 18

Selection operator (?): Selection operator is used to selecting tuples from a relation based on
some condition. Syntax:

? (Cond)(Relation Name)
Extract students whose age is greater than 18 from STUDENT relation given in Table 3

i (AGE>18)(STUDENT)
[Note: SELECT operator does not show any result, the projection operator must be called before

the selection operator to generate or project the result. So, the correct syntax to generate the
result is: ?2(? (AGE>18)(STUDENT))]

RESULT:

ROLL_N NAME ADDRES PHONE AG
0 S E

3 SUJIT ROHTAK 9156253131 20

Projection Operator (?): Projection operator is used to project particular columns from a
relation. Syntax:

?(Column 1,Column 2....Column n)(Relation Name)

Extract ROLL NO and NAME from STUDENT relation given in Table 3

?(ROLL_NO,NAME)(STUDENT)

RESULT:

ROLLN v

o)

1 RAM

5 RAMES
H

3 SUNIT

4 SURESH

Note: If the resultant relation after projection has duplicate rows, it will be removed. For
Example ?xppressy(STUDENT) will remove one duplicate row with the value DELHI and return
three rows.

Cross Product(X): Cross product is used to join two relations. For every row of Relationl, each
row of Relation2 is concatenated. If Relation1 has m tuples and and Relation2 has n tuples, cross
product of Relation1 and Relation2 will have m X n tuples. Syntax:

Relation1 X Relation2

To apply Cross Product on STUDENT relation given in Table 1 and STUDENT SPORTS
relation given in Table 2,

STUDENT X STUDENT_SPORTS

47

RESULT:

ROLL N
o)

NAME

RAMES

RAMES

RAMES

RAMES
H

SUJIT

SUJIT

SUJIT

SUJIT

SURESH

SURESH

SURESH

ADDRESS

DELHI

DELHI

DELHI

DELHI

GURGAON

GURGAON

GURGAON

GURGAON

ROHTAK

ROHTAK

ROHTAK

ROHTAK

DELHI

DELHI

DELHI

PHONE

9455123451

9455123451

9455123451

9455123451

9652431543

9652431543

9652431543

9652431543

9156253131

9156253131

9156253131

9156253131

9156768971

9156768971

9156768971

48

AG

18

18

18

18

18

18

18

20

20

20

20

18

18

18

ROLL_N

SPORTS

Badminto
n

Cricket

Badminto
n

Badminto
n

Badminto
n

Cricket

Badminto
n

Badminto
n

Badminto
n

Cricket

Badminto
n

Badminto
n

Badminto
n

Cricket

Badminto
n

Badminto
n

4 SURESH DELHI 9156768971 18 4

Union (U): Union on two relations R1 and R2 can only be computed if R1 and R2 are union
compatible (These two relations should have the same number of attributes and corresponding
attributes in two relations have the same domain). Union operator when applied on two relations
R1 and R2 will give a relation with tuples that are either in R1 or in R2. The tuples which are in
both R1 and R2 will appear only once in the result relation. Syntax:

Relation1 U Relation2

Find the person who is either student or employees, we can use Union operators like:

STUDENT U EMPLOYEE

RESULT:

gOLL—N NAME ADDRESS PHONE ‘];‘G
| RAM DELHI 9455123451 18
2 EAMES GURGAON 9652431543 18
3 SUNIT ROHTAK 9156253131 20
4 SURESH DELHI 9156768971 18
5 NARESH HISAR 9782918192 22
6 SWETA RANCHI 9852617621 21

Minus (-): Minus on two relations R1 and R2 can only be computed if R1 and R2 are union
compatible. Minus operator when applied on two relations as R1-R2 will give a relation with
tuples that are in R1 but not in R2. Syntax:

Relation1 - Relation2

Find the person who is a student but not an employee, we can use minus operator like:

STUDENT - EMPLOYEE

RESULT:

SOLEN NAME ~ ADDRESS PHONE 2
2 SAMES - GURGAON 9652431543 18
3 SUNT ROHTAK 9156253131 20

Rename(?): Rename operator is used to giving another name to a relation. Syntax:
?(Relation2, Relation1)
To rename STUDENT relation to STUDENT 1, we can use rename operator like:

49

?(STUDENT1, STUDENT)
If you want to create a relation STUDENT NAMES with ROLL NO and NAME from
STUDENT, it can be done using rename operator as:

?(STUDENT_NAMES, ?(ROLL_NO, NAME)(STUDENT))

Mapping from ER Model to Relational Model

After designing the ER diagram of system, we need to convert it to Relational models which can
directly be implemented by any RDBMS like Oracle, MySQL etc. In this article we will discuss
how to convert ER diagram to Relational Model for different scenarios.

Case 1: Binary Relationship with 1:1 cardinality with total participation of an entity

Pass-No
Per-id -

Has > Passport

Person

A person has 0 or 1 passport number and Passport is always owned by 1 person. So it is 1:1
cardinality with full participation constraint from Passport.

First Convert each entity and relationship to tables. Person table corresponds to Person
Entity with key as Per-Id. Similarly Passport table corresponds to Passport Entity with key as
Pass-No. Has Table represents relationship between Person and Passport (Which person has
which passport). So it will take attribute Per-Id from Person and Pass-No from Passport.

Person Has Passport

Per-Id Other Person Attribute Per-1d Pass-N Pass-N | Other .
EE— i (] 0 PassportAttribute

PR1 - PR1 PS1 PS1 —

50

PR2 - PR2 PS2 PS2 —

PR3 -

Table 1

As we can see from Table 1, each Per-1d and Pass-No has only one entry in Has Table. So we
can merge all three tables into 1 with attributes shown in Table 2. Each Per-1d will be unique and
not null. So it will be the key. Pass-No can’t be key because for some person, it can be NULL.

Other Person Pass-N Other

Per-ld) tribute 0 PassportAttribute

Table 2
Case 2: Binary Relationship with 1:1 cardinality and partial participation of both entities

n
a

=
&

Marry Female

Male

A male marries 0 or 1 female and vice versa as well. So it is 1:1 cardinality with partial
participation constraint from both. First Convert each entity and relationship to tables. Male
table corresponds to Male Entity with key as M-Id. Similarly Female table corresponds to
Female Entity with key as F-Id. Marry Table represents relationship between Male and Female

51

(Which Male marries which female). So it will take attribute M-Id from Male and F-Id from
Female.

Male Marry Female
Other Male F-1 E-I Other
M-Id Attribute M-Id d d FemaleAttribute
Ml - M1 F2 F1 -
M2 - M2 Fl F2 -
M3 - F3 -
Table 3

As we can see from Table 3, some males and some females do not marry. If we merge 3 tables
into 1, for some M-Id, F-Id will be NULL. So there is no attribute which is always not NULL. So
we can’t merge all three tables into 1. We can convert into 2 tables. In table 4, M-Id who are
married will have F-Id associated. For others, it will be NULL. Table 5 will have information of
all females. Primary Keys have been underlined.

Other Male F-1
M-Id Attribute d

Table 4

-]

-1 Other
FemaleAttribute

IQ-l

Table 5

Note: Binary relationship with 1:1 cardinality will have 2 table if partial participation of both
entities in the relationship. If atleast 1 entity has total participation, number of tables required
will be 1.

Case 3: Binary Relationship with n: 1 cardinality

52

o
a

enrolls Elective Course
Student

In this scenario, every student can enroll only in one elective course but for an elective course
there can be more than one student. First Convert each entity and relationship to tables. Student
table corresponds to Student Entity with key as S-1d. Similarly Elective Course table
corresponds to Elective Course Entity with key as E-1d. Enrolls Table represents relationship
between Student and Elective Course (Which student enrolls in which course). So it will take
attribute S-1d from Student and E-Id from Elective Course.

Student Enrolls Elective Course

S-1 Other Student S-1 E-I E-1 .)

d Attribute d d d Other Elective CourseAttribute
S1 - S1 El El -

S2 - S2 E2 E2 -

S3 - S3 El E3 -

S4 - S4 El

Table 6

As we can see from Table 6, S-1d is not repeating in Enrolls Table. So it can be considered as a
key of Enrolls table. Both Student and Enrolls Table’s key is same; we can merge it as a single
table. The resultant tables are shown in Table 7 and Table 8. Primary Keys have been

53

underlined.

Other Student

S-1
d Attribute

Table 7

kT
A

Table 8

Other Elective CourseAttribute

Case 4: Binary Relationship with m: n cardinality

Student

¢
a

enrolls

Compulsory Courses

In this scenario, every student can enroll in more than 1 compulsory course and for a compulsory
course there can be more than 1 student. First Convert each entity and relationship to tables.
Student table corresponds to Student Entity with key as S-Id. Similarly Compulsory Courses
table corresponds to Compulsory Courses Entity with key as C-1d. Enrolls Table represents
relationship between Student and Compulsory Courses (Which student enrolls in which course).
So it will take attribute S-1d from Person and C-Id from Compulsory Courses.

Student

Enrolls

Compulsory_Courses

54

S-I Other Student S-I C-1 C-I Other Compulsory
d Attribute d d d CourseAttribute
S1 - S1 Cl1 c1 -
S2 - S1 C2 c2 -
S3 - S3 Cl1 c3 -
S4 - S4 C3 c4 -
S4 C2
S3 C3
Table 9

As we can see from Table 9, S-1d and C-Id both are repeating in Enrolls Table. But its
combination is unique; so it can be considered as a key of Enrolls table. All tables’ keys are
different, these can’t be merged. Primary Keys of all tables have been underlined.

Case 5: Binary Relationship with weak entity

Dependants
Employee

In this scenario, an employee can have many dependents and one dependent can depend on one
employee. A dependent does not have any existence without an employee (e.g; you as a child can
be dependent of your father in his company). So it will be a weak entity and its participation will
always be total. Weak Entity does not have key of its own. So its key will be combination of key
of its identifying entity (E-Id of Employee in this case) and its partial key (D-Name).

First Convert each entity and relationship to tables. Employee table corresponds to Employee
Entity with key as E-Id. Similarly Dependents table corresponds to Dependent Entity with key as

55

D-Name and E-Id. Has Table represents relationship between Employee and Dependents (Which
employee has which dependents). So it will take attribute E-Id from Employee and D-Name
from Dependents.

Employee Has Dependents
E-I Other Employee E-I E-I Other
d Attribute d D-Name D-Name d DependentsAttribute
El - El RAM RAM El -
E2 - E1 SRINI SRINI El1 -
E3 - E2 RAM RAM E2 -
ASHIS ASHIS

E3 0 o E3 -

Table 10

As we can see from Table 10, E-Id, D-Name is key for Has as well as Dependents Table. So we
can merge these two into 1. So the resultant tables are shown in Tables 11 and 12. Primary Keys
of all tables have been underlined.

E-I Other Employee
d Attribute

Table 11

-)

-Nam E-I Other
d DependentsAttribute

o

SQL | DDL, DML, TCL and DCL

n this article, we’ll be discussing Data Definition Language, Data Manipulation Language,
Transaction Control Language, and Data Control Language.

56

\/ / L

DDL DML DCL TJCL

CREATE GRANT COMMIT
ALTER |S|~4EsLEE|§TT REVOKE ROLLBACK
DROP il SAVEPOINT
RENAME il SET TRANSACTION
TRUNCATE by
COMMENT bt

EXPLAIN PLAN

LOCK TABLE

DDL (Data Definition Language) :

Data Definition Language is used to define the database structure or schema. DDL is also used to
specify additional properties of the data. The storage structure and access methods used by the
database system by a set of statements in a special type of DDL called a data storage and
definition language. These statements define the implementation details of the database schema,
which are usually hidden from the users. The data values stored in the database must satisfy
certain consistency constraints.

For example, suppose the university requires that the account balance of a department must
never be negative. The DDL provides facilities to specify such constraints. The database system
checks these constraints every time the database is updated. In general, a constraint can be an
arbitrary predicate pertaining to the database. However, arbitrary predicates may be costly to the
test. Thus, the database system implements integrity constraints that can be tested with minimal
overhead.

1. Domain Constraints : A domain of possible values must be associated with every attribute
(for example, integer types, character types, date/time types). Declaring an attribute to be of a
particular domain acts as the constraints on the values that it can take.

2. Referential Integrity : There are cases where we wish to ensure that a value appears in one
relation for a given set of attributes also appear in a certain set of attributes in another relation
1.e. Referential Integrity. For example, the department listed for each course must be one that
actually exists.

3. Assertions : An assertion is any condition that the database must always satisfy. Domain
constraints and Integrity constraints are special form of assertions.

57

4. Authorization : We may want to differentiate among the users as far as the type of access they
are permitted on various data values in database. These differentiation are expressed in terms
of Authorization. The most common being :
read authorization — which allows reading but not modification of data ;
insert authorization — which allow insertion of new data but not modification of existing data
update authorization — which allows modification, but not deletion.

Some Commands:

CREATE : to create objects in database

ALTER : alters the structure of database

DROP : delete objects from database

RENAME : rename an objects

Following SQL DDL-statement defines the department table :

create table department
(dept_name char(20),
building char(15),
budget numeric(12,2));

Execution of the above DDL statement creates the department table with three columns —
dept name, building, and budget; each of which has a specific datatype associated with it.

DML (Data Manipulation Language) :

DML statements are used for managing data with in schema objects.
DML are of two types —

1. Procedural DMLs : require a user to specify what data are needed and how to get those data.
2. Declarative DMLs (also referred as Non-procedural DMLs) : require a user to specify what
data are needed without specifying how to get those data.
Declarative DMLs are usually easier to learn and use than procedural DMLs. However, since a
user does not have to specify how to get the data, the database system has to figure out an
efficient means of accessing data.

Some Commands :

SELECT: retrieve data from the database

INSERT: insert data into a table

UPDATE: update existing data within a table

DELETE: deletes all records from a table, space for the records remain

Example of SQL query that finds the names of all instructors in the History department :

select instructor.name

58

from instructor
where instructor.dept name = 'History';

The query specifies that those rows from the table instructor where the dept_name is History
must be retrieved and the name attributes of these rows must be displayed.

TCL (Transaction Control Language) :

Transaction Control Language commands are used to manage transactions in the database. These
are used to manage the changes made by DML-statements. It also allows statements to be
grouped together into logical transactions.

Examples of TCL commands —

COMMIT: Commit command is used to permanently save any transaction

into the database.

ROLLBACK: This command restores the database to last committed state.

It is also used with savepoint command to jump to a savepoint

in a transaction.

SAVEPOINT: Savepoint command is used to temporarily save a transaction so

that you can rollback to that point whenever necessary.

DCL (Data Control Language) :

A Data Control Language is a syntax similar to a computer programming language used to
control access to data stored in a database (Authorization). In particular, it is a component of
Structured Query Language (SQL).

Examples of DCL commands :

GRANT: allow specified users to perform specified tasks.
REVOKE: cancel previously granted or denied permissions.

The operations for which privileges may be granted to or revoked from a user or role apply to
both the Data definition language (DDL) and the Data manipulation language (DML), and may
include CONNECT, SELECT, INSERT, UPDATE, DELETE, EXECUTE and USAGE.

In the Oracle database, executing a DCL command issues an implicit commit.

59

SQL SELECT Query

The SQL SELECT Statement retrieves data from a database.
SELECT Statement in SQL

The SELECT statement in SQL is used to fetch or retrieve data from a database. It allows users
to access the data and retrieve specific data based on specific conditions.

We can fetch either the entire table or according to some specified rules. The data returned is
stored in a result table. This result table is also called the result set. With the SELECT clause of
a SELECT command statement, we specify the columns that we want to be displayed in the
query result and, optionally, which column headings we prefer to see above the result table.

The SELECT clause is the first clause and is one of the last clauses of the select statement that
the database server evaluates. The reason for this is that before we can determine what to include
in the final result set, we need to know all of the possible columns that could be included in the
final result set.

Syntax
The syntax for the SELECT statement is:
SELECT columnl,column?.... FROM table name ;

SELECT Statement Example
Let’s look at some examples of the SQL SELECT statement, to understand it better.
Let’s create a table which will be used in examples:
CREATE TABLE:
CREATE TABLE Customer(
CustomerID INT PRIMARY KEY,
CustomerName VARCHAR(50),
LastName VARCHAR(50),
Country VARCHAR(50),
Age int(2),
Phone int(10)
);
-- Insert some sample data into the Customers table
INSERT INTO Customer (CustomerID, CustomerName, LastName, Country, Age, Phone)
VALUES (1, 'Shubham', '"Thakur', 'India’,'23",'xxxxxxxxxx"),
(2,'Aman ', 'Chopra’, 'Australia’,'21",'xxxxxxxxxx"),
(3, 'Naveen', 'Tulasi', 'Sri lanka','24','xxxxxxxxxX'),
(4, 'Aditya’, 'Arpan', 'Austria’,'21",'xxxxxxxxxx"),
(5, Nishant. Salchichas S.A.", 'Jain', 'Spain','22",'xxXXXXxXxX');

60

Output:

CustomerlD CustomerName LastName Country Age Phone

1 Shubham Thakur India 23 YOO
2 Aman Chopra Australia 21 XOOXXXXXXXX
3 Naveen Tulasi Sri lanka 24 YOO
4 Aditya Arpan Austria 21 XXXXKXKXXK
5 gl::mnt. Salchichas Jain Spain 22 XHXXXXXXXX

Retrieve Data using SELECT Query
In this example, we will fetch CustomerName, LastName from the table Customer:

SEEIE]CT CustomerName, LastName FROM Customer;

Output:
CustomerName LastName
Shubham Thakur
Aman Chopra
Naveen Tulasi
Aditya Arpan
Nishant. Salchichas S.A. Jain

Fetch All Table using SELECT Statement
In this example, we will fetch all the fields from the table Customer:

Query:
SELECT * FROM Customer;

61

Output:

CustomerlD CustomerName LastName Country Age Phone

1 Shubham Thakur India 23 XHXHKXKXKKK
2 Aman Chopra Australia 21 XIXHXXHKK
3 Naveen Tulasi Sri lanka 24 XXHXXXXKXKK
4 Aditya Arpan Austria 21 XXXXXXXXKXK
5 SN'ET]GM' Salchichas Jain Spain 22 XXXKXKXKKXK

SELECT Statement with WHERE Clause
Suppose we want to see table values with specific conditions then WHERE Clause is used with
select statement.

