

METABOLISM = all the chemical reactions in an organism

CATABOLIC PATHWAY (CATABOLISM) -

- release of energy by the breakdown of complex molecules to simpler compounds

EX: digestive enzymes break down food

ANABOLIC PATHWAY (ANABOLISM)

- consumes energy to build complicated molecules from simpler ones

EX: linking amino acids to form proteins

ORGANISMS TRANSFORM ENERGY

ENERGY - capacity to do work

KINETIC ENERGY - energy of moving objects

POTENTIAL ENERGY - energy stored as a result of position or structure

CHEMICAL ENERGY - form of potential energy stored in chemical bonds in molecules

THERMODYNAMICS - study of energy transformations that occur in matter

1st LAW OF THERMODYNAMICS = Conservation of energy

- energy of universe is constant; energy CAN BE transferred and transformed, but NEVER created or destroyed

2nd LAW OF THERMODYNAMICS

- every energy transfer or transformation increases the entropy (disorder or randomness) in universe

- Living systems **DO NOT VIOLATE 2nd Law of Thermodynamics** (open systems with constant input of matter & energy)

Equation that describes energy of system; $\Delta G = \Delta H - T\Delta S$

ΔG = change in free energy

S = ENTROPY

G = FREE ENERGY of a system

(energy that is able to perform work when the temperature is uniform)

H = Total energy in system

T = Absolute temperature in °Kelvin

EXERGONIC REACTION - releases energy and occurs spontaneously

Energy of products is lower than energy of reactants (negative G)

ENDERGONIC REACTION - requires energy; absorbs free energy from system; not spontaneous

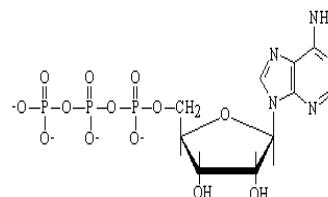
Energy of products is higher than energy of reactants (positive G)

SPONTANEOUS REACTION - can occur without outside help

- can be harnessed to do work (objects moving down their power gradient)

Growth, reproduction and maintenance of organization in living systems require

- constant input of free energy and matter


Loss of order/free energy = death

Cells manage their energy resources and do work by **ENERGY COUPLING**

(use energy from exergonic reactions to drive endergonic ones)

Energy input must exceed free energy lost to entropy

to maintain order & power cellular processes

Key role of ATP = **ENERGY COUPLING**

ADENOSINE TRIPHOSPHATE (ATP)

= primary source of energy in all living things

-adding phosphate group stores energy

-removing it releases energy = $-\Delta G$ reaction

- hydrolysis of ATP provides energy for $+\Delta G$ reactions

ACTIVATION ENERGY = amount of energy required to get chemical reaction started

CATALYST - substance that changes the rate of a chemical reaction without being altered

ENZYMES = biological catalysts; most enzymes are **PROTEINS** (Ch 17 & 26: RNA enzymes = **RIBOZYMES**)

ENZYMES work by **LOWERING ACTIVATION ENERGY**; Don't change the **FREE ENERGY** of reaction

SUBSTRATE = Reactant enzyme acts on

ACTIVE SITE = region on enzyme that binds to substrate

Substrate held in active site by **WEAK** interactions (ie. hydrogen and ionic bonds)

SUBSTRATE(S) + enzyme \rightarrow Enzyme-substrate complex \rightarrow enzyme + PRODUCT(S)

ENZYMES are **UNCHANGED & REUSABLE**

LOCK-AND-KEY MODEL: enzyme fits substrate like "lock and key"

-only specific substrate will fit

INDUCED FIT MODEL: once substrate binds to active site, enzyme changes shape slightly to bind the substrate more firmly placing a strain on the existing bonds in substrate lowering act energy

Enzymes have **OPTIMAL TEMPERATURE** for activity

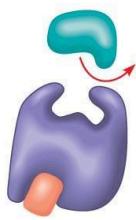
Higher temperatures = more collisions among the molecules so increase rate of a reaction BUT... above a certain temperature, activity begins to decline because the enzyme begins to **DENATURE**
So... rate of chemical reaction increases with temperature up to optimum, then decreases.

Enzymes have own **OPTIMAL pH**

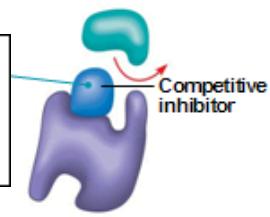
Different enzymes have different pH curves

Extremes in pH and temp can **DENATURE** enzymes

-causing them to unwind/lose their 3-D **TERtiary** structure


-breaks hydrogen, ionic bonds; **NOT** covalent peptide bonds

pH
Many enzymes require helpers:
NON PROTEIN helper
= **COFACTOR**
Ex: **METAL IONS**
(zinc, iron, and copper)

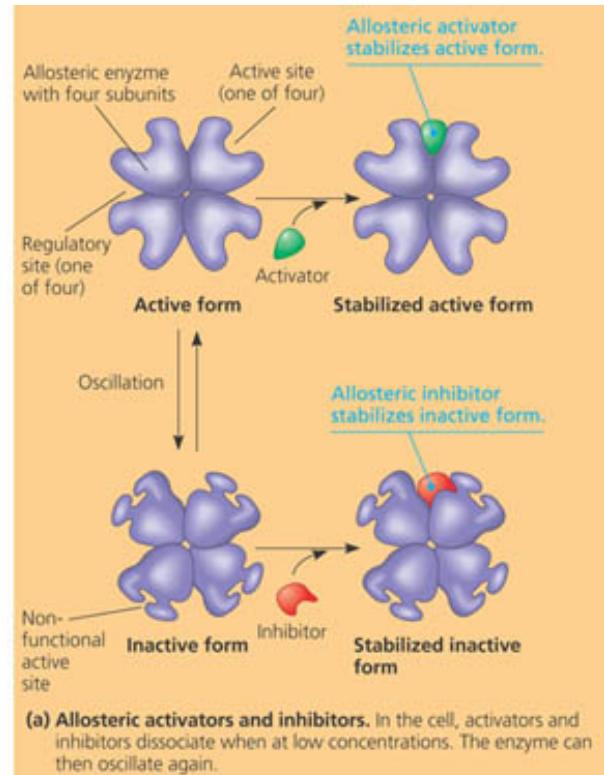
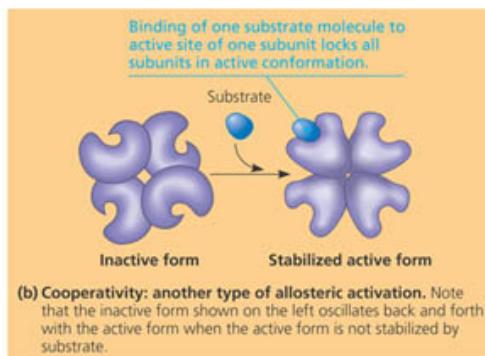

ORGANIC helpers = COENZYMES
Ex: vitamins
-part of NAD+, NADP, FADH₂,
Coenzyme A molecules

Hemoglobin

COMPETITIVE INHIBITORS

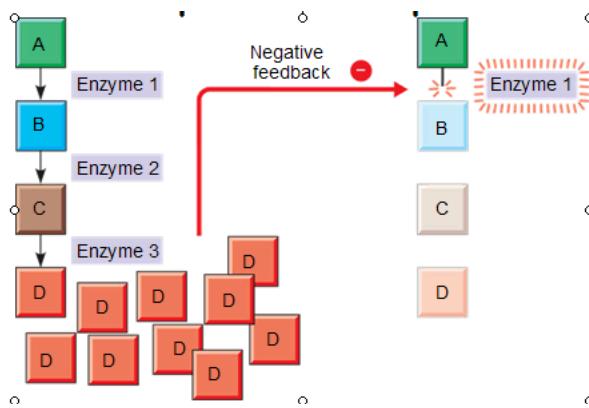
- reversible
- compete with substrate for active site

NONCOMPETITIVE INHIBITORS

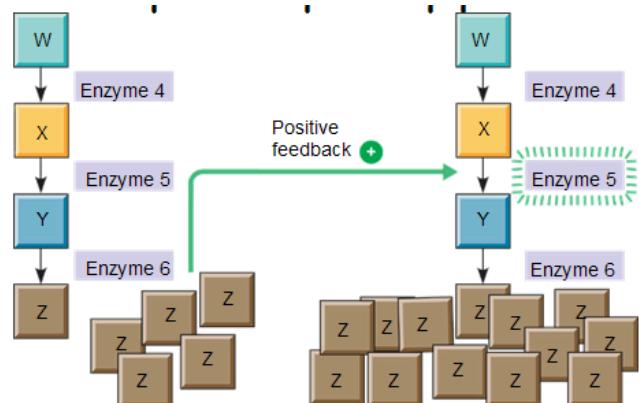


- bind another spot on enzyme
- cause shape change making active site nonfunctional

ENZYME REGULATION:

REGULATORS bind to **ALLOSTERIC** site


- binding site on enzyme (not active site)
- binding changes shape of enzyme
- **ACTIVATORS** can stimulate

INHIBITORS inhibit enzyme activity


NEGATIVE FEEDBACK (FEEDBACK INHIBITION)

- switches off pathway when product is plentiful
- common in many enzyme reactions;
- saves energy; don't make it if you don't need it

POSITIVE FEEDBACK

- speeds up pathway
- Less common
- EX: Chemicals released by platelets that accumulate at injury site, attract **MORE** platelets to the site.