Query:
SELECT CustomerName FROM Customer where Age = '21";
Output:

CustomerName

Aman

Aditya

SQL SELECT Statement with GROUP BY Clause

In this example, we will use SELECT statement with GROUP BY Clause
Query:

SELECT COUNT (item), Customer _id FROM Orders GROUP BY order id;
Output:

COUNT (item) customer_id
1 4

1 4

1 3

1 1

1 2

62

https://www.geeksforgeeks.org/sql-where-clause/
https://www.geeksforgeeks.org/sql-group-by/

SELECT Statement with HAVING Clause
Consider the following database for HAVING Clause:

Results Messages

Employeelds, Name s, Genders, Salaryss |Departmentss Experiencew

1 1 Rachit M 50000 Engineering 6 year
2 2 Shobit M - 37000 HR i 3 year
3 3 Isha F . 56000 Sales 7 year
4 4 Devi F - 43000 Management @ 4 year
5 5 Akhil M %0000 Engineering 15 year
Query:

SELECT Department, sum(Salary) as Salary

FROM employee

GROUP BY department

HAVING SUM(Salary) >= 50000;

Output:

63

https://www.geeksforgeeks.org/sql-having-clause-with-examples/

Results Messages
Department s, Salaryw

1 Engineering @ 140000
2 i Sales 56000

SELECT Statement with ORDER BY clause in SQL
In this example, we will use SELECT Statement with ORDER BY clause

uery:

(SJELFYCT * FROM Customer ORDER BY Age DESC;

Output:
CustomeriD CustomerName LastName Country
3 Naveen Tulasi Sri lanka
1 Shubham Thakur India
5 Nishant. Salchichas S.A. Jain Spain
2 Aman Chopra Australia
4 Aditya Arpan Austria

Important Points with SQL SELECT Statement
1t is used to access records from one or more database tables and views.
The SELECT statement retrieves selected data based on specified conditions.
The result of a SELECT statement is stored in a result set or result table.

The SELECT statement can be used to access specific columns or all columns from a table.

Age
24
23
22
21

21

Phone

XXX XHNHX
00O
HAOOOOXNANX
XXX XHNHX

OO OO

It can be combined with clauses like WHERE, GROUP BY, HAVING, and ORDER BY for more

refined data retrieval.

The SELECT statement is versatile and allows users to fetch data based on various criteria

efficiently.

SQL - Constraints
SQL Constraints

64

https://www.geeksforgeeks.org/sql-order-by/

SQL Constraints are the rules applied to a data columns or the complete table to limit the type of
data that can go into a table. When you try to perform any INSERT, UPDATE, or DELETE
operation on the table, RDBMS will check whether that data violates any existing constraints and
if there is any violation between the defined constraint and the data action, it aborts the operation
and returns an error.

We can define a column level or a table level constraints. The column level constraints are
applied only to one column, whereas the table level constraints are applied to the whole table.

SQL Create Constraints

We can create constraints on a table at the time of a table creation using the CREATE TABLE
statement, or after the table is created, we can use the ALTER TABLE statement to create or
delete table constraints.

CREATE TABLE table name (
columnl datatype constraint,
column?2 datatype constraint,

columnN datatype constraint
e
Different RDBMS allows to define different constraints. This tutorial will discuss about 7 most
important constraints available in MySQL.

NOT NULL Constraint

When applied to a column, NOT NULL constraint ensure that a column cannot have a NULL
value. Following is the example to create a NOT NULL constraint:

CREATE TABLE CUSTOMERS (
ID INT NOT NULL,
AME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2)
);

Check further detail on NOT NULL Constraint

UNIQUE Key Constraint

When applied to a column, UNIQUE Key constraint ensure that a column accepts only UNIQUE
values. Following is the example to create a UNIQUE Key constraint on column ID. Once this
constraint is created, column ID can't be null and it will accept only UNIQUE values.

CREATE TABLE CUSTOMERS (
ID INT NOT NULL UNIQUE,

65

https://www.tutorialspoint.com/sql/sql-not-null-constraint.htm

NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),

SALARY DECIMAL (18, 2)
);

Check further detail on Unique Key Constraint

DEFAULT Value Constraint

When applied to a column, DEFAULT Value constraint provides a default value for a column
when none is specified. Following is the example to create a DEFAULT constraint on column
NAME. Once this constraint is created, column NAME will set to "Not Available" value if
NAME is not set to a value.

CREATE TABLE CUSTOMERS (
ID INT NOT NULL UNIQUE,
AME VARCHAR (20) DEFAULT 'Not Available',
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2

)

Check further detail on DEFAULT Val nstraint

PRIMARY Key Constraint

When applied to a column, PRIMARY Key constraint ensure that a column accepts only
UNIQUE value and there can be a single PRIMARY Key on a table but multiple columns can
constituet a PRIMARY Key. Following is the example to create a PRIMARY Key constraint on
column ID. Once this constraint is created, column ID can't be null and it will accept only unique
values.

CREATE TABLE CUSTOMERS(
1D) INT NOT NULL,

AME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

Check further detail on PRIMARY Key Constraint

FOREIGN Key Constraint

66

https://www.tutorialspoint.com/sql/sql-unique-key.htm
https://www.tutorialspoint.com/sql/sql-default-constraint.htm
https://www.tutorialspoint.com/sql/sql-primary-key.htm

FOREIGN Key constraint maps with a column in another table and uniquely identifies a
row/record in that table. Following is an example to create a foreign key constraint on column ID
available in CUSTOMERS table as shown in the statement below —

CREATE TABLE ORDERS (

ID INT NOT NULL,

DATE DATETIME,

CUSTOMER _ID INT FOREIGN KEY REFERENCES CUSTOMERS(ID),

AMOUNT DECIMAL,
PRIMARY KEY (ID)

)

Check further detail on FOREIGN Key Constraint

CHECK Value Constraint

When applied to a column, CHECK Value constraint works like a validation and it is used to
check the validity of the data entered into the particular column of the table. table and uniquely
identifies a row/record in that table. Following is an example to create a CHECK validation on
AGE column which will not accept if its value is below to 18.

CREATE TABLE CUSTOMERS(
[D INT NOT NULL,
AME VARCHAR (20) NOT NULL,
AGE INT NOT NULL CHECK(AGE>=18),

ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

)

Check further detail on CHECK Value Constraint

INDEX Constraint

The INDEX constraints are created to speed up the data retrieval from the database. An Index
can be created by using a single or group of columns in a table. A table can have a single
PRIMARY Key but can have multiple INDEXES. An Index can be Unique or Non Unique based
on requirements. Following is an example to create an Index on Age Column of the
CUSTOMERS table.

CREATE INDEX idx_age ON CUSTOMERS (AGE);

Check further detail on INDEX Constraint

Dropping SQL Constraints

67

https://www.tutorialspoint.com/sql/sql-foreign-key.htm
https://www.tutorialspoint.com/sql/sql-check-constraint.htm
https://www.tutorialspoint.com/sql/sql-index-constraint.htm

Any constraint that you have defined can be dropped using the ALTER TABLE command with
the DROP CONSTRAINT option. For example, to drop the primary key constraint from the
CUSTOMERS table, you can use the following command.

ALTER TABLE CUSTOMERS DROP CONSTRAINT PRIMARY KEY;
Some RDBMS allow you to disable constraints instead of permanently dropping them from the
database, which you may want to temporarily disable the constraints and then enable them later.

Data Integrity Constraints

Data integrity constraints are used to ensure the overall accuracy, completeness, and consistency
of data. Now a days data integrity also refers to the data safety in regard to regulatory
compliance, such as GDPR compliance etc.

Data integrity is handled in a relational database through the concept of referential integrity.
There are many types of integrity constraints that play a role in Referential Integrity (RI).
These constraints include Primary Key, Foreign Key, Unique Constraints and other constraints
which are mentioned above.

Db2 architecture and process overview

On the client side, local or remote applications are linked with the Db2 client library. Local
clients communicate using shared memory and semaphores; remote clients use a protocol, such
as named pipes (NPIPE) or TCP/IP. On the server side, activity is controlled by engine
dispatchable units (EDUs).

68

Clients

Clignt Cliant
application application
‘ I ‘ T DB2 Client
Shared memory and semaphores,
TCPIF, Named pipes, IPX/SPX
DB2 server l ‘
Log buffer l ‘
‘ | | |+__Wrilabg___ Coordinator Coordinator
— requesis agent agent - ------- :
Asyne 110
prefetch requests
reemmmmmne » Subagents Subagents |
| ¥
Victim Comman prefetch
nolificalions g ey ‘ } request queue
¥ ! PMI[‘]
Deadlock
rs
= eckr Prefetchers
Parallel, big-block,

raad fequests

69

EDUs are shown as circles or groups of circles.

EDUs are implemented as threads on all platforms. Db2 agents are the most common type of
EDU. These agents perform most of the SQL and XQuery processing on behalf of applications.
Prefetchers and page cleaners are other common EDUs.

A set of subagents might be assigned to process client application requests. Multiple subagents
can be assigned if the machine on which the server resides has multiple processors or is part of a
partitioned database environment. For example, in a symmetric multiprocessing (SMP)
environment, multiple SMP subagents can exploit multiple processors.

All agents and subagents are managed by a pooling algorithm that minimizes the creation and
destruction of EDUs.

Buffer pools are areas of database server memory where pages of user data, index data, and
catalog data are temporarily moved and can be modified. Buffer pools are a key determinant of
database performance, because data can be accessed much faster from memory than from disk.

The configuration of buffer pools, as well as prefetcher and page cleaner EDUs, controls how
quickly data can be accessed by applications.

Prefetchers retrieve data from disk and move it into a buffer pool before applications need the
data. For example, applications that need to scan through large volumes of data would have to
wait for data to be moved from disk into a buffer pool if there were no data prefetchers. Agents
of the application send asynchronous read-ahead requests to a common prefetch queue. As
prefetchers become available, they implement those requests by using big-block or scatter-read
input operations to bring the requested pages from disk into the buffer pool. If you have multiple
disks for data storage, the data can be striped across those disks. Striping enables the prefetchers
to use multiple disks to retrieve data simultaneously.

Page cleaners move data from a buffer pool back to disk. Page cleaners are background EDUs
that are independent of the application agents. They look for pages that have been modified, and
write those changed pages out to disk. Page cleaners ensure that there is room in the buffer pool
for pages that are being retrieved by prefetchers.

Without the independent prefetchers and page cleaner EDUs, the application agents would have
to do all of the reading and writing of data between a buffer pool and disk storage.

70

MODULE 4

Relational Model in DBMS

E.F. Codd proposed the relational Model to model data in the form of relations or tables. After
designing the conceptual model of the Database using ER diagram, we need to convert the
conceptual model into a relational model which can be implemented using

any RDBMS language like Oracle SQL, MySQL, etc. So we will see what the Relational Model
is.

The relational model uses a collection of tables to represent both data and the relationships
among those data. Each table has multiple columns, and each column has a unique name. Tables
are also known as relations. The relational model is an example of a record-based model.
Record-based models are so named because the database is structured in fixed-format records of
several types. Each table contains records of a particular type. Each record type defines a fixed
number of fields, or attributes. The columns of the table correspond to the attributes of the record
type. The relational data model is the most widely used data model, and a vast majority of
current database systems are based on the relational model.

What is the Relational Model?

The relational model represents how data is stored in Relational Databases. A relational database
consists of a collection of tables, each of which is assigned a unique name. Consider a relation
STUDENT with attributes ROLL NO, NAME, ADDRESS, PHONE, and AGE shown in

the table.

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18
2 RAMESH GURGAON 9652431543 18
3 SUJIT ROHTAK 9156253131 20
4 SURESH DELHI 18

Important Terminologies

e Attribute: Attributes are the properties that define an entity. e.g.; ROLL_NO, NAME,
ADDRESS

e Relation Schema: A relation schema defines the structure of the relation and represents the
name of the relation with its attributes. e.g.; STUDENT (ROLL _NO, NAME, ADDRESS,
PHONE, and AGE) is the relation schema for STUDENT. If a schema has more than 1
relation, it is called Relational Schema.

71

https://www.geeksforgeeks.org/introduction-of-er-model/
https://www.geeksforgeeks.org/difference-between-rdbms-and-dbms/

e Tuple: Each row in the relation is known as a tuple. The above relation contains 4 tuples, one
of which 1s shown as:

1 RAM DELHI 9455123451 18

e Relation Instance: The set of tuples of a relation at a particular instance of time is called a
relation instance. Table 1 shows the relation instance of STUDENT at a particular time. It can
change whenever there is an insertion, deletion, or update in the database.

e Degree: The number of attributes in the relation is known as the degree of the relation.

The STUDENT relation defined above has degree 5.

e Cardinality: The number of tuples in a relation is known as_cardinality.
The STUDENT relation defined above has cardinality 4.

o Column: The column represents the set of values for a particular attribute. The
column ROLL NO is extracted from the relation STUDENT.

ROLL_NO
1
2
3

4

e NULL Values: The value which is not known or unavailable is called a NULL value. It is
represented by blank space. e.g.; PHONE of STUDENT having ROLL NO 4 is NULL.

e Relation Key: These are basically the keys that are used to identify the rows uniquely or also
help in identifying tables. These are of the following types.

e Primary Key
Candidate Key
Super Key
Foreign Key

Alternate Key
e Composite Key

Constraints in Relational Model

While designing the Relational Model, we define some conditions which must hold for data
present in the database are called Constraints. These constraints are checked before performing
any operation (insertion, deletion, and updation) in the database. If there is a violation of any of
the constraints, the operation will fail.

Domain Constraints

These are attribute-level constraints. An attribute can only take values that lie inside the domain
range. e.g.; If a constraint AGE>0 is applied to STUDENT relation, inserting a negative value of
AGE will result in failure.

Key Integrity

72

https://www.geeksforgeeks.org/cardinality-in-dbms/
https://www.geeksforgeeks.org/primary-key-constraint-in-sql/
https://www.geeksforgeeks.org/difference-between-primary-and-candidate-key/
https://www.geeksforgeeks.org/difference-between-super-key-and-candidate-key/
https://www.geeksforgeeks.org/postgresql-foreign-key/
https://www.geeksforgeeks.org/sql-alternate-key/
https://www.geeksforgeeks.org/composite-key-in-sql/

Every relation in the database should have at least one set of attributes that defines a tuple
uniquely. Those set of attributes is called keys. e.g.; ROLL NO in STUDENT is key. No two
students can have the same roll number. So a key has two properties:

e [t should be unique for all tuples.

e [t can’t have NULL values.
Referential Integrity
When one attribute of a relation can only take values from another attribute of the same relation
or any other relation, it is called referential integrity. Let us suppose we have 2 relations
Table Student

ROLL_NO NAME ADDRESS PHONE AGE BRANCH_CODE

1 RAM DELHI 9455123451 18 CS
2 RAMESH GURGAON 9652431543 18 CS
3 SUJIT ROHTAK 9156253131 20 ECE
4 SURESH DELHI 18 IT
Table Branch
BRANCH_CODE BRANCH_NAME
CS COMPUTER SCIENCE
IT INFORMATION
TECHNOLOGY
ELECTRONICS AND
ECE COMMUNICATION
ENGINEERING
Cv CIVIL ENGINEERING

BRANCH_CODE of STUDENT can only take the values which are present in

BRANCH CODE of BRANCH which is called referential integrity constraint. The relation
which is referencing another relation is called REFERENCING RELATION (STUDENT in this
case) and the relation to which other relations refer is called REFERENCED RELATION
(BRANCH in this case).

Anomalies in the Relational Model

An anomaly is an irregularity or something which deviates from the expected or normal state.
When designing databases, we identify three types of anomalies: Insert, Update, and Delete.
Insertion Anomaly in Referencing Relation

We can’t insert a row in REFERENCING RELATION if referencing attribute’s value is not
present in the referenced attribute value. e.g.; Insertion of a student with BRANCH CODE ‘ME’
in STUDENT relation will result in an error because ‘ME’ is not present in BRANCH_CODE of
BRANCH.

Deletion/ Updation Anomaly in Referenced Relation:

73

https://www.geeksforgeeks.org/cascading-referential-integrity-constraints-in-sql-server-management-studio/
https://www.geeksforgeeks.org/anomalies-in-relational-model/

We can’t delete or update a row from REFERENCED RELATION if the value of
REFERENCED ATTRIBUTE is used in the value of REFERENCING ATTRIBUTE. e.g; if we
try to delete a tuple from BRANCH having BRANCH_CODE “CS’, it will result in an error
because ‘CS’ is referenced by BRANCH CODE of STUDENT, but if we try to delete the row
from BRANCH with BRANCH CODE CYV, it will be deleted as the value is not been used by
referencing relation. It can be handled by the following method:
On Delete Cascade
It will delete the tuples from REFERENCING RELATION if the value used by REFERENCING
ATTRIBUTE is deleted from REFERENCED RELATION. e.g.; For, if we delete a row from
BRANCH with BRANCH_CODE ‘CS’, the rows in STUDENT relation with BRANCH CODE
CS (ROLL NO 1 and 2 in this case) will be deleted.
On Update Cascade
It will update the REFERENCING ATTRIBUTE in REFERENCING RELATION if the attribute
value used by REFERENCING ATTRIBUTE is updated in REFERENCED RELATION. e.g;, if
we update a row from BRANCH with BRANCH CODE ‘CS’ to ‘CSE’, the rows in STUDENT
relation with BRANCH_CODE CS (ROLL NO 1 and 2 in this case) will be updated with
BRANCH_CODE ‘CSE".
Super Keys
Any set of attributes that allows us to identify unique rows (tuples) in a given relationship is
known as super keys. Out of these super keys, we can always choose a proper subset among
these that can be used as a primary key. Such keys are known as Candidate keys. If there is a
combination of two or more attributes that are being used as the primary key then we call it a
Composite key.
Codd Rules in Relational Model
Edgar F Codd proposed the relational database model where he stated rules. Now these are
known as Codd’s Rules. For any database to be the perfect one, it has to follow the rules.
For more, refer to Codd Rules in Relational Model.
Advantages of the Relational Model

Simple model: Relational Model is simple and easy to use in comparison to other languages.

Flexible: Relational Model is more flexible than any other relational model present.

Secure: Relational Model is more secure than any other relational model.

Data Accuracy: Data is more accurate in the relational data model.

Data Integrity: The integrity of the data is maintained in the relational model.

Operations can be Applied Easily: It is better to perform operations in the relational model.
Disadvantages of the Relational Model
e Relational Database Model is not very good for large databases.
e Sometimes, it becomes difficult to find the relation between tables.
e Because of the complex structure, the response time for queries is high.

Characteristics of the Relational Model
e Data is represented in rows and columns called relations.
e Data is stored in tables having relationships between them called the Relational model.
e The relational model supports the operations like Data definition, Data manipulation, and
Transaction management.

e FEach column has a distinct name and they are representing attributes.
e FEach row represents a single entity.

74

https://www.geeksforgeeks.org/introduction-of-relational-model-and-codd-rules-in-dbms/

Types of Functional dependencies in DBMS

Prerequisite: Functional dependency and attribute closure

In a relational database management, functional dependency is a concept that specifies the
relationship between two sets of attributes where one attribute determines the value of another
attribute. It is denoted as X — Y, where the attribute set on the left side of the arrow, X is
called Determinant, and Y is called the Dependent.

Functional dependencies are used to mathematically express relations among database entities
and are very important to understand advanced concepts in Relational Database System and
understanding problems in competitive exams like Gate.

Example:

nam dept_nam dept_buildin

roll no e e g

42 abc CO A4
43 pqr IT A3
44 xyz CO A4
45 xyz IT A3
46 mno EC B2
47 jkl ME B2

From the above table we can conclude some valid functional dependencies:
roll no — { name, dept name, dept building },— Here, roll no can determine values of
fields name, dept name and dept building, hence a valid Functional dependency
roll_ no — dept name, Since, roll_no can determine whole set of {name, dept name,
dept building}, it can determine its subset dept name also.

75

https://www.geeksforgeeks.org/functional-dependency-and-attribute-closure/

e dept name — dept building, Dept name can identify the dept building accurately, since
departments with different dept name will also have a different dept building
e More valid functional dependencies: roll no — name, {roll no, name} > {dept name,
dept building}, etc.
Here are some invalid functional dependencies:
e name — dept name Students with the same name can have different dept name, hence this is
not a valid functional dependency.
e dept building — dept name There can be multiple departments in the same building.
Example, in the above table departments ME and EC are in the same building B2, hence
dept building — dept name is an invalid functional dependency.
e More invalid functional dependencies: name — roll no, {name, dept name} — roll no,
dept building — roll no, etc.
Armstrong’s axioms/properties of functional dependencies:
1. Reflexivity: If Y is a subset of X, then X—Y holds by reflexivity rule
Example, {roll no, name} — name is valid.
2. Augmentation: If X — Y is a valid dependency, then XZ — YZ is also valid by the
augmentation rule.
Example, {roll no, name} — dept building is valid, hence {roll no, name, dept name} —
{dept_building, dept name} is also valid.
3. Transitivity: [f X — Y and Y — Z are both valid dependencies, then X—Z is also valid by the
Transitivity rule.
Example, roll no — dept name & dept name — dept building, then roll no — dept building
is also valid.
Types of Functional Dependencies in DBMS
1. Trivial functional dependency
2. Non-Trivial functional dependency
3. Multivalued functional dependency
4. Transitive functional dependency
1. Trivial Functional Dependency

In Trivial Functional Dependency, a dependent is always a subset of the determinant. i.e. If X
— Y and Y is the subset of X, then it is called trivial functional dependency
Example:

nam
roll_no e age

42 abc 17

43 pqr 18

44 xyz 18

76

Here, {roll_no, name} — name is a trivial functional dependency, since the dependent name is
a subset of determinant set {roll_no, name}. Similarly, roll_no — roll_no is also an example of
trivial functional dependency.

2. Non-trivial Functional Dependency

In Non-trivial functional dependency, the dependent is strictly not a subset of the determinant.
ie. [f X — Y and Y is not a subset of X, then it is called Non-trivial functional dependency.
Example:

nam
roll no e age

42 abc 17

43 pqr 18

44 xyz 18

Here, roll_no — name is a non-trivial functional dependency, since the dependent name is not a
subset of determinant roll_no. Similarly, {roll_no, name} — age is also a non-trivial functional
dependency, since age is not a subset of {roll_no, name}

3. Multivalued Functional Dependency

In Multivalued functional dependency, entities of the dependent set are not dependent on
each other. i.e. If a — {b, ¢} and there exists no functional dependency between b and c, then
it is called a multivalued functional dependency.

For example,

nam
roll no e age

42 abc 17

43 pqr 18

44 xyz 18

45 abc 19

Here, roll_no — {name, age} is a multivalued functional dependency, since the
dependents name & age are not dependent on each other(i.e. name — age or age — name
doesn’t exist !)

77

4. Transitive Functional Dependency

In transitive functional dependency, dependent is indirectly dependent on determinant. i.e. If a —
b & b — ¢, then according to axiom of transitivity, a — ¢. This is a transitive functional
dependency.

For example,

enrol n nam building n
0 e dept o

42 abc g 4

43 pqr EC 2

44 xyz IT 1

45 abc EC 2

Here, enrol_no — dept and dept — building_no. Hence, according to the axiom of
transitivity, enrol_no — building no is a valid functional dependency. This is an indirect
functional dependency, hence called Transitive functional dependency.

5. Fully Functional Dependency

In full functional dependency an attribute or a set of attributes uniquely determines another
attribute or set of attributes. If a relation R has attributes X, Y, Z with the dependencies X->Y
and X->Z which states that those dependencies are fully functional.

6. Partial Functional Dependency

In partial functional dependency a non key attribute depends on a part of the composite key,
rather than the whole key. If a relation R has attributes X, Y, Z where X and Y are the composite
key and Z is non key attribute. Then X->Z is a partial functional dependency in RBDMS.

Advantages of Functional Dependencies
Functional dependencies having numerous applications in the field of database management
system. Here are some applications listed below:

1. Data Normalization

Data normalization is the process of organizing data in a database in order to minimize
redundancy and increase data integrity. Functional dependencies play an important part in data
normalization. With the help of functional dependencies we are able to identify the primary key,
candidate key in a table which in turns helps in normalization.

2. Query Optimization

78

With the help of functional dependencies we are able to decide the connectivity between the
tables and the necessary attributes need to be projected to retrieve the required data from the
tables. This helps in query optimization and improves performance.

3. Consistency of Data

Functional dependencies ensures the consistency of the data by removing any redundancies or
inconsistencies that may exist in the data. Functional dependency ensures that the changes made
in one attribute does not affect inconsistency in another set of attributes thus it maintains the
consistency of the data in database.

4. Data Quality Improvement

Functional dependencies ensure that the data in the database to be accurate, complete and
updated. This helps to improve the overall quality of the data, as well as it eliminates errors and
inaccuracies that might occur during data analysis and decision making, thus functional
dependency helps in improving the quality of data in database.

Conclusion

Functional dependency is very important concept in database management system for ensuring
the data consistency and accuracy. In this article we have discuss what is the concept behind
functional dependencies and why they are important. The valid and invalid functional
dependencies and the types of most important functional dependencies in RDBMS. We have also
discussed about the advantages of FDs.

For more details you can refer Database Normalization and_Difference between Fully and Partial
Functional Dependency articles.

Types of Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)

Keys are one of the basic requirements of a relational database model. It is widely used to
identify the tuples(rows) uniquely in the table. We also use keys to set up relations amongst
various columns and tables of a relational database.

Different Types of Database Keys

79

https://www.geeksforgeeks.org/introduction-of-database-normalization/
https://www.geeksforgeeks.org/differentiate-between-partial-dependency-and-fully-functional-dependency/
https://www.geeksforgeeks.org/differentiate-between-partial-dependency-and-fully-functional-dependency/

Candidate Key
Primary Key
Super Key
Alternate Key
Foreign Key
Composite Key
Candidate Key
The minimal set of attributes that can uniquely identify a tuple is known as a candidate key. For
Example, STUD NO in STUDENT relation.
It is a minimal super key.
It is a super key with no repeated data is called a candidate key.
The minimal set of attributes that can uniquely identify a record.
It must contain unique values.
It can contain NULL values.
Every table must have at least a single candidate key.
A table can have multiple candidate keys but only one primary key.
The value of the Candidate Key is unique and may be null for a tuple.
There can be more than one candidate key in a relationship.
Example:
STUD NO is the candidate key for relation STUDENT.
Table STUDENT

STUD_NO SNAME ADDRESSPHONE

1 Shyam Delhi 123456789
2 Rakesh Kolkata 223365796
3 Suraj Delhi 175468965

The candidate key can be simple (having only one attribute) or composite as well.
Example:
{STUD_NO, COURSE NO} is a composite
candidate key for relation STUDENT COURSE.
Table STUDENT COURSE

TEACHER N
STUD NO O COURSE_NO
1 001 C001
2 056 C005

Note: In_SQL Server a unique constraint that has a nullable column, allows the value ‘null‘ in
that column only once. That’s why the STUD PHONE attribute is a candidate here, but can not
be a ‘null’ value in the primary key attribute.

Primary Key

There can be more than one candidate key in relation out of which one can be chosen as the
primary key. For Example, STUD NO, as well as STUD PHONE, are candidate keys for

80

https://www.geeksforgeeks.org/sql-tutorial/

relation STUDENT but STUD NO can be chosen as the primary key (only one out of many
candidate keys).
It is a unique key.
It can identify only one tuple (a record) at a time.
It has no duplicate values, it has unique values.
It cannot be NULL.
Primary keys are not necessarily to be a single column; more than one column can also be a
primary key for a table.
Example:
STUDENT table -> Student(STUD_NO, SNAME,
ADDRESS, PHONE) , STUD NO is a primary key
Table STUDENT

STUD_NO SNAME ADDRESSPHONE

1 Shyam Delhi 123456789
2 Rakesh Kolkata 223365796
3 Suraj Delhi 175468965
Super Key

The set of attributes that can uniquely identify a tuple is known as Super Key. For Example,
STUD_ NO, (STUD_NO, STUD NAME), etc. A super key is a group of single or multiple keys
that identifies rows in a table. It supports NULL values.

e Adding zero or more attributes to the candidate key generates the super key.

e A candidate key is a super key but vice versa is not true.

e Super Key values may also be NULL.
Example:
Consider the table shown above.
STUD NO+PHONE is a super key.

Super Key

Candidate Key

81

https://www.geeksforgeeks.org/primary-key-in-dbms/

Relation between Primary Key, Candidate Key, and Super Key

Alternate Key

The candidate key other than the primary key is called an alternate key.
All the keys which are not primary keys are called alternate keys.
It is a secondary key.
It contains two or more fields to identify two or more records.
These values are repeated.
Eg:- SNAME, and ADDRESS is Alternate keys

Example:

Consider the table shown above.

STUD_ NO, as well as PHONE both,

are candidate keys for relation STUDENT but

PHONE will be an alternate key

(only one out of many candidate keys).

Candidate Key

I
! | 1

StudiID Roll No. First Name Last Name Email
1 2] Tom Cox abc@gfg.org
2 22 John Butler xyz@gfg.org
\ 3 23 Alice Peterson | mno@gfg.org |

I l I

Primary Key

Alternate Key

Primary Key, Candidate Key, and Alternate Key

Foreign Key
If an attribute can only take the values which are present as values of some other attribute, it will
be a foreign key to the attribute to which it refers. The relation which is being referenced is
called referenced relation and the corresponding attribute is called referenced attribute. The
referenced attribute of the referenced relation should be the primary key to it.

It is a key it acts as a primary key in one table and it acts as

secondary key in another table.

It combines two or more relations (tables) at a time.

They act as a cross-reference between the tables.

For example, DNO is a primary key in the DEPT table and a non-key in EMP

Example:

82

https://www.geeksforgeeks.org/sql-alternate-key/
https://www.geeksforgeeks.org/foreign-key-constraint-in-sql/

Refer Table STUDENT shown above.

STUD_NO in STUDENT COURSE is a

foreign key to STUD_NO in STUDENT relation.
Table STUDENT COURSE

TEACHER N
STUD NO O COURSE_NO
1 005 C001
2 056 C005

It may be worth noting that, unlike the Primary Key of any given relation, Foreign Key can be
NULL as well as may contain duplicate tuples i.e. it need not follow uniqueness constraint. For
Example, STUD NO in the STUDENT COURSE relation is not unique. It has been repeated for
the first and third tuples. However, the STUD NO in STUDENT relation is a primary key and it

needs to be always unique, and it cannot be null.

Primary Key Foreign Key
&
| | |

2041 Tom Java 2041 65
2204 John C++ 2204 55
2043 Alice Python 2043 73
2032 Bob Oracle 2032 62
Student Details Student Marks

Relation between Primary Key and Foreign Key

Composite Key

Sometimes, a table might not have a single column/attribute that uniquely identifies all the
records of a table. To uniquely identify rows of a table, a combination of two or more
columns/attributes can be used. It still can give duplicate values in rare cases. So, we need to
find the optimal set of attributes that can uniquely identify rows in a table.

It acts as a primary key if there is no primary key in a table

Two or more attributes are used together to make a composite key.

Different combinations of attributes may give different accuracy in terms of identifying the

rows uniquely.

83

https://www.geeksforgeeks.org/composite-key-in-sql/

Example:

FULLNAME + DOB can be combined
together to access the details of a student.

Candidate Key Foreign Key

Table1 |

EmpID Emp Name EmpLicence EmpPassport

!

!

Table 2

Designation

001 Tom EL101 PAI23 BPO

005 John EL102 PAI25 Account

008 Alice EL103 PAI29 IT
Primary Key |

Alternate Key Primary Key Candidate Key Alternate Key

| |
'

SuperKey

Unique Key

Different Types of Keys

Conclusion

In conclusion, the relational model makes use of a number of keys: Candidate keys allow for
distinct identification, the Primary key serves as the chosen identifier, Alternate keys offer other
choices, and Foreign keys create vital linkages that guarantee data integrity between tables. The
creation of strong and effective relational databases requires the thoughtful application of these
keys.

Boyce-Codd Normal Form (BCNF)

First Normal Form, Second Normal Form, Third Normal Form

84

https://www.geeksforgeeks.org/first-normal-form-1nf/
https://www.geeksforgeeks.org/second-normal-form-2nf/
https://www.geeksforgeeks.org/third-normal-form-3nf/

Application of the general definitions of 2NF and 3NF may identify additional redundancy
caused by dependencies that violate one or more candidate keys. However, despite these
additional constraints, dependencies can still exist that will cause redundancy to be present in
3NF relations. This weakness in 3NF resulted in the presentation of a stronger normal form
called the Boyce-Codd Normal Form (Codd, 1974).

Although, 3NF is an adequate normal form for relational databases, still, this (3NF) normal form
may not remove 100% redundancy because of X—Y functional dependency if X is not a
candidate key of the given relation. This can be solved by Boyce-Codd Normal Form (BCNF).
Boyce-Codd Normal Form (BCNF)

Boyce—Codd Normal Form (BCNF) is based on functional dependencies that take into account
all candidate keys in a relation; however, BCNF also has additional constraints compared with
the general definition of 3NF.

Rules for BCNF

Rule 1: The table should be in the 3rd Normal Form.

Rule 2: X should be a superkey for every functional dependency (FD) X—>Y in a given relation.

Note: To test whether a relation is in BCNF, we identify all the determinants and make sure that
they are candidate keys.

You came across a similar hierarchy known as the Chomsky Normal Form in the Theory of
Computation. Now, carefully study the hierarchy above. It can be inferred that every relation in
BCNEF is also in 3NF. To put it another way, a relation in 3NF need not be in BCNF. Ponder
over this statement for a while.

To determine the highest normal form of a given relation R with functional dependencies, the
first step is to check whether the BCNF condition holds. If R is found to be in BCNF, it can be
safely deduced that the relation is also in 3NF, 2NF, and 1NF as the hierarchy shows. The 1NF
has the least restrictive constraint — it only requires a relation R to have atomic values in each
tuple. The 2NF has a slightly more restrictive constraint.

The 3NF has a more restrictive constraint than the first two normal forms but is less restrictive
than the BCNF. In this manner, the restriction increases as we traverse down the hierarchy.

Examples
Here, we are going to discuss some basic examples which let you understand the properties of
BCNF. We will discuss multiple examples here.

Example 1
Let us consider the student database, in which data of the student are mentioned.

Branch_Numbe Stu_Course N

Stu ID Stu Branch Stu_Course r 0

11 omputer Science & DBMS B 001 201
Engineering -

101 Corr}pute'lr Science & Computer B 001 202
Engineering Networks -

85

https://www.geeksforgeeks.org/types-of-functional-dependencies-in-dbms/
https://www.geeksforgeeks.org/functional-dependency-and-attribute-closure/
https://www.geeksforgeeks.org/third-normal-form-3nf/
https://www.geeksforgeeks.org/second-normal-form-2nf/
https://www.geeksforgeeks.org/first-normal-form-1nf/

Branch_Numbe Stu_Course N
Stu_ID Stu_Branch Stu_Course r 0

jop Blectromics& Gy g rechnology B 003 401
Communication Engineering

1op Electronics & . |Mobile B 003 402
Communication Engineering ~ Communication -

Functional Dependency of the above is as mentioned:
Stu_ID —> Stu_Branch
Stu_Course —> {Branch Number, Stu_Course No}

Candidate Keys of the above table are: {Stu_ID, Stu_Course}

Why this Table is Not in BCNF?

The table present above is not in BCNF, because as we can see that neither Stu_ID nor
Stu_Course is a Super Key. As the rules mentioned above clearly tell that for a table to be in
BCNEF, it must follow the property that for functional dependency X—>Y, X must be in Super
Key and here this property fails, that’s why this table is not in BCNF.

How to Satisfy BCNF?

For satisfying this table in BCNF, we have to decompose it into further tables. Here is the full
procedure through which we transform this table into BCNF. Let us first divide this main table
into two tables Stu_Branch and Stu_Course Table.

Stu Branch Table

Stu_ID Stu_Branch
101 Computer Science & Engineering

Electronics & Communication
Engineering

Candidate Key for this table: Stu_ID.
Stu_Course Table

102

Branch_Numbe Stu_Course N

Stu_Course r 0

DBMS B 001 201
Computer Networks B 001 202
VLSI Technology B 003 401
1(\?/Ic?rlr)llrlneunication B_003 402

Candidate Key for this table: Stu_Course.
Stu_ID to Stu_Course No Table

86

Stu_Course N

Stu ID o
101 201
101 202
102 401
102 402

Candidate Key for this table: {Stu_ID, Stu_Course_No}.
After decomposing into further tables, now it is in BCNF, as it is passing the condition of Super
Key, that in functional dependency X—>Y, X is a Super Key.

Example 2

Find the highest normal form of a relation R(A, B, C, D, E) with FD set as:
{ BC->D, AC->BE, B->E }

Explanation:

e Step-1: As we can see, (AC)+ ={A, C, B, E, D} but none of its subsets can determine all
attributes of the relation, So AC will be the candidate key. A or C can’t be derived from any
other attribute of the relation, so there will be only 1 candidate key {AC}.

e Step-2: Prime attributes are those attributes that are part of candidate key {A, C} in this
example and others will be non-prime {B, D, E} in this example.

e Step-3: The relation R is in 1st normal form as a relational DBMS does not allow multi-valued
or composite attributes.

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC is not a proper
subset of candidate key AC) and AC->BE is in 2nd normal form (AC is candidate key) and B->E
is in 2nd normal form (B is not a proper subset of candidate key AC).

The relation is not in 3rd normal form because in BC->D (neither BC is a super key nor D is a
prime attribute) and in B->E (neither B is a super key nor E is a prime attribute) but to satisfy 3rd
normal for, either LHS of an FD should be super key or RHS should be a prime attribute. So the
highest normal form of relation will be the 2nd Normal form.

Note: A prime attribute cannot be transitively dependent on a key in BCNF relation.

Consider these functional dependencies of some relation R

AB ->C

C->B
AB ->B

Suppose, it is known that the only candidate key of R is AB. A careful observation is required to
conclude that the above dependency is a Transitive Dependency as the prime attribute B
transitively depends on the key AB through C. Now, the first and the third FD are in BCNF as
they both contain the candidate key (or simply KEY) on their left sides. The second dependency,
however, is not in BCNF but is definitely in 3NF due to the presence of the prime attribute on the
right side. So, the highest normal form of R is 3NF as all three FDs satisfy the necessary
conditions to be in 3NF.

87

Example 3

For example consider relation R(A, B, C)

A > BC,

B->A

A and B both are super keys so the above relation is in BCNF.

Note: BCNF decomposition may always not be possible with dependency preserving, however,
it always satisfies the lossless join condition. For example, relation R (V, W, X, Y, Z), with
functional dependencies:

V,W->X

Y, Z->X
W->Y

[t would not satisfy dependency preserving BCNF decomposition.

Introduction of 4th and 5th Normal Form in DBMS

Two of the highest levels of database normalization are the fourth normal form (4NF) and the
fifth normal form (SNF). Multivalued dependencies are handled by 4NF, whereas join
dependencies are handled by SNF.

If two or more independent relations are kept in a single relation or we can say multivalue
dependency occurs when the presence of one or more rows in a table implies the presence of one
or more other rows in that same table. Put another way, two attributes (or columns) in a table are
independent of one another, but both depend on a third attribute. A multivalued

dependency always requires at least three attributes because it consists of at least two attributes
that are dependent on a third.

For a dependency A -> B, if for a single value of A, multiple values of B exist, then the table
may have a multi-valued dependency. The table should have at least 3 attributes and B and C
should be independent for A ->> B multivalued dependency.

Example:
Person Mobile Food_Likes

Mahesh 9893/9424 Burger/Pizza

Ramesh 9191 Pizza

88

https://www.geeksforgeeks.org/data-base-dependency-preserving-decomposition/
https://www.geeksforgeeks.org/database-management-system-lossless-decomposition/

Person Mobile Food_Likes

Person->-> mobile,

Person ->-> food_likes

This is read as “person multi determines mobile” and “person multi determines food likes.”
Note that a functional dependency is a special case of multivalued dependency. In a functional
dependency X ->Y, every x determines exactly one y, never more than one.

Fourth Normal Form (4NF)

The Fourth Normal Form (4NF) is a level of database normalization where there are no
non-trivial multivalued dependencies other than a candidate key. It builds on the first three
normal forms (1NF, 2NF, and 3NF) and the Boyce-Codd Normal Form (BCNF). It states that, in
addition to a database meeting the requirements of BCNF, it must not contain more than one
multivalued dependency.

Properties

A relation R is in 4NF if and only if the following conditions are satistied:

1. It should be in the Boyce-Codd Normal Form (BCNF).

2. The table should not have any Multi-valued Dependency.

A table with a multivalued dependency violates the normalization standard of the Fourth Normal
Form (4NF) because it creates unnecessary redundancies and can contribute to inconsistent data.
To bring this up to 4NF, it is necessary to break this information into two tables.

Example: Consider the database table of a class that has two relations R1 contains student
ID(SID) and student name (SNAME) and R2 contains course 1d(CID) and course name
(CNAME).

Table R1

SID SNAME

SI A
S2 B

Table R2

CNAM
CID E

Cl C

C2 D

When their cross-product is done it resulted in multivalued dependencies.
Table R1 X R2

89

https://www.geeksforgeeks.org/boyce-codd-normal-form-bcnf/

CI CNAM
SID SNAME D E

C

SI A) C
C

SI A) D

S2 B (lj C
C

S2 B) D

Multivalued dependencies (MVD) are:

SID->->CID; SID->->CNAME; SNAME->->CNAME

Join Dependency

Join decomposition is a further generalization of Multivalued dependencies. If the join of R1 and
R2 over C is equal to relation R then we can say that a join dependency (JD) exists, where R1
and R2 are the decomposition R1(A, B, C) and R2(C, D) of a given relations R (A, B, C, D).
Alternatively, R1 and R2 are a lossless decomposition of R. A JD = {R1, R2, ..., Rn} is said to
hold over a relation R if R1, R2,, Rn is a lossless-join decomposition. The *(A, B, C, D), (C,
D) will be a JD of R if the join of joins attribute is equal to the relation R. Here, *(R1, R2, R3) is
used to indicate that relation R1, R2, R3 and so on are a JD of R. Let R is a relation schema R1,
R2,R3........ Rn be the decomposition of R. r(R)) is said to satisfy join dependency if and only if

w1 £33 (r)=r
Joint Dependency

Example:
Table R1

Company Product

C1 Pendrive
Cl mic

C2 speaker
C2 speaker

Company->->Product
Table R2

Agent Company

Aman Cl1

90

Agent Company

Aman C2
Moha Cl
n

Agent->->Company
Table R3

Agent Product

Aman Pendrive
Aman Mic
Aman speaker

Moha

speaker
n p

Agent->->Product
Table R1<R2~R3

Company Product Agent

Cl Pendrive
Cl mic

C2 speaker
Cl1 speaker

Agent->->Product

Aman
Aman
speaker

Aman

Fifth Normal Form/Projected Normal Form (SNF)

A relation R is in Fifth Normal Form if and only if everyone joins dependency in R is implied by
the candidate keys of R. A relation decomposed into two relations must have lossless

Join Property, which ensures that no spurious or extra tuples are generated when relations are
reunited through a natural join.

Properties

A relation R is in SNF if and only if it satisfies the following conditions:

1. R should be already in 4NF.

2. It cannot be further non loss decomposed (join dependency).

Example — Consider the above schema, with a case as “if a company makes a product and an
agent is an agent for that company, then he always sells that product for the company”. Under
these circumstances, the ACP table is shown as:

Table ACP

91

https://www.geeksforgeeks.org/difference-between-4nf-and-5nf/
https://www.geeksforgeeks.org/lossless-join-and-dependency-preserving-decomposition/
https://www.geeksforgeeks.org/lossless-join-and-dependency-preserving-decomposition/

Agent Company Product

Al PQR Nut
Al PQR Bolt
Al XYZ Nut
Al XYZ Bolt
A2 PQR Nut

The relation ACP is again decomposed into 3 relations. Now, the natural Join of all three
relations will be shown as:
Table R1

Agent Company

Al PQR
Al XYZ
A2 PQR
Table R2

Agent Product

Al Nut
Al Bolt
A2 Nut
Table R3

Company Product

PQR Nut
PQR Bolt
XYZ Nut
XYZ Bolt

The result of the Natural Join of R1 and R3 over ‘Company’ and then the Natural Join of R13
and R2 over ‘Agent’and ‘Product’ will be Table ACP.

Hence, in this example, all the redundancies are eliminated, and the decomposition of ACP is a
lossless join decomposition. Therefore, the relation is in SNF as it does not violate the property

of lossless join.
Conclusion

92

https://www.geeksforgeeks.org/difference-between-natural-join-and-inner-join-in-sql/
https://www.geeksforgeeks.org/database-management-system-lossless-decomposition/

e Multivalued dependencies are removed by 4NF, and join dependencies are removed by SNF.

e The greatest degrees of database normalization, 4NF and 5SNF, might not be required for every
application.

e Normalizing to 4NF and SNF might result in more complicated_database structures and slower
query speed, but it can also increase data accuracy, dependability, and simplicity.

MODULE 5

Indexing in Databases

Indexing improves database performance by minimizing the number of disc visits required to
fulfill a query. It is a data structure technique used to locate and quickly access data in databases.
Several database fields are used to generate indexes. The main key or candidate key of the table

93

https://www.geeksforgeeks.org/what-is-database/

is duplicated in the first column, which is the Search key. To speed up data retrieval, the values
are also kept in sorted order. It should be highlighted that sorting the data is not required. The
second column is the Data Reference or Pointer which contains a set of pointers holding the
address of the disk block where that particular key value can be found.

(w

Structure of an Index in Database

Search Key Data Reference

Key Value

A Singlé Index

Attributes of Indexing

Access Types: This refers to the type of access such as value-based search, range access, etc.
Access Time: It refers to the time needed to find a particular data element or set of elements.
Insertion Time: It refers to the time taken to find the appropriate space and insert new data.
Deletion Time: Time taken to find an item and delete it as well as update the index structure.
Space Overhead: It refers to the additional space required by the index.

94

Indexing

|
R |

| Primary Indexing | -.Secundan_.r Indexing | Clustering Indexing |

Lo

Dense i Sparse |

In general, there are two types of file organization mechanisms that are followed by the indexing

methods to store the data:

Sequential File Organization or Ordered Index File
In this, the indices are based on a sorted ordering of the values. These are generally fast and a
more traditional type of storing mechanism. These Ordered or Sequential file organizations

might store the data in a dense or sparse format.

e Dense Index
e For every search key value in the data file, there is an index record.

e This record contains the search key and also a reference to the first data record
with that search key value.

95

Dense Index

4"? For every search
value in a Data File,

There Is an
Index Record.

Hence the name
Dense Index.

|Gy M| mM|O|C|00| >

Data File Index Record oG }

Sparse Index

The index record appears only for a few items in the data file. Each item points to
a block as shown.

To locate a record, we find the index record with the largest search key value less
than or equal to the search key value we are looking for.

We start at that record pointed to by the index record, and proceed along with the
pointers in the file (that is, sequentially) until we find the desired record.

Number of Accesses required=logz(n)+1, (here n=number of blocks acquired by
index file)

96

Sparse Index

For very few
search value
in a Data File,

%

There is an
Index Record.

I . > Hence the name
—

Sparse Index.

| Data File Index Record oG :

m|m (i o

TIOmMmmMmoiO|m|>x

Sparse Index

Hash File Organization

Indices are based on the values being distributed uniformly across a range of buckets. The
buckets to which a value is assigned are determined by a function called a hash function. There
are primarily three methods of indexing:

e Clustered Indexing: When more than two records are stored in the same file this type of
storing is known as cluster indexing. By using cluster indexing we can reduce the cost of
searching reason being multiple records related to the same thing are stored in one place and it
also gives the frequent joining of more than two tables (records).

The clustering index is defined on an ordered data file. The data file is ordered on a non-key
field. In some cases, the index is created on non-primary key columns which may not be
unique for each record. In such cases, in order to identify the records faster, we will group two
or more columns together to get the unique values and create an index out of them. This
method is known as the clustering index. Essentially, records with similar properties are
grouped together, and indexes for these groupings are formed.

Students studying each semester, for example, are grouped together. First-semester students,
second-semester students, third-semester students, and so on are categorized.

97

Clustered Indexing

e Primary Indexing: This is a type of Clustered Indexing wherein the data is sorted according
to the search key and the primary key of the database table is used to create the index. It is a
default format of indexing where it induces sequential file organization. As primary keys are
unique and are stored in a sorted manner, the performance of the searching operation is quite
efficient.

e Non-clustered or Secondary Indexing: A non-clustered index just tells us where the data lies,
1.e. it gives us a list of virtual pointers or references to the location where the data is actually
stored. Data is not physically stored in the order of the index. Instead, data is present in leaf
nodes. For eg. the contents page of a book. Each entry gives us the page number or location of
the information stored. The actual data here(information on each page of the book) is not
organized but we have an ordered reference(contents page) to where the data points actually
lie. We can have only dense ordering in the non-clustered index as sparse ordering is not
possible because data is not physically organized accordingly.

It requires more time as compared to the clustered index because some amount of extra work is
done in order to extract the data by further following the pointer. In the case of a clustered
index, data is directly present in front of the index.

. _ Search | Attr
Search Pointer 1202 Key
' Key Alice
Alice 1202 Adrian
- T Ben 1203
Search Pointer . Search Attr
Key Bethany @ 1204 1202 Key
Alice 1102 1102 Ben
Bob 1103 Search | Pointer "
| | Keyr el Benjamin
Christie | 1104 : i !
Billie 1500
Root Node | | - Koy |
| Bob 1501 d
Charlie | 1502 Bethany |
' 1103 1204 BeW
Intermediate
Nodes Leaf Nodes

Non clustered index

98

https://www.geeksforgeeks.org/difference-between-sequential-indexed-and-relative-files-in-cobol/

Non Clustered Indexing

Multilevel Indexing: With the growth of the size of the database, indices also grow. As the
index is stored in the main memory, a single-level index might become too large a size to store
with multiple disk accesses. The multilevel indexing segregates the main block into various
smaller blocks so that the same can be stored in a single block. The outer blocks are divided
into inner blocks which in turn are pointed to the data blocks. This can be easily stored in the
main memory with fewer overheads.

Outer Blocks

Multilevel Indexing

Advantages of Indexing

i

-
=i

|

— . —
N

B

Inner Blocks

i
T

|

99

5
5
o

Improved Query Performance: Indexing enables faster data retrieval from the database. The
database may rapidly discover rows that match a specific value or collection of values by
generating an index on a column, minimizing the amount of time it takes to perform a query.
Efficient Data Access: Indexing can enhance data access efficiency by lowering the amount
of disk I/O required to retrieve data. The database can maintain the data pages for frequently
visited columns in memory by generating an index on those columns, decreasing the
requirement to read from disk.
Optimized Data Sorting: Indexing can also improve the performance of sorting operations.
By creating an index on the columns used for sorting, the database can avoid sorting the entire
table and instead sort only the relevant rows.
Consistent Data Performance: Indexing can assist ensure that the database performs
consistently even as the amount of data in the database rises. Without indexing, queries may
take longer to run as the number of rows in the table grows, while indexing maintains a
roughly consistent speed.
By ensuring that only unique values are inserted into columns that have been indexed as
unique, indexing can also be utilized to ensure the integrity of data. This avoids storing
duplicate data in the database, which might lead to issues when performing queries or reports.
Overall, indexing in databases provides significant benefits for improving query performance,
efficient data access, optimized data sorting, consistent data performance, and enforced data
integrity
Disadvantages of Indexing
Indexing necessitates more storage space to hold the index data structure, which might
increase the total size of the database.
Increased database maintenance overhead: Indexes must be maintained as data is added,
destroyed, or modified in the table, which might raise database maintenance overhead.
Indexing can reduce insert and update performance since the index data structure must be
updated each time data is modified.
Choosing an index can be difficult: It can be challenging to choose the right indexes for a
specific query or application and may call for a detailed examination of the data and access
patterns.
Features of Indexing
The development of data structures, such as B-trees or hash tables, that provide quick access to
certain data items is known as indexing. The data structures themselves are built on the values
of the indexed columns, which are utilized to quickly find the data objects.
The most important columns for indexing columns are selected based on how frequently they
are used and the sorts of queries they are subjected to. The cardinality, selectivity, and
uniqueness of the indexing columns can be taken into account.
There are several different index types used by databases, including primary, secondary,
clustered, and non-clustered indexes. Based on the particular needs of the database system,
each form of index offers benefits and drawbacks.
For the database system to function at its best, periodic index maintenance is required.
According to changes in the data and usage patterns, maintenance work involves building,
updating, and removing indexes.
Database query optimization involves indexing, which is essential. The query optimizer
utilizes the indexes to choose the best execution strategy for a particular query based on the
cost of accessing the data and the selectivity of the indexing columns.

100

https://www.geeksforgeeks.org/introduction-of-b-tree-2/
https://www.geeksforgeeks.org/hashing-data-structure/
https://www.geeksforgeeks.org/cardinality-in-dbms/

e Databases make use of a range of indexing strategies, including covering indexes, index-only
scans, and partial indexes. These techniques maximize the utilization of indexes for particular
types of queries and data access.

e When non-contiguous data blocks are stored in an index, it can result in index fragmentation,
which makes the index less effective. Regular index maintenance, such as defragmentation and
reorganization, can decrease fragmentation.

Conclusion

Indexing is a very useful technique that helps in optimizing the search time in database queries.
The table of database indexing consists of a search key and pointer. There are four types of
indexing: Primary, Secondary Clustering, and Multivalued Indexing. Primary indexing is divided
into two types, dense and sparse. Dense indexing is used when the index table contains records
for every search key. Sparse indexing is used when the index table does not use a search key for
every record. Multilevel indexing uses B+ Tree. The main purpose of indexing is to provide
better performance for data retrieval.

Storage Types in DBMS

The records in databases are stored in file formats. Physically, the data is stored in
electromagnetic format on a device. The electromagnetic devices used in database systems for
data storage are classified as follows:

1. Primary Memory

2. Secondary Memory

3. Tertiary Memory

101

https://www.geeksforgeeks.org/difference-between-internal-and-external-fragmentation/
https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/c-pointers/
https://www.geeksforgeeks.org/introduction-of-b-tree/

Primary Memory

s ™

High Secondary Memory High
Capacity| |) Speed

Tertiary Memory

Types of Memory

1. Primary Memory

The primary memory of a server is the type of data storage that is directly accessible by the
central processing unit, meaning that it doesn’t require any other devices to read from it.
The primary memory must, in general, function flawlessly with equal contributions from the
electric power supply, the hardware backup system, the supporting devices, the coolant that
moderates the system temperature, etc.

e The size of these devices is considerably smaller and they are volatile.

e According to performance and speed, the primary memory devices are the fastest devices, and
this feature is in direct correlation with their capacity.

e These primary memory devices are usually more expensive due to their increased speed and
performance.

The cache is one of the types of Primary Memory.

e (Cache Memory: Cache Memory is a special very high-speed memory. It is used to speed up
and synchronize with a high-speed CPU. Cache memory is costlier than main memory or disk
memory but more economical than CPU registers. Cache memory is an extremely fast memory
type that acts as a buffer between RAM and the CPU.

2. Secondary Memory
Data storage devices known as secondary storage, as the name suggests, are devices that can be
accessed for storing data that will be needed at a later point in time for various purposes or

102

https://www.geeksforgeeks.org/primary-memory/
https://www.geeksforgeeks.org/cache-memory/
https://www.geeksforgeeks.org/secondary-memory/

database actions. Therefore, these types of storage systems are sometimes called backup units as
well. Devices that are plugged or connected externally fall under this memory category, unlike
primary memory, which is part of the CPU. The size of this group of devices is noticeably larger
than the primary devices and smaller than the tertiary devices.

e [tis also regarded as a temporary storage system since it can hold data when needed and delete
it when the user is done with it. Compared to primary storage devices as well as tertiary
devices, these secondary storage devices are slower with respect to actions and pace.

e [t usually has a higher capacity than primary storage systems, but it changes with the
technological world, which is expanding every day.

Some commonly used Secondary Memory types that are present in almost every system are:

e Flash Memory: Flash memory, also known as flash storage, is a type of nonvolatile memory
that erases data in units called blocks and rewrites data at the byte level. Flash memory is
widely used for storage and data transfer in consumer devices, enterprise systems, and
industrial applications. Unlike traditional hard drives, flash memories are able to retain data
even after the power has been turned off

e Magnetic Disk Storage: A Magnetic Disk is a type of secondary memory that is a flat disc
covered with a magnetic coating to hold information. It is used to store various programs and
files. The polarized information in one direction is represented by 1, and vice versa. The
direction is indicated by 0.

3. Tertiary Memory

For data storage, Tertiary Memory refers to devices that can hold a large amount of data without
being constantly connected to the server or the peripherals. A device of this type is connected
either to a server or to a device where the database is stored from the outside.

e Due to the fact that tertiary storage provides more space than other types of device memory but
is most slowly performing, the cost of tertiary storage is lower than primary and secondary. As
a means to make a backup of data, this type of storage is commonly used for making copies
from servers and databases.

e The ability to use secondary devices and to delete the contents of the tertiary devices is similar.

Some commonly used Tertiary Memory types that are almost present in every system are:

e Optical Storage: It is a type of storage where reading and writing are to be performed with the
help of a laser. Typically data written on CDs and DVDs are examples of Optical Storage.

e Tape Storage: Tape Storage is a type of storage data where we use magnetic tape to store data.
It is used to store data for a long time and also helps in the backup of data in case of data loss.

Memory Hierarchy

A computer system has a hierarchy of memory. Direct access to a CPU’s main memory and
inbuilt registers is available. Accessing the main memory takes less time than running a

CPU. Cache memory is introduced to minimize this difference in speed. Data that is most
frequently accessed by the CPU resides in cache memory, which provides the fastest access time
to data. Fastest-accessing memory is the most expensive. Although large storage devices are
slower and less expensive than CPU registers and cache memory, they can store a greater amount
of data.

1. Magnetic Disks

Present-day computer systems use hard disk drives as secondary storage devices. Magnetic disks
store information using the concept of magnetism. Metal disks are coated with magnetizable
material to create hard disks. Spindles hold these disks vertically. As the read/write head moves
between the disks, it de-magnetizes or magnetizes the spots under it. There are two magnetized

103

https://www.geeksforgeeks.org/advantages-and-disadvantages-of-flash-memory/
https://www.geeksforgeeks.org/magnetic-disk-memory/
https://www.geeksforgeeks.org/tertiary-storage-in-operating-system/
https://www.geeksforgeeks.org/optical-storage-systems/
https://www.geeksforgeeks.org/magnetic-tape-memory/
https://www.geeksforgeeks.org/cache-memory/

spots: 0 (zero) and 1 (one). Formatted hard disks store data efficiently by storing them in a
defined order. The hard disk plate is divided into many concentric circles, called tracks. Each
track contains a number of sectors. Data on a hard disk is typically stored in sectors of 512 bytes.
2. Redundant Array of Independent Disks(RAID)

In_the Redundant Array of Independent Disks technology, two or more secondary storage devices
are connected so that the devices operate as one storage medium. A RAID array consists of
several disks linked together for a variety of purposes. Disk arrays are categorized by their RAID
levels.

e RAID 0: At this level, disks are organized in a striped array. Blocks of data are divided into
disks and distributed over disks. Parallel writing and reading of data occur on each disk. This
improves performance and speed. Level 0 does not support parity and backup.

Raid
Controller

Raid-0

e RAID 1: Mirroring is used in RAID 1. A RAID controller copies data across all disks in an
array when data is sent to it. In case of failure, RAID level 1 provides 100% redundancy.

Raid
Controller

Raid-1

e RAID 2: The data in RAID 2 is striped on different disks, and the Error Correction Code is
recorded using Hamming distance. Similarly to level 0, each bit within a word is stored on a

104

https://www.geeksforgeeks.org/raid-redundant-arrays-of-independent-disks/

separate disk, and ECC codes for the data words are saved on a separate set of disks. As a
result of its complex structure and high cost, RAID 2 cannot be commercially deployed.

Raid
Controller

Raid-2

e RAID 3: Data is striped across multiple disks in RAID 3. Data words are parsed to generate a
parity bit. It is stored on a different disk. Thus, single-disk failures can be avoided.

Raid
Controller

Raid-3

e RAID 4: This level involves writing an entire block of data onto data disks, and then
generating the parity and storing it somewhere else. At level 3, bytes are striped, while at level
4, blocks are striped. Both levels 3 and 4 require a minimum of three disks.

105

Raid
Controller

Block 0 Block 1 Block Parity

Raid-4

e RAID 5: The data blocks in RAID 5 are written to different disks, but the parity bits are spread
out across all the data disks rather than being stored on a separate disk.

Raid
Controller

Raid-5

e RAID 6: The RAID 6 level extends the level 5 concept. A pair of independent parities are
generated and stored on multiple disks at this level. A pair of independent parities are
generated and stored on multiple disks at this level. Ideally, you need four disk drives for this
level.

106

ECC Code(Q)

/ X-OR Parity(P)
Raid /

Controller

Raid-6

Storage Hierarchy

Rather than the storage devices mentioned above, there are also other devices that are also used

in day-to-day life. These are mentioned below in the form of faster speed to lower speed from
top to down.

l Cache J

t v

Main Memory]

Storage !

[Flash Memory

Device Tl

H ie ra rc hy | Mag;eticiDisk

[Optical Disk]

t 3

Magnetic Tapes

107

Storage Hierarchy

Conclusion

A _DBMS must balance the utilization of primary, secondary, and tertiary memory. Secondary
memory meets long-term storage demands, tertiary memory can be used for archiving, and
primary memory guarantees quick access for active data. Using various storage types
strategically in accordance with needs and patterns of data access is essential for optimal
database performance.

Extendible Hashing (Dynamic approach to DBMS)

Extendible Hashing is a dynamic hashing method wherein directories, and buckets are used to
hash data. It is an aggressively flexible method in which the hash function also experiences
dynamic changes.

Main features of Extendible Hashing: The main features in this hashing technique are:

e Directories: The directories store addresses of the buckets in pointers. An id is assigned to
each directory which may change each time when Directory Expansion takes place.
e Buckets: The buckets are used to hash the actual data.
Basic Structure of Extendible Hashing:

108

https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/

Local Depth ~3| 2

Global Depth=2 |2 |

Directories

Buckets

Extendible Hashing

Fr ntl rms in Extendible Hashing:

e Directories: These containers store pointers to buckets. Each directory is given a unique id

which may change each time when expansion takes place. The hash function returns this
directory id which is used to navigate to the appropriate bucket. Number of Directories =
2”Global Depth.

Buckets: They store the hashed keys. Directories point to buckets. A bucket may contain more
than one pointers to it if its local depth is less than the global depth.

Global Depth: It is associated with the Directories. They denote the number of bits which are
used by the hash function to categorize the keys. Global Depth = Number of bits in directory
id.

Local Depth: It is the same as that of Global Depth except for the fact that Local Depth is
associated with the buckets and not the directories. Local depth in accordance with the global
depth is used to decide the action that to be performed in case an overflow occurs. Local Depth
is always less than or equal to the Global Depth.

109

e Bucket Splitting: When the number of elements in a bucket exceeds a particular size, then the
bucket is split into two parts.

e Directory Expansion: Directory Expansion Takes place when a bucket overflows. Directory
Expansion is performed when the local depth of the overflowing bucket is equal to the global
depth.

Basic Working of Extendible Hashing:

Data Refurns the
(Converfed Directory
into Binary) location/name

fafa
fraverses fo
the buckef

e Step 1 — Analyze Data Elements: Data elements may exist in various forms eg. Integer,
String, Float, etc.. Currently, let us consider data elements of type integer. eg: 49.

e Step 2 — Convert into binary format: Convert the data element in Binary form. For string
elements, consider the ASCII equivalent integer of the starting character and then convert the
integer into binary form. Since we have 49 as our data element, its binary form is 110001.

110

Step 3 — Check Global Depth of the directory. Suppose the global depth of the
Hash-directory is 3.

Step 4 — Identify the Directory: Consider the ‘Global-Depth’ number of LSBs in the binary
number and match it to the directory id.

Eg. The binary obtained is: 110001 and the global-depth is 3. So, the hash function will return
3 LSBs of 110001 viz. 001.

Step 5 — Navigation: Now, navigate to the bucket pointed by the directory with directory-id
001.

Step 6 — Insertion and Overflow Check: Insert the element and check if the bucket
overflows. If an overflow is encountered, go to step 7 followed by Step 8, otherwise, go

to step 9.

Step 7 — Tackling Over Flow Condition during Data Insertion: Many times, while inserting
data in the buckets, it might happen that the Bucket overflows. In such cases, we need to
follow an appropriate procedure to avoid mishandling of data.

First, Check if the local depth is less than or equal to the global depth. Then choose one of the
cases below.

e Casel: If the local depth of the overflowing Bucket is equal to the global depth, then
Directory Expansion, as well as Bucket Split, needs to be performed. Then increment
the global depth and the local depth value by 1. And, assign appropriate pointers.
Directory expansion will double the number of directories present in the hash
structure.

e (ase2: In case the local depth is less than the global depth, then only Bucket Split
takes place. Then increment only the local depth value by 1. And, assign appropriate
pointers.

111

Local Depth Local Depth =
< Global Depth Global Depth

Perform
Bucket Split
& Directory
Expansion

Perform
Bucket Split

e Step 8 — Rehashing of Split Bucket Elements: The Elements present in the overflowing
bucket that is split are rehashed w.r.t the new global depth of the directory.
e Step 9 — The element is successfully hashed.
Example based on Extendible Hashing: Now, let us consider a prominent example of hashing
the following elements: 16,4,6,22,24,10,31,7,9,20,26.
Bucket Size: 3 (Assume)
Hash Function: Suppose the global depth is X. Then the Hash Function returns X LSBs.

e Solution: First, calculate the binary forms of each of the given numbers.
16- 10000
4- 00100
6- 00110
22- 10110
24- 11000
10- 01010
31- 11111
7- 00111
9- 01001

112

20- 10100
26- 11010
e Initially, the global-depth and local-depth is always 1. Thus, the hashing frame looks like this:

e Inserting 16:
The binary format of 16 is 10000 and global-depth is 1. The hash function returns 1 LSB of
10000 which is 0. Hence, 16 is mapped to the directory with 1d=0.

Hash(16)= 10000

113

e Inserting 4 and 6:
Both 4(100) and 6(110)have 0 in their LSB. Hence, they are hashed as follows:

Hash(4)=100
Hash{8)=110

e Inserting 22: The binary form of 22 is 10110. Its LSB is 0. The bucket pointed by directory 0
is already full. Hence, Over Flow occurs.

OverFlow Condition
Here Local Depth=Global Depith

16, 4, 6,22

Hash(22)=10110

114

e As directed by Step 7-Case 1, Since Local Depth = Global Depth, the bucket splits and
directory expansion takes place. Also, rehashing of numbers present in the overflowing bucket
takes place after the split. And, since the global depth is incremented by 1, now,the global
depth 1s 2. Hence, 16,4,6,22 are now rehashed w.r.t 2 LSBs.|
16(10000),4(100),6(110),22(10110)]

After Bucket Split and Directory Expansion

*Notice that the bucket which was underflow has remained untouched. But, since the number of
directories has doubled, we now have 2 directories 01 and 11 pointing to the same bucket. This is
because the local-depth of the bucket has remained 1. And, any bucket having a local depth less
than the global depth is pointed-to by more than one directories.

e Inserting 24 and 10: 24(11000) and 10 (1010) can be hashed based on directories with id 00
and 10. Here, we encounter no overflow condition.

115

Hash(24)= 11000
Hash(10)=1010

e Inserting 31,7,9: All of these elements[31(11111), 7(111), 9(1001)] have either 01 or 11 in
their LSBs. Hence, they are mapped on the bucket pointed out by 01 and 11. We do not
encounter any overflow condition here.

116

Hash(31)= 11111
Hash(7)=11]
Hash(9)= 1001

e Inserting 20: Insertion of data element 20 (10100) will again cause the overflow problem.

117

OverFlow, Local Depth=Global Depth

Hash(20)=10100

e 20 is inserted in bucket pointed out by 00. As directed by Step 7-Case 1, since the local depth
of the bucket = global-depth, directory expansion (doubling) takes place along with bucket

splitting. Elements present in overflowing bucket are rehashed with the new global depth.
Now, the new Hash table looks like this:

118

e Inserting 26: Global depth is 3. Hence, 3 LSBs of 26(11010) are considered. Therefore 26
best fits in the bucket pointed out by directory 010.

119

Hash{26)=11010
OverFlow, Local Depth <Global Depith

OverFlow

e The bucket overflows, and, as directed by Step 7-Case 2, since the local depth of bucket <
Global depth (2<3), directories are not doubled but, only the bucket is split and elements are
rehashed.

Finally, the output of hashing the given list of numbers is obtained.

120

Affected
Buckets

e Hashing of 11 Numbers is Thus Completed.
Key Observations:

1. A Bucket will have more than one pointers pointing to it if its local depth is less than the
global depth.

2. When overflow condition occurs in a bucket, all the entries in the bucket are rehashed with a
new local depth.

3. If Local Depth of the overflowing bucket

4. The size of a bucket cannot be changed after the data insertion process begins.

dvantages:
1. Data retrieval is less expensive (in terms of computing).
2. No problem of Data-loss since the storage capacity increases dynamically.
3. With dynamic changes in hashing function, associated old values are rehashed w.r.t the new

hash function.

121

Limitations Of Extendible Hashing:

1. The directory size may increase significantly if several records are hashed on the same
directory while keeping the record distribution non-uniform.

2. Size of every bucket is fixed.

3. Memory is wasted in pointers when the global depth and local depth difference becomes
drastic.

4. This method is complicated to code.

Dynamic Hashing in DBMS
Last Updated : 01 Apr, 2024

In this article, we will learn about dynamic hashing in DBMS. Hashing in DBMS is used for
searching the needed data on the disc. As static hashing is not efficient for large databases,
dynamic hashing provides a way to work efficiently with databases that can be scaled.
What is Dynamic Hashing in DBMS?
Dynamic hashing is a technique used to dynamically add and remove data buckets when
demanded. Dynamic hashing can be used to solve the problem like bucket overflow which can
occur in static hashing. In this method, the data bucket size grows or shrinks as the number of
records increases or decreases. This allows easy insertion or deletion into the database and
reduces performance issues.
Important Terminologies Related to Dynamic Hashing
e Hash Function: A mathematical function that uses the primary key to generate the address of
the data block.
e Data Bucket: These are the memory locations that contain actual data records.
Hash Index: It is the address of the data block generated by hash function.
o Bucket Overflow: Bucket overflow occurs when memory address generated by the hash
function is already filled by some data records.
How to Search a Key?
Calculate the hash address of key.
Calculate the number of bits used in the dictionary and denote these bits as 1.
Take the least significant i bits of hash address. This provides index of dictionary.
This index is used to navigate to the dictionary and check for bucket address in which record
may be present.
Advantages of Dynamic Hashing
e In dynamic hashing, performance will not get affected as the amount of data grows in the
system. To accommodate the data, size of memory will be increased.
e Dynamic hashing improve the utilization of the memory.
e This method is efficient to handle the dynamic database where size of data changes frequently.
Disadvantages of Dynamic Hashing
e A the amount of data changes, bucket size will also get changed. Bucket address table will
keep track of these addresses because data address changes as bucket size increases or

122

https://www.geeksforgeeks.org/bucket-sort-2/
https://www.geeksforgeeks.org/primary-key-in-dbms/
https://www.geeksforgeeks.org/extendible-hashing-dynamic-approach-to-dbms/
https://www.geeksforgeeks.org/extendible-hashing-dynamic-approach-to-dbms/

decreases. Maintenance of the bucket address table gets difficult when there is significant
increase in data.
e In dynamic hashing, bucket overflow can happen.
How to Insert a New Record in Database Using Dynamic Hashing?
e Follow the same procedure that we used for searching which to lead to some bucket.
e [fspace is present in that bucket, then place record in it.
e If bucket is full, then split the bucket and redistribute the records.

gzzgcll)elre the following table which contain key into bucket based on their hash address prefix
Hash

Key Address

1 10000

2 10101

3 11000

4 10011

5 11011

6 11001

7 10110

In the above table, the last two bits of 1 and 3 are 00. So, it will go into bucket BO. The last two
bits of 2 and 6 are 01. So, it will go into bucket B1. The last bit of 7 is 10. So, it will go into
bucket B2. The last two bits of 4 and 5 are 11. So, they will go into B3.

123

https://www.geeksforgeeks.org/extendible-hashing-dynamic-approach-to-dbms/

Data Records
1 3 BO
00
o1 ﬁ 2 B Bl
10 1
4 7 B2
11
4 5 "
Buckets

Now, to insert key 11 with hash address 10001 into the above structure follow the steps:-

e Since, hash address of the bucket is 10001. It will go into bucket B1. But B1 bucket is already
filled, so it will get split.

e Three bits of 11 and 6 are 001. So, they will go into bucket B1. And last three bits of 2 are 101.
So, it will go into B4.

e Keys 1 and 3 are still in bucket BO. The record B is pointed by 000 and 100 entry because last
two bits of both the entry are 00.

e Key 7 is still in bucket B2. The record B2 is pointed by 010 and 110 entry because last two bits
of both the entry are 10.

e Key 4 and 5 are still in bucket B3. The record B3 is pointed by 111 and 011 entry because last
two bits of both the entry are 11.

124

1 3 BO
000 e
001
010 11 © Bl
011
100 u °
101

4 5 B3
110
111 2 B4

Data Records Buckets

Insert Key 11 in the Data Bucket

Frequently Asked Questions on Dynamic Hashing — FAQs

How is dynamic hashing different from static hashing?

In static hashing, the resultant data bucket address will remain same while in dynamic hashing,
the data bucket size shrinks or grows while increase or decrease of records.

Which hashing method is used to access the dynamic files?

Extensible hashing approach simultaneously solves the problem of making hash tables that are
extendible and of making radix search trees that are balanced. It can be used to access the
dynamic files.

What are popular dynamic hashing techniques?
Some popular dynamic hashing techniques are linear hashing, extensible hashing and consistent
hashing.

Indexing in Databases

Indexing improves database performance by minimizing the number of disc visits required to
fulfill a query. It is a data structure technique used to locate and quickly access data in databases.
Several database fields are used to generate indexes. The main key or candidate key of the table
is duplicated in the first column, which is the Search key. To speed up data retrieval, the values
are also kept in sorted order. It should be highlighted that sorting the data is not required. The

125

second column is the Data Reference or Pointer which contains a set of pointers holding the
address of the disk block where that particular key value can be found.

/

Structure of an Index in Database

Search Key

Data Reference

Key

\.

Value

A singlé Index

oG

¥y

Attributes of Indexing

Access Types: This refers to the type of access such as value-based search, range access, etc.
Access Time: It refers to the time needed to find a particular data element or set of elements.
Insertion Time: It refers to the time taken to find the appropriate space and insert new data.

Deletion Time: Time taken to find an item and delete it as well as update the index structure.
Space Overhead: It refers to the additional space required by the index.

126

Indexing

|
R |

| Primary Indexing | -.Secundan_.r Indexing | Clustering Indexing |

Lo

Dense i Sparse |

In general, there are two types of file organization mechanisms that are followed by the indexing
methods to store the data:
Sequential File Organization or Ordered Index File
In this, the indices are based on a sorted ordering of the values. These are generally fast and a
more traditional type of storing mechanism. These Ordered or Sequential file organizations
might store the data in a dense or sparse format.
e Dense Index
e For every search key value in the data file, there is an index record.
e This record contains the search key and also a reference to the first data record with
that search key value.

127

\

Dense Index

IT|GyMmmMmO|O|om]| =

Data File

Index Record

For every search
value in a Data File,

There is an
Index Record.

Hence the name
Dense Index.

oG

J

e Sparse Index
The index record appears only for a few items in the data file. Each item points to

a block as shown.

To locate a record, we find the index record with the largest search key value less
than or equal to the search key value we are looking for.
We start at that record pointed to by the index record, and proceed along with the
pointers in the file (that is, sequentially) until we find the desired record.
Number of Accesses required=log:(n)+1, (here n=number of blocks acquired by

index file)

128

Sparse Index
3 For very few
B search value
- _ .
= in a Data File,
L 1 E
¢ D
5 There is an
- . I Index Record.
E P
G
= I o Hence the name
H Sparse Index.
| Data File Index Record QGJ

Hash File Organization

Indices are based on the values being distributed uniformly across a range of buckets. The
buckets to which a value is assigned are determined by a function called a hash function. There
are primarily three methods of indexing:

e C(Clustered Indexing: When more than two records are stored in the same file this type of
storing is known as cluster indexing. By using cluster indexing we can reduce the cost of
searching reason being multiple records related to the same thing are stored in one place and it
also gives the frequent joining of more than two tables (records).

The clustering index is defined on an ordered data file. The data file is ordered on a non-key
field. In some cases, the index is created on non-primary key columns which may not be
unique for each record. In such cases, in order to identify the records faster, we will group two
or more columns together to get the unique values and create an index out of them. This
method 1s known as the clustering index. Essentially, records with similar properties are
grouped together, and indexes for these groupings are formed.

Students studying each semester, for example, are grouped together. First-semester students,
second-semester students, third-semester students, and so on are categorized.

e Primary Indexing: This is a type of Clustered Indexing wherein the data is sorted according
to the search key and the primary key of the database table is used to create the index. It is a
default format of indexing where it induces sequential file organization. As primary keys are
unique and are stored in a sorted manner, the performance of the searching operation is quite
efficient.

129

https://www.geeksforgeeks.org/difference-between-sequential-indexed-and-relative-files-in-cobol/

e Non-clustered or Secondary Indexing: A non-clustered index just tells us where the data lies,
1.e. it gives us a list of virtual pointers or references to the location where the data is actually
stored. Data is not physically stored in the order of the index. Instead, data is present in leaf
nodes. For eg. the contents page of a book. Each entry gives us the page number or location of
the information stored. The actual data here(information on each page of the book) is not
organized but we have an ordered reference(contents page) to where the data points actually
lie. We can have only dense ordering in the non-clustered index as sparse ordering is not
possible because data is not physically organized accordingly.

It requires more time as compared to the clustered index because some amount of extra work is
done in order to extract the data by further following the pointer. In the case of a clustered
index, data is directly present in front of the index.

[]

_ . Search @ Attr
Search | Pointer 1202 | Key
__ Key Alice
Alice . 1202 Adrian
r T 1 Ben 1203
Search | Pointer ° r 1203 | Search Attr
IKay . . .Bethany . 1204 Key
Alice 1102 | 1102
. . ' _ _ Ben
| Bob | 1103 ﬁz;rt:h Pointer Benjamin
Christie | 1104 t 1 |
Billie 1500
Root Node t 1 1 ﬁ:arch .
| Bob 1501 Y
Charlie | 1502 s |
' 1103 1204 BV
Intermediate
Nodes Leaf Nodes

Non clustered index
[)

e Multilevel Indexing: With the growth of the size of the database, indices also grow. As
the index is stored in the main memory, a single-level index might become too large a
size to store with multiple disk accesses. The multilevel indexing segregates the main
block into various smaller blocks so that the same can be stored in a single block. The
outer blocks are divided into inner blocks which in turn are pointed to the data blocks.
This can be easily stored in the main memory with fewer overheads.

130

i

K =
=1

———
N

|

|

QOuter Blocks

|

i
]

N

Inner Blocks

5
5
o

Advantages of Indexing

e Improved Query Performance: Indexing enables faster data retrieval from the database. The
database may rapidly discover rows that match a specific value or collection of values by
generating an index on a column, minimizing the amount of time it takes to perform a query.

o Efficient Data Access: Indexing can enhance data access efficiency by lowering the amount
of disk I/O required to retrieve data. The database can maintain the data pages for frequently
visited columns in memory by generating an index on those columns, decreasing the
requirement to read from disk.

e Optimized Data Sorting: Indexing can also improve the performance of sorting operations.
By creating an index on the columns used for sorting, the database can avoid sorting the entire
table and instead sort only the relevant rows.

e Consistent Data Performance: Indexing can assist ensure that the database performs
consistently even as the amount of data in the database rises. Without indexing, queries may

131

take longer to run as the number of rows in the table grows, while indexing maintains a
roughly consistent speed.
By ensuring that only unique values are inserted into columns that have been indexed as
unique, indexing can also be utilized to ensure the integrity of data. This avoids storing
duplicate data in the database, which might lead to issues when performing queries or reports.
Overall, indexing in databases provides significant benefits for improving query performance,
efficient data access, optimized data sorting, consistent data performance, and enforced data
integrity
Disadvantages of Indexing
Indexing necessitates more storage space to hold the index data structure, which might
increase the total size of the database.
Increased database maintenance overhead: Indexes must be maintained as data is added,
destroyed, or modified in the table, which might raise database maintenance overhead.
Indexing can reduce insert and update performance since the index data structure must be
updated each time data is modified.
Choosing an index can be difficult: It can be challenging to choose the right indexes for a
specific query or application and may call for a detailed examination of the data and access
patterns.
Features of Indexing
The development of data structures, such as B-trees or hash tables, that provide quick access to
certain data items is known as indexing. The data structures themselves are built on the values
of the indexed columns, which are utilized to quickly find the data objects.
The most important columns for indexing columns are selected based on how frequently they
are used and the sorts of queries they are subjected to. The cardinality, selectivity, and
uniqueness of the indexing columns can be taken into account.
There are several different index types used by databases, including primary, secondary,
clustered, and non-clustered indexes. Based on the particular needs of the database system,
each form of index offers benefits and drawbacks.
For the database system to function at its best, periodic index maintenance is required.
According to changes in the data and usage patterns, maintenance work involves building,
updating, and removing indexes.
Database query optimization involves indexing, which is essential. The query optimizer
utilizes the indexes to choose the best execution strategy for a particular query based on the
cost of accessing the data and the selectivity of the indexing columns.
Databases make use of a range of indexing strategies, including covering indexes, index-only
scans, and partial indexes. These techniques maximize the utilization of indexes for particular
types of queries and data access.
When non-contiguous data blocks are stored in an index, it can result in index fragmentation,
which makes the index less effective. Regular index maintenance, such as defragmentation and
reorganization, can decrease fragmentation.
Conclusion
Indexing is a very useful technique that helps in optimizing the search time in database queries.
The table of database indexing consists of a search key and pointer. There are four types of
indexing: Primary, Secondary Clustering, and Multivalued Indexing. Primary indexing is divided
into two types, dense and sparse. Dense indexing is used when the index table contains records
for every search key. Sparse indexing is used when the index table does not use a search key for

132

https://www.geeksforgeeks.org/introduction-of-b-tree-2/
https://www.geeksforgeeks.org/hashing-data-structure/
https://www.geeksforgeeks.org/cardinality-in-dbms/
https://www.geeksforgeeks.org/difference-between-internal-and-external-fragmentation/
https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/c-pointers/

every record. Multilevel indexing uses B+ Tree. The main purpose of indexing is to provide
better performance for data retrieval.

Introduction of B+ Tree

B + Tree is a variation of the B-tree data structure. In a B + tree, data pointers are stored only at
the leaf nodes of the tree. In a B+ tree structure of a leaf node differs from the structure of
internal nodes. The leaf nodes have an entry for every value of the search field, along with a data
pointer to the record (or to the block that contains this record). The leaf nodes of the B+ tree are
linked together to provide ordered access to the search field to the records. Internal nodes of a B+
tree are used to guide the search. Some search field values from the leaf nodes are repeated in the
internal nodes of the B+ tree.

Features of B+ Trees

e Balanced: B+ Trees are self-balancing, which means that as data is added or removed from
the tree, it automatically adjusts itself to maintain a balanced structure. This ensures that the
search time remains relatively constant, regardless of the size of the tree.

e Multi-level: B+ Trees are multi-level data structures, with a root node at the top and one or
more levels of internal nodes below it. The leaf nodes at the bottom level contain the actual
data.

e Ordered: B+ Trees maintain the order of the keys in the tree, which makes it easy to perform
range queries and other operations that require sorted data.

e Fan-out: B+ Trees have a high fan-out, which means that each node can have many child
nodes. This reduces the height of the tree and increases the efficiency of searching and
indexing operations.

e Cache-friendly: B+ Trees are designed to be cache-friendly, which means that they can take
advantage of the caching mechanisms in modern computer architectures to improve
performance.

e Disk-oriented: B+ Trees are often used for disk-based storage systems because they are
efficient at storing and retrieving data from disk.

Why Use B+ Tree?

e B+ Trees are the best choice for storage systems with sluggish data access because they
minimize I/O operations while facilitating efficient disc access.

e B+ Trees are a good choice for database systems and applications needing quick data retrieval
because of their balanced structure, which guarantees predictable performance for a variety of
activities and facilitates effective range-based queries.

Structure of B+ Trees

133

https://www.geeksforgeeks.org/introduction-of-b-tree/

B+ Trees contain two types of nodes:

e Internal Nodes: Internal Nodes are the nodes that are present in at least n/2 record pointers,
but not in the root node,

o Leaf Nodes: Leaf Nodes are the nodes that have n pointers.

The Structure of the Internal Nodes of a B+ Tree of Order ‘a’ is as Follows

e Each internal node is of the form: <P1, K1, P2, K2,, Pc-1, Kc-1, Pc> where ¢ <= a and
each Pi is a tree pointer (i.e points to another node of the tree) and, each Ki is a
key-value (see diagram-I for reference).

e Every internal node has : K1 <K2 < <Kc-1

e For each search field value ‘X’ in the sub-tree pointed at by P1i, the following condition
holds: Ki-1 < X <=Kij, for I <I<cand, Ki-1 <X, fori=c (See diagram I for reference)

e Each internal node has at most ‘aa tree pointers.

e The root node has, at least two tree pointers, while the other internal nodes have at least
\ceil(a/2) tree pointers each.

e If an internal node has ‘c’ pointers, ¢ <= a, then it has ‘c — 1’ key values.

P4 K4 Ki-1 5 Ki Ke-1 P

X <= Kj Ki.q< X <= K| Keq < X

Structure of Internal Node

134

The Structure of the Leaf Nodes of a B+ Tree of Order ‘b’ is as Follows

e Each leaf node is of the form: <<K1, D1>, <K2, D2>,, <Kc-1, Dc-1>, Pnext> where ¢
<=b and each Di is a data pointer (i.e points to actual record in the disk whose key value
is Ki or to a disk file block containing that record) and, each Ki is a key
value and, Pnext points to next leaf node in the B+ tree (see diagram II for reference).

e Every leafnode has : KI <K2<....<Kc-1,c<=b

Each leaf node has at least \ceil(b/2) values.

e All leaf nodes are at the same level.

K1 D1 K2 Dg Ki Di KC-‘I DC-1 Pnext

Pointer to next
leaf node in the

v

v Y t
Data Data Data Data op
Pointer Pointer Pointer Pointer

Structure of Lead Node

Diagram-II Using the Pnext pointer it is viable to traverse all the leaf nodes, just like a linked
list, thereby achieving ordered access to the records stored in the disk.

135

Tree 4
3 \ 5

P Pointer
2 3 -.-..n@.’ﬁ.--.....-....."} 4 ":) 5 ‘3). 'ED
Data :
’ ‘ Pointer ; 5
- Y "3 v v E
Disk File 2 3 4 5 10

Tree Pointer

Searching a Record in B+ Trees

90

892

Searching in B+ Tree

Let us suppose we have to find 58 in the B+ Tree. We will start by fetching from the root node

then we will move to the leaf node, which might contain a record of 58. In the image given

above, we will get 58 between 50 and 70. Therefore, we will we are getting a leaf node in the
third leaf node and get 58 there. If we are unable to find that node, we will return that ‘record not

founded’ message.
Insertion in B+ Trees
Insertion in B+ Trees is done via the following steps.

e Every element in the tree has to be inserted into a leaf node. Therefore, it is necessary to go

to a proper leaf node.
e [nsert the key into the leaf node in increasing order if there is no overflow.
For more, refer to Insertion in a B+ Trees.

136

https://www.geeksforgeeks.org/insertion-in-a-b-tree/

Deletion in B+Trees

Deletion in B+ Trees is just not deletion but it is a combined process of Searching, Deletion, and

Balancing. In the last step of the Deletion Process, it is mandatory to balance the B+ Trees,

otherwise, it fails in the property of B+ Trees.

For more, refer to Deletion in B+ Trees.

Advantages of B+Trees

o A B+ tree with ‘I’ levels can store more entries in its internal nodes compared to a B-tree
having the same ‘I’ levels. This accentuates the significant improvement made to the search
time for any given key. Having lesser levels and the presence of Pnext pointers imply that the
B+ trees is very quick and efficient in accessing records from disks.

e Data stored in a B+ tree can be accessed both sequentially and directly.

e [t takes an equal number of disk accesses to fetch records.

e B+trees have redundant search keys, and storing search keys repeatedly is not possible.

Disadvantages of B+ Trees

e The major drawback of B-tree is the difficulty of traversing the keys sequentially. The B+
tree retains the rapid random access property of the B-tree while also allowing rapid
sequential access.

Application of B+ Trees

e Multilevel Indexing

e Faster operations on the tree (insertion, deletion, search)

e Database indexing

Conclusion

In conclusion, B+ trees are an essential component of contemporary database systems since they

significantly improve database performance and make efficient data management possible.

Introduction of B-Tree

The limitations of traditional binary search trees can be frustrating. Meet the B-Tree, the
multi-talented data structure that can handle massive amounts of data with ease. When it comes
to storing and searching large amounts of data, traditional binary search trees can become
impractical due to their poor performance and high memory usage. B-Trees, also known as
B-Tree or Balanced Tree, are a type of self-balancing tree that was specifically designed to
overcome these limitations.

Unlike traditional binary search trees, B-Trees are characterized by the large number of keys that
they can store in a single node, which is why they are also known as “large key” trees. Each node
in a B-Tree can contain multiple keys, which allows the tree to have a larger branching factor and
thus a shallower height. This shallow height leads to less disk I/O, which results in faster search

137

https://www.geeksforgeeks.org/deletion-in-b-tree/
https://www.geeksforgeeks.org/indexing-in-databases-set-1/

and insertion operations. B-Trees are particularly well suited for storage systems that have slow,
bulky data access such as hard drives, flash memory, and CD-ROMs.

B-Trees maintains balance by ensuring that each node has a minimum number of keys, so the
tree is always balanced. This balance guarantees that the time complexity for operations such as
insertion, deletion, and searching is always O(log n), regardless of the initial shape of the tree.
Time Complexity of B-Tree:

Sr. No. Algorithm Time Complexity
1. Search O(log n)
2. Insert O(log n)
3. Delete O(log n)

Note: “n” is the total number of elements in the B-tree
Properties of B-Tree:
All leaves are at the same level.
B-Tree is defined by the term minimum degree ‘t*. The value of ‘t* depends upon disk block
size.
Every node except the root must contain at least t-1 keys. The root may contain a minimum
of 1 key.
All nodes (including root) may contain at most (2*t — 1) keys.
Number of children of a node is equal to the number of keys in it plus 1.
All keys of a node are sorted in increasing order. The child between two
keys k1 and k2 contains all keys in the range from k1 and k2.
B-Tree grows and shrinks from the root which is unlike Binary Search Tree. Binary Search
Trees grow downward and also shrink from downward.
Like other balanced Binary Search Trees, the time complexity to search, insert, and delete is
O(log n).
Insertion of a Node in B-Tree happens only at Leaf Node.

138

100

We can see in the above diagram that all the leaf nodes are at the same level and all non-leafs
have no empty sub-tree and have keys one less than the number of their children.
Interesting Facts about B-Trees:
® The minimum height of the B-Tree that can exist with n number of nodes and m is the
maximum number of children of a node can have is:
® The maximum height of the B-Tree that can exist with n number of nodes

Traversal in B-Tree:
Traversal is also similar to Inorder traversal of Binary Tree. We start from the leftmost child,
recursively print the leftmost child, then repeat the same process for the remaining children and
keys. In the end, recursively print the rightmost child.
Search Operation in B-Tree:
Search is similar to the search in Binary Search Tree. Let the key to be searched is k.
e Start from the root and recursively traverse down.
e For every visited non-leaf node,
e If the node has the key, we simply return the node.
e Otherwise, we recur down to the appropriate child (The child which is just before the
first greater key) of the node.
e If we reach a leaf node and don’t find k in the leaf node, then return NULL.
Searching a B-Tree is similar to searching a binary tree. The algorithm is similar and goes with
recursion. At each level, the search is optimized as if the key value is not present in the range of
the parent then the key is present in another branch. As these values limit the search they are also
known as limiting values or separation values. If we reach a leaf node and don’t find the desired
key then it will display NULL.

139

MODULE 6

Concurrency Control in DBMS

Concurrency control is a very important concept of DBMS which ensures the simultaneous
execution or manipulation of data by several processes or user without resulting in data
inconsistency. Concurrency Control deals with interleaved execution of more than one
transaction.

What is Transaction?

A transaction is a collection of operations that performs a single logical function in a database
application. Each transaction is a unit of both atomicity and consistency. Thus, we require that
transactions do not violate any database consistency constraints. That is, if the database was
consistent when a transaction started, the database must be consistent when the transaction
successfully terminates. However, during the execution of a transaction, it may be necessary
temporarily to allow inconsistency, since either the debit of A or the credit of B must be done
before the other. This temporary inconsistency, although necessary, may lead to difficulty if a
failure occurs.

It is the programmer’s responsibility to define properly the various transactions, so that each
preserves the consistency of the database. For example, the transaction to transfer funds from the
account of department A to the account of department B could be defined to be composed of two
separate programs: one that debits account A, and another that credits account B. The execution
of these two programs one after the other will indeed preserve consistency. However, each
program by itself does not transform the database from a consistent state to a new consistent
state. Thus, those programs are not transactions.

The concept of a transaction has been applied broadly in database systems and applications.
While the initial use of transactions was in financial applications, the concept is now used in
real-time applications in telecommunication, as well as in the management of long-duration
activities such as product design or administrative workflows.

A set of logically related operations is known as a transaction. The main operations of a
transaction are:

140

o Read(A): Read operations Read(A) or R(A) reads the value of A from the database and
stores it in a buffer in the main memory.

o Write (A): Write operation Write(A) or W(A) writes the value back to the database from the
buffer.

(Note: It doesn’t always need to write it to a database back it just writes the changes to buffer this

is the reason where dirty read comes into the picture)

Let us take a debit transaction from an account that consists of the following operations:

1. R(A);
2. A=A-1000;
3. W(A);

Assume A’s value before starting the transaction is 5000.

e The first operation reads the value of A from the database and stores it in a buffer.

e the Second operation will decrease its value by 1000. So buffer will contain 4000.

e the Third operation will write the value from the buffer to the database. So A’s final value
will be 4000.

But it may also be possible that the transaction may fail after executing some of its operations.

The failure can be because of hardware, software or power, ctc. For example, if the debit

transaction discussed above fails after executing operation 2, the value of A will remain 5000 in

the database which is not acceptable by the bank. To avoid this, Database has two important
operations:

e Commit: After all instructions of a transaction are successfully executed, the changes made
by a transaction are made permanent in the database.

e Rollback: If a transaction is not able to execute all operations successfully, all the changes
made by a transaction are undone.

For more details please refer Transaction Control in DBMS article.

Properties of a Transaction

Atomicity: As a transaction is a set of logically related operations, either all of them should be

executed or none. A debit transaction discussed above should either execute all three operations

or none. If the debit transaction fails after executing operations 1 and 2 then its new value of

4000 will not be updated in the database which leads to inconsistency.

Consistency: If operations of debit and credit transactions on the same account are executed

concurrently, it may leave the database in an inconsistent state.

e For Example, with T1 (debit of Rs. 1000 from A) and T2 (credit of 500 to A) executing
concurrently, the database reaches an inconsistent state.

e Letus assume the Account balance of A is Rs. 5000. T1 reads A(5000) and stores the value
in its local buffer space. Then T2 reads A(5000) and also stores the value in its local buffer
space.

e TI performs A=A-1000 (5000-1000=4000) and 4000 is stored in T1 buffer space. Then T2
performs A=A+500 (5000+500=5500) and 5500 is stored in the T2 buffer space. T1 writes
the value from its buffer back to the database.

e A’s value is updated to 4000 in the database and then T2 writes the value from its buffer back
to the database. A’s value is updated to 5500 which shows that the effect of the debit
transaction is lost and the database has become inconsistent.

e To maintain consistency of the database, we need concurrency control protocols which will
be discussed in the next article. The operations of T1 and T2 with their buffers and database
have been shown in Table 1.

141

https://www.geeksforgeeks.org/transaction-control-in-dbms/

T1°s buffer

T1 space T2 T2’s Buffer Space Database

A=5000

R(A); A=5000 A=5000

A=5000 R(A); A=5000 A=5000

A=A-1000; A=4000 A=5000 A=5000
A=4000 A=A+500; A=5500

W(A); A=5500 A=4000

W(A); A=5500

Isolation: The result of a transaction should not be visible to others before the transaction is
committed. For example, let us assume that A’s balance is Rs. 5000 and T1 debits Rs. 1000 from
A. A’s new balance will be 4000. If T2 credits Rs. 500 to A’s new balance, A will become 4500,
and after this T1 fails. Then we have to roll back T2 as well because it is using the value
produced by T1. So transaction results are not made visible to other transactions before it
commits.

Durable: Once the database has committed a transaction, the changes made by the transaction
should be permanent. e.g.; If a person has credited $500000 to his account, the bank can’t say
that the update has been lost. To avoid this problem, multiple copies of the database are stored at
different locations.

What is a Schedule?

A schedule is a series of operations from one or more transactions. A schedule can be of two
types:

Serial Schedule: When one transaction completely executes before starting another transaction,
the schedule is called a serial schedule. A serial schedule is always consistent. e.g.; If a schedule
S has debit transaction T1 and credit transaction T2, possible serial schedules are T1 followed by
T2 (T1->T2) or T2 followed by T1 ((T2->T1). A serial schedule has low throughput and less
resource utilization.

Concurrent Schedule: When operations of a transaction are interleaved with operations of other
transactions of a schedule, the schedule is called a Concurrent schedule. e.g.; the Schedule of
debit and credit transactions shown in Table 1 is concurrent. But concurrency can lead to
inconsistency in the database. The above example of a concurrent schedule is also inconsistent.
Difference between Serial Schedule and Serializable Schedule

142

Serial Schedule Serializable Schedule

In Serial schedule, transactions will be In Serializable schedule transaction are
executed one after other. executed concurrently.

Serial schedule are less efficient. Serializable schedule are more efficient.

In serial schedule only one transaction In Serializable schedule multiple transactions
executed at a time. can be executed at a time.

Serial schedule takes more time for execution. In Serializable schedule execution is fast.

Concurrency Control in DBMS

e Executing a single transaction at a time will increase the waiting time of the other
transactions which may result in delay in the overall execution. Hence for increasing the
overall throughput and efficiency of the system, several transactions are executed.

e Concurrency control is a very important concept of DBMS which ensures the simultaneous
execution or manipulation of data by several processes or user without resulting in data
inconsistency.

e Concurrency control provides a procedure that is able to control concurrent execution of the
operations in the database.

e The fundamental goal of database concurrency control is to ensure that concurrent execution
of transactions does not result in a loss of database consistency. The concept of serializability
can be used to achieve this goal, since all serializable schedules preserve consistency of the
database. However, not all schedules that preserve consistency of the database are
serializable.

e In general it is not possible to perform an automatic analysis of low-level operations by
transactions and check their effect on database consistency constraints. However, there are
simpler techniques. One is to use the database consistency constraints as the basis for a split
of the database into subdatabases on which concurrency can be managed separately.

e Another is to treat some operations besides read and write as fundamental low-level
operations and to extend concurrency control to deal with them.

Concurrency Control Problems

There are several problems that arise when numerous transactions are executed simultaneously in

a random manner. The database transaction consist of two major operations “Read” and “Write”.

It is very important to manage these operations in the concurrent execution of the transactions in

order to maintain the consistency of the data.

Dirty Read Problem(Write-Read conflict)

Dirty read problem occurs when one transaction updates an item but due to some unconditional

events that transaction fails but before the transaction performs rollback, some other transaction

reads the updated value. Thus creates an inconsistency in the database. Dirty read problem comes
under the scenario of Write-Read conflict between the transactions in the database

1. The lost update problem can be illustrated with the below scenario between two transactions
T1 and T2.

143

Transaction T1 modifies a database record without committing the changes.

T2 reads the uncommitted data changed by T1

T1 performs rollback

T2 has already read the uncommitted data of T1 which is no longer valid, thus creating

inconsistency in the database.

Lost Update Problem

Lost update problem occurs when two or more transactions modify the same data, resulting in

the update being overwritten or lost by another transaction. The lost update problem can be

illustrated with the below scenario between two transactions T1 and T2.

T1 reads the value of an item from the database.

T2 starts and reads the same database item.

T1 updates the value of that data and performs a commit.

T2 updates the same data item based on its initial read and performs commit.

This results in the modification of T1 gets lost by the T2’s write which causes a lost update

problem in the database.

Concurrency Control Protocols

Concurrency control protocols are the set of rules which are maintained in order to solve the

concurrency control problems in the database. It ensures that the concurrent transactions can

execute properly while maintaining the database consistency. The concurrent execution of a

transaction is provided with atomicity, consistency, isolation, durability, and serializability via

the concurrency control protocols.

e Locked based concurrency control protocol

e Timestamp based concurrency control protocol

Locked based Protocol

In locked based protocol, each transaction needs to acquire locks before they start accessing or

modifying the data items. There are two types of locks used in databases.

e Shared Lock : Shared lock is also known as read lock which allows multiple transactions to
read the data simultaneously. The transaction which is holding a shared lock can only read
the data item but it can not modify the data item.

e Exclusive Lock : Exclusive lock is also known as the write lock. Exclusive lock allows a
transaction to update a data item. Only one transaction can hold the exclusive lock on a data
item at a time. While a transaction is holding an exclusive lock on a data item, no other
transaction is allowed to acquire a shared/exclusive lock on the same data item.

There are two kind of lock based protocol mostly used in database:

e Two Phase Locking Protocol : Two phase locking is a widely used technique which
ensures strict ordering of lock acquisition and release. Two phase locking protocol works in
two phases.

e Growing Phase : In this phase, the transaction starts acquiring locks before
performing any modification on the data items. Once a transaction acquires a
lock, that lock can not be released until the transaction reaches the end of the
execution.

e Shrinking Phase : In this phase, the transaction releases all the acquired locks
once it performs all the modifications on the data item. Once the transaction starts
releasing the locks, it can not acquire any locks further.

e Strict Two Phase Locking Protocol : It is almost similar to the two phase locking protocol

the only difference is that in two phase locking the transaction can release its locks before it

Nk

Nk W =

144

https://www.geeksforgeeks.org/lock-based-concurrency-control-protocol-in-dbms/
https://www.geeksforgeeks.org/two-phase-locking-protocol/

commits, but in case of strict two phase locking the transactions are only allowed to release
the locks only when they performs commits.

Timestamp based Protocol

e In this protocol each transaction has a timestamp attached to it. Timestamp is nothing but the
time in which a transaction enters into the system.

e The conflicting pairs of operations can be resolved by the timestamp ordering protocol
through the utilization of the timestamp values of the transactions. Therefore, guaranteeing
that the transactions take place in the correct order.

Advantages of Concurrency

In general, concurrency means, that more than one transaction can work on a system. The

advantages of a concurrent system are:

e Waiting Time: It means if a process is in a ready state but still the process does not get the
system to get execute is called waiting time. So, concurrency leads to less waiting time.

e Response Time: The time wasted in getting the response from the cpu for the first time, is
called response time. So, concurrency leads to less Response Time.

e Resource Utilization: The amount of Resource utilization in a particular system is called
Resource Utilization. Multiple transactions can run parallel in a system. So, concurrency
leads to more Resource Utilization.

e Efficiency: The amount of output produced in comparison to given input is called efficiency.
So, Concurrency leads to more Efficiency.

Disadvantages of Concurrency

e Overhead: Implementing concurrency control requires additional overhead, such as
acquiring and releasing locks on database objects. This overhead can lead to slower
performance and increased resource consumption, particularly in systems with high levels of
concurrency.

e Deadlocks: Deadlocks can occur when two or more transactions are waiting for each other to
release resources, causing a circular dependency that can prevent any of the transactions from
completing. Deadlocks can be difficult to detect and resolve, and can result in reduced
throughput and increased latency.

e Reduced concurrency: Concurrency control can limit the number of users or applications
that can access the database simultaneously. This can lead to reduced concurrency and slower
performance in systems with high levels of concurrency.

e Complexity: Implementing concurrency control can be complex, particularly in distributed
systems or in systems with complex transactional logic. This complexity can lead to
increased development and maintenance costs.

e Inconsistency: In some cases, concurrency control can lead to inconsistencies in the
database. For example, a transaction that is rolled back may leave the database in an
inconsistent state, or a long-running transaction may cause other transactions to wait for
extended periods, leading to data staleness and reduced accuracy.

Conclusion

Concurrency control ensures transaction atomicity, isolation, consistency, and serializability.

Concurrency control issues occur when many transactions execute randomly. A dirty read

happens when a transaction reads data changed by an uncommitted transaction. When two

transactions update data simultaneously, the Lost Update issue occurs. Lock-based protocol
prevents incorrect read/write activities. Timestamp-based protocols organise transactions by
timestamp.

145

https://www.geeksforgeeks.org/timestamp-based-concurrency-control/

ACID Properties in DBMS

A transaction is a single logical unit of work that accesses and possibly modifies the contents of
a database. Transactions access data using read and write operations.

In order to maintain consistency in a database, before and after the transaction, certain properties
are followed. These are called ACID properties.

ACID Properties in DBMS

The entire transaction takes place at once
or doesn't happen at all.

A = Atomicity

The database must be consistent before
C = Consistenc |—>
_>[= and after the transaction.

ACID

. Multiple Transactions occur independently
| = Isolation) i
without interference.

s The changes of a successful transaction
D = Durability _ .
occurs even if the system failure occurs. QG

L J

Atomicity:

By this, we mean that either the entire transaction takes place at once or doesn’t happen at all.
There is no midway i.e. transactions do not occur partially. Each transaction is considered as one
unit and either runs to completion or is not executed at all. It involves the following two
operations.

—Abort: If a transaction aborts, changes made to the database are not visible.

—Commit: If a transaction commits, changes made are visible.

Atomicity is also known as the ‘All or nothing rule’.

Consider the following transaction T consisting of T1 and T2: Transfer of 100 from account X to
account Y.

146

https://www.geeksforgeeks.org/sql-transactions/

Before: X : 500 | ¥: 200
Transaction T
1 T2
Read (X) Read (Y)
X:=X-—-100 ¥:=%+ 100
Write [X) Write (Y)
After: X : 400 Y : 300

If the transaction fails after completion of T1 but before completion of T2.(say,

after write(X) but before write(Y)), then the amount has been deducted from X but not added

to Y. This results in an inconsistent database state. Therefore, the transaction must be executed in
its entirety in order to ensure the correctness of the database state.

Consistency:

This means that integrity constraints must be maintained so that the database is consistent before
and after the transaction. It refers to the correctness of a database. Referring to the example
above,

The total amount before and after the transaction must be maintained.

Total before T occurs = 500 + 200 = 700.

Total after T occurs =400 + 300 = 700.

Therefore, the database is consistent. Inconsistency occurs in case T1 completes but T2 fails. As
a result, T is incomplete.

Isolation:

This property ensures that multiple transactions can occur concurrently without leading to the
inconsistency of the database state. Transactions occur independently without interference.
Changes occurring in a particular transaction will not be visible to any other transaction until that
particular change in that transaction is written to memory or has been committed. This property
ensures that the execution of transactions concurrently will result in a state that is equivalent to a
state achieved these were executed serially in some order.

Let X= 500, Y = 500.

Consider two transactions T and T”.

T T i
Read () Read (X)
®:=X*100 Read (Y)
Write (X Ti=X+Y
Read (¥) Write (2}
Y:=Y-50
Write (¥)

Suppose T has been executed till Read (Y) and then T” starts. As a result, interleaving of
operations takes place due to which T” reads the correct value of X but the incorrect value
of Y and sum computed by

T”: (X+Y =50, 000+500=50, 500)

is thus not consistent with the sum at end of the transaction:

147

1.

T: (X+Y =50, 000 + 450 = 50, 450).

This results in database inconsistency, due to a loss of 50 units. Hence, transactions must take
place in isolation and changes should be visible only after they have been made to the main
memory.

Durability:

This property ensures that once the transaction has completed execution, the updates and
modifications to the database are stored in and written to disk and they persist even if a system
failure occurs. These updates now become permanent and are stored in non-volatile memory.
The effects of the transaction, thus, are never lost.

Some important points:

Property Responsibility for maintaining properties

Atomicity Transaction Manager

Consistenc L
y Application programmer
Isolation Concurrency Control Manager

Durability Recovery Manager

The ACID properties, in totality, provide a mechanism to ensure the correctness and consistency
of a database in a way such that each transaction is a group of operations that acts as a single
unit, produces consistent results, acts in isolation from other operations, and updates that it
makes are durably stored.

ACID properties are the four key characteristics that define the reliability and consistency of a
transaction in a Database Management System (DBMS). The acronym ACID stands for
Atomicity, Consistency, Isolation, and Durability. Here is a brief description of each of these
properties:

Atomicity: Atomicity ensures that a transaction is treated as a single, indivisible unit of work.
Either all the operations within the transaction are completed successfully, or none of them are.
If any part of the transaction fails, the entire transaction is rolled back to its original state,
ensuring data consistency and integrity.

Consistency: Consistency ensures that a transaction takes the database from one consistent
state to another consistent state. The database is in a consistent state both before and after the
transaction is executed. Constraints, such as unique keys and foreign keys, must be maintained
to ensure data consistency.

Isolation: Isolation ensures that multiple transactions can execute concurrently without
interfering with each other. Each transaction must be isolated from other transactions until it is
completed. This isolation prevents dirty reads, non-repeatable reads, and phantom reads.
Durability: Durability ensures that once a transaction is committed, its changes are permanent
and will survive any subsequent system failures. The transaction’s changes are saved to the
database permanently, and even if the system crashes, the changes remain intact and can be
recovered.

148

Overall, ACID properties provide a framework for ensuring data consistency, integrity, and
reliability in DBMS. They ensure that transactions are executed in a reliable and consistent
manner, even in the presence of system failures, network issues, or other problems. These
properties make DBMS a reliable and efficient tool for managing data in modern organizations.

Advantages of ACID Properties in DBMS:

Data Consistency: ACID properties ensure that the data remains consistent and accurate after
any transaction execution.

Data Integrity: ACID properties maintain the integrity of the data by ensuring that any changes
to the database are permanent and cannot be lost.

Concurrency Control: ACID properties help to manage multiple transactions occurring
concurrently by preventing interference between them.

Recovery: ACID properties ensure that in case of any failure or crash, the system can recover
the data up to the point of failure or crash.

Disadvantages of ACID Properties in DBMS:

Performance: The ACID properties can cause a performance overhead in the system, as they
require additional processing to ensure data consistency and integrity.

Scalability: The ACID properties may cause scalability issues in large distributed systems
where multiple transactions occur concurrently.

Complexity: Implementing the ACID properties can increase the complexity of the system and
require significant expertise and resources.

Overall, the advantages of ACID properties in DBMS outweigh the disadvantages. They
provide a reliable and consistent approach to data

management, ensuring data integrity, accuracy, and reliability. However, in some cases, the
overhead of implementing ACID properties can cause performance and scalability issues.
Therefore, it’s

Types of Schedules in DBMS
Last Updated : 04 Feb, 2020

Schedule, as the name suggests, is a process of lining the transactions and executing them one by
one. When there are multiple transactions that are running in a concurrent manner and the order
of operation is needed to be set so that the operations do not overlap each other, Scheduling is
brought into play and the transactions are timed accordingly. The basics of Transactions and
Schedules is discussed in Concurrency Control (Introduction), and Transaction Isolation Levels
in DBMS articles. Here we will discuss various types of schedules.

149

https://www.geeksforgeeks.org/concurrency-control-introduction/
https://www.geeksforgeeks.org/transaction-isolation-levels-dbms/
https://www.geeksforgeeks.org/transaction-isolation-levels-dbms/

%

Types of schedules in DBMS

Schedules

Y Y
Serial Non-Serial

Schedules Schedules

A Y
Serializable Non-Serial
Schedules Schedules

Y Y Y Y
Conflict View Recoverable Non-Recoverable

Serializable Serializable Schedules Schedules

Y Y Y
Cascading Cascadless Strict
Schedules Schedules Schedules QG

¥,

1.

Serial Schedules:
Schedules in which the transactions are executed non-interleaved, i.e., a serial schedule is

one in which no transaction starts until a running transaction has ended are called serial

schedules.
Example: Consider the following schedule involving two transactions T, and T.

T, T,

R(A)

W(A)

150

R(B)

W(B)

R(A)

R(B)

where R(A) denotes that a read operation is performed on some data item ‘A’

This is a serial schedule since the transactions perform serially in the order T, —> T,
Non-Serial Schedule:

This is a type of Scheduling where the operations of multiple transactions are interleaved.
This might lead to a rise in the concurrency problem. The transactions are executed in a
non-serial manner, keeping the end result correct and same as the serial schedule. Unlike the
serial schedule where one transaction must wait for another to complete all its operation, in
the non-serial schedule, the other transaction proceeds without waiting for the previous
transaction to complete. This sort of schedule does not provide any benefit of the concurrent
transaction. It can be of two types namely, Serializable and Non-Serializable Schedule.

The Non-Serial Schedule can be divided further into Serializable and Non-Serializable.

a. Serializable:
This is used to maintain the consistency of the database. It is mainly used in the
Non-Serial scheduling to verify whether the scheduling will lead to any inconsistency or
not. On the other hand, a serial schedule does not need the serializability because it
follows a transaction only when the previous transaction is complete. The non-serial
schedule is said to be in a serializable schedule only when it is equivalent to the serial
schedules, for an n number of transactions. Since concurrency is allowed in this case
thus, multiple transactions can execute concurrently. A serializable schedule helps in
improving both resource utilization and CPU throughput. These are of two types:
1. Conflict Serializable:
A schedule is called conflict serializable if it can be transformed into a serial schedule
by swapping non-conflicting operations. Two operations are said to be conflicting if
all conditions satisfy:
e They belong to different transactions
e They operate on the same data item
e At Least one of them is a write operation
2. View Serializable:
A Schedule is called view serializable if it is view equal to a serial schedule (no
overlapping transactions). A conflict schedule is a view serializable but if the
serializability contains blind writes, then the view serializable does not conflict
serializable.

151

https://www.geeksforgeeks.org/conflict-serializability/
https://www.geeksforgeeks.org/dbms-how-to-test-two-schedule-are-view-equal-or-not-2/

b. Non-Serializable:
The non-serializable schedule is divided into two types, Recoverable and
Non-recoverable Schedule.

I.

R rable Schedule:

Schedules in which transactions commit only after all transactions whose changes
they read commit are called recoverable schedules. In other words, if some
transaction T; is reading value updated or written by some other transaction T;, then
the commit of T; must occur after the commit of T;.

Example — Consider the following schedule involving two transactions T, and T,.

T, T,
R(A)
W(A)
W(A)
R(A)
commit
commit

This is a recoverable schedule since T, commits before T,, that makes the value read
by T, correct.
There can be three types of recoverable schedule:

a. Cascading Schedule:
Also called Avoids cascading aborts/rollbacks (ACA). When there is a failure in
one transaction and this leads to the rolling back or aborting other dependent
transactions, then such scheduling is referred to as Cascading rollback or

152

https://www.geeksforgeeks.org/recoverability-in-dbms/

a.

cascading abort. Example:

Tl T2 T3

/, R(x)

W(x)

\?4{; “0

Wi(x)

\,{: .

< W(x)

Abort

\ Abort \Abnrt

Figure - Cascading Abort

ascadel hedule:
Schedules in which transactions read values only after all transactions whose
changes they are going to read commit are called cascadeless schedules. Avoids
that a single transaction abort leads to a series of transaction rollbacks. A strategy
to prevent cascading aborts is to disallow a transaction from reading uncommitted
changes from another transaction in the same schedule.
In other words, if some transaction T; wants to read value updated or written by
some other transaction T;, then the commit of T; must read it after the commit of
T;.
Example: Consider the following schedule involving two transactions T, and T,.

T, T,
R(A)
W(A)

W(A)

153

https://www.geeksforgeeks.org/cascadeless-in-dbms/

T, T,

commit

R(A)

commit

This schedule is cascadeless. Since the updated value of A is read by T, only after
the updating transaction i.e. T, commits.
Example: Consider the following schedule involving two transactions T, and T,.

T, T,
R(A)
W(A)
R(A)
W(A)
abort
abort

It is a recoverable schedule but it does not avoid cascading aborts. It can be seen
that if T, aborts, T, will have to be aborted too in order to maintain the correctness
of the schedule as T, has already read the uncommitted value written by T;.

Strict Schedule:

A schedule is strict if for any two transactions T;, T;, if a write operation of

T, precedes a conflicting operation of T; (either read or write), then the commit or
abort event of T; also precedes that conflicting operation of T;.

In other words, T; can read or write updated or written value of T; only after

T, commits/aborts.

Example: Consider the following schedule involving two transactions T, and T,.

T, T,

R(A)

154

R(A)
W(A)
commit
W(A)
R(A)
commit

This is a strict schedule since T, reads and writes A which is written by T, only
after the commit of T,.

Non-Recoverable Schedule:

Example: Consider the following schedule involving two transactions T, and T,.

T, T,
R(A)
W(A)
W(A)
R(A)
commit
abort

T, read the value of A written by T,, and committed. T, later aborted, therefore the
value read by T, is wrong, but since T, committed, this schedule is non-recoverable.
Note — It can be seen that:
1. Cascadeless schedules are stricter than recoverable schedules or are a subset of recoverable
schedules.
2. Strict schedules are stricter than cascadeless schedules or are a subset of cascadeless
schedules.

155

3. Serial schedules satisfy constraints of all recoverable, cascadeless and strict schedules and
hence is a subset of strict schedules.
The relation between various types of schedules can be depicted as:

Example: Consider the following schedule:
S:R1(A), W2(A), Commit2, W1(A), W3(A), Commit3, Commit]

Which of the following is true?

(A) The schedule is view serializable schedule and strict recoverable schedule

(B) The schedule is non-serializable schedule and strict recoverable schedule

(C) The schedule is non-serializable schedule and is not strict recoverable schedule.
(D) The Schedule is serializable schedule and is not strict recoverable schedule

Solution: The schedule can be re-written as:-

T, T, T;
R(A)
W(A)
Commit

156

W(A)

W(A)

Commit

Commit

First of all, it is a view serializable schedule as it has view equal serial schedule T, —> T, —>

T; which satisfies the initial and updated reads and final write on variable A which is required for
view serializability. Now we can see there is write — write pair done by transactions T, followed
by T; which is violating the above-mentioned condition of strict schedules as T; is supposed to
do write operation only after T, commits which is violated in the given schedule. Hence the
given schedule is serializable but not strict recoverable.

So, option (D) is correct.

Concurrency Control in DBMS

Concurrency control is a very important concept of DBMS which ensures the simultaneous
execution or manipulation of data by several processes or user without resulting in data
inconsistency. Concurrency Control deals with interleaved execution of more than one
transaction.

What is Transaction?

A transaction is a collection of operations that performs a single logical function in a database
application. Each transaction is a unit of both atomicity and consistency. Thus, we require that
transactions do not violate any database consistency constraints. That is, if the database was
consistent when a transaction started, the database must be consistent when the transaction
successfully terminates. However, during the execution of a transaction, it may be necessary
temporarily to allow inconsistency, since either the debit of A or the credit of B must be done
before the other. This temporary inconsistency, although necessary, may lead to difficulty if a
failure occurs.

157

It is the programmer’s responsibility to define properly the various transactions, so that each
preserves the consistency of the database. For example, the transaction to transfer funds from the
account of department A to the account of department B could be defined to be composed of two
separate programs: one that debits account A, and another that credits account B. The execution
of these two programs one after the other will indeed preserve consistency. However, each
program by itself does not transform the database from a consistent state to a new consistent
state. Thus, those programs are not transactions.
The concept of a transaction has been applied broadly in database systems and applications.
While the initial use of transactions was in financial applications, the concept is now used in
real-time applications in telecommunication, as well as in the management of long-duration
activities such as product design or administrative workflows.
A set of logically related operations is known as a transaction. The main operations of a
transaction are:

e Read(A): Read operations Read(A) or R(A) reads the value of A from the database and stores

it in a buffer in the main memory.
o Write (A): Write operation Write(A) or W(A) writes the value back to the database from the
buffer.

(Note: It doesn’t always need to write it to a database back it just writes the changes to buffer this
is the reason where dirty read comes into the picture)
Let us take a debit transaction from an account that consists of the following operations:

1. R(A):;
2. A=A-1000;
3. W(A);

Assume A’s value before starting the transaction is 5000.
e The first operation reads the value of A from the database and stores it in a buffer.
e the Second operation will decrease its value by 1000. So buffer will contain 4000.
e the Third operation will write the value from the buffer to the database. So A’s final value will
be 4000.
But it may also be possible that the transaction may fail after executing some of its operations.
The failure can be because of hardware, software or power, etc. For example, if the debit
transaction discussed above fails after executing operation 2, the value of A will remain 5000 in
the database which is not acceptable by the bank. To avoid this, Database has two important
operations:
e Commit: After all instructions of a transaction are successfully executed, the changes made by
a transaction are made permanent in the database.
e Rollback: If a transaction is not able to execute all operations successfully, all the changes
made by a transaction are undone.
For more details please refer Transaction Control in DBMS article.
Properties of a Transaction
Atomicity: As a transaction is a set of logically related operations, either all of them should be
executed or none. A debit transaction discussed above should either execute all three operations
or none. If the debit transaction fails after executing operations 1 and 2 then its new value of
4000 will not be updated in the database which leads to inconsistency.
Consistency: If operations of debit and credit transactions on the same account are executed
concurrently, it may leave the database in an inconsistent state.

158

https://www.geeksforgeeks.org/transaction-control-in-dbms/

For Example, with T1 (debit of Rs. 1000 from A) and T2 (credit of 500 to A) executing
concurrently, the database reaches an inconsistent state.

Let us assume the Account balance of A is Rs. 5000. T1 reads A(5000) and stores the value in
its local buffer space. Then T2 reads A(5000) and also stores the value in its local buffer space.
T1 performs A=A-1000 (5000-1000=4000) and 4000 is stored in T1 buffer space. Then T2
performs A=A+500 (5000+500=5500) and 5500 is stored in the T2 buffer space. T1 writes the
value from its buffer back to the database.

A’s value is updated to 4000 in the database and then T2 writes the value from its buffer back
to the database. A’s value is updated to 5500 which shows that the effect of the debit
transaction is lost and the database has become inconsistent.

To maintain consistency of the database, we need concurrency control protocols which will
be discussed in the next article. The operations of T1 and T2 with their buffers and database
have been shown in Table 1.

T1’s
buffer T2’s Buffer
T1 space T2 Space Database
A=5000
R(A); A=5000 A=5000
A=5000 R(A); A=5000 A=5000
OA;:A'IOO A=4000 A=5000 A=5000
A=4000 A=A+500; A=5500
W(A); A=5500 A=4000
W(A); A=5500

Isolation: The result of a transaction should not be visible to others before the transaction is
committed. For example, let us assume that A’s balance is Rs. 5000 and T1 debits Rs. 1000 from
A. A’s new balance will be 4000. If T2 credits Rs. 500 to A’s new balance, A will become 4500,
and after this T1 fails. Then we have to roll back T2 as well because it is using the value
produced by T1. So transaction results are not made visible to other transactions before it
commits.

Durable: Once the database has committed a transaction, the changes made by the transaction
should be permanent. e.g.; If a person has credited $500000 to his account, the bank can’t say
that the update has been lost. To avoid this problem, multiple copies of the database are stored at
different locations.

What is a Schedule?

A schedule is a series of operations from one or more transactions. A schedule can be of two
types:

Serial Schedule: When one transaction completely executes before starting another transaction,
the schedule is called a serial schedule. A serial schedule is always consistent. e.g.; If a schedule

159

S has debit transaction T1 and credit transaction T2, possible serial schedules are T1 followed by
T2 (T1->T2) or T2 followed by T1 ((T2->T1). A serial schedule has low throughput and less
resource utilization.

Concurrent Schedule: When operations of a transaction are interleaved with operations of other
transactions of a schedule, the schedule is called a Concurrent schedule. e.g.; the Schedule of
debit and credit transactions shown in Table 1 is concurrent. But concurrency can lead to
inconsistency in the database. The above example of a concurrent schedule is also inconsistent.
Difference between Serial Schedule and Serializable Schedule

Serial Schedule Serializable Schedule
In Serial schedule, In Serializable schedule
transactions will be executed transaction are executed
one after other. concurrently.

Serial schedule are less Serializable schedule are
efficient. more efficient.

In serial schedule only one In Serializable schedule
transaction executed at a multiple transactions can be
time. executed at a time.
Serial schedule takes more In Serializable schedule
time for execution. execution is fast.

Concurrency Control in DBMS
Executing a single transaction at a time will increase the waiting time of the other transactions
which may result in delay in the overall execution. Hence for increasing the overall throughput
and efficiency of the system, several transactions are executed.
Concurrency control is a very important concept of DBMS which ensures the simultaneous
execution or manipulation of data by several processes or user without resulting in data
inconsistency.
Concurrency control provides a procedure that is able to control concurrent execution of the
operations in the database.
The fundamental goal of database concurrency control is to ensure that concurrent execution of
transactions does not result in a loss of database consistency. The concept of serializability can
be used to achieve this goal, since all serializable schedules preserve consistency of the
database. However, not all schedules that preserve consistency of the database are serializable.
In general it is not possible to perform an automatic analysis of low-level operations by
transactions and check their effect on database consistency constraints. However, there are
simpler techniques. One is to use the database consistency constraints as the basis for a split of
the database into subdatabases on which concurrency can be managed separately.
Another is to treat some operations besides read and write as fundamental low-level operations
and to extend concurrency control to deal with them.

Concurrency Control Problems

There are several problems that arise when numerous transactions are executed simultaneously in

a random manner. The database transaction consist of two major operations “Read” and “Write”.

160

A

It is very important to manage these operations in the concurrent execution of the transactions in
order to maintain the consistency of the data.

Dirty Read Problem(Write-Read conflict)

Dirty read problem occurs when one transaction updates an item but due to some unconditional
events that transaction fails but before the transaction performs rollback, some other transaction
reads the updated value. Thus creates an inconsistency in the database. Dirty read problem comes
under the scenario of Write-Read conflict between the transactions in the database

The lost update problem can be illustrated with the below scenario between two transactions
T1 and T2.

Transaction T1 modifies a database record without committing the changes.

T2 reads the uncommitted data changed by T1

T1 performs rollback

T2 has already read the uncommitted data of T1 which is no longer valid, thus creating
inconsistency in the database.

161

	Introduction of ER Model
	Why Use ER Diagrams In DBMS?
	
	Symbols Used in ER Model
	
	Components of ER Diagram
	
	
	
	Entity
	
	1. Strong Entity
	2. Weak Entity

	Attributes
	1. Key Attribute
	2. Composite Attribute
	3. Multivalued Attribute
	4. Derived Attribute

	
	Relationship Type and Relationship Set
	
	Degree of a Relationship Set
	Cardinality

	Participation Constraint

	How to Draw ER Diagram?

	
	
	Enhanced ER Model
	Generalization, Specialization and Aggregation in ER Model
	
	
	
	
	
	Specialization
	
	
	
	Aggregation
	
	
	Understanding Superclass/Subclass Relationships in DBMS
	
	
	Example

	Introduction of Relational Algebra in DBMS
	Basic Operators in Relational Algebra
	Mapping from ER Model to Relational Model
	SQL | DDL, DML, TCL and DCL
	DDL (Data Definition Language) :
	DML (Data Manipulation Language) :
	TCL (Transaction Control Language) :
	DCL (Data Control Language) :

	SQL SELECT Query
	SQL - Constraints
	SQL Constraints
	SQL Create Constraints
	NOT NULL Constraint
	UNIQUE Key Constraint
	DEFAULT Value Constraint
	PRIMARY Key Constraint
	FOREIGN Key Constraint
	CHECK Value Constraint
	INDEX Constraint
	Dropping SQL Constraints
	Data Integrity Constraints

	Db2 architecture and process overview
	Relational Model in DBMS
	What is the Relational Model?

	Types of Functional dependencies in DBMS
	Types of Functional Dependencies in DBMS
	1. Trivial Functional Dependency
	2. Non-trivial Functional Dependency
	3. Multivalued Functional Dependency
	4. Transitive Functional Dependency
	5. Fully Functional Dependency
	6. Partial Functional Dependency

	Advantages of Functional Dependencies
	1. Data Normalization
	2. Query Optimization
	3. Consistency of Data
	
	
	4. Data Quality Improvement
	Conclusion

	Types of Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)
	Different Types of Database Keys
	Candidate Key

	Boyce-Codd Normal Form (BCNF)
	Boyce-Codd Normal Form (BCNF)

	Introduction of 4th and 5th Normal Form in DBMS
	Indexing in Databases
	Sequential File Organization or Ordered Index File
	Hash File Organization

	Storage Types in DBMS
	1. Primary Memory
	2. Secondary Memory

	Extendible Hashing (Dynamic approach to DBMS)
	Dynamic Hashing in DBMS
	What is Dynamic Hashing in DBMS?
	Important Terminologies Related to Dynamic Hashing
	How to Search a Key?
	Advantages of Dynamic Hashing
	Disadvantages of Dynamic Hashing
	How to Insert a New Record in Database Using Dynamic Hashing?
	Example

	Indexing in Databases
	
	
	
	Hash File Organization

	Introduction of B+ Tree
	Features of B+ Trees
	Why Use B+ Tree?
	Structure of B+ Trees

	Introduction of B-Tree
	Time Complexity of B-Tree: ​
	Properties of B-Tree:

	Concurrency Control in DBMS
	ACID Properties in DBMS
	Atomicity:

	Types of Schedules in DBMS
	Concurrency Control in DBMS
	What is Transaction?

