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Abstract.  
 
Auto-segmentation of primary tumors in oropharyngeal cancer using PET/CT 
images is an unmet need that has the potential to improve radiation oncology 
workflows. In this study, we develop a series of deep learning models based on 
a 3D Residual Unet (ResUnet) architecture that can segment oropharyngeal 
tumors with high performance as demonstrated through  internal and external 
validation of large-scale datasets (training size = 224 patients, testing size = 101 
patients) as part of the 2021 HECKTOR Challenge. Specifically, we leverage 
ResUNet models with either 256 or 512 bottleneck layer channels that 
demonstrate internal validation (10-fold cross-validation) mean Dice similarity 
coefficient (DSC) up to 0.771 and median 95% Hausdorff distance (95% HD) 
as low as 2.919 mm. We employ label fusion ensemble approaches, including 
Simultaneous Truth and Performance Level Estimation (STAPLE) and a 
voxel-level threshold approach based on majority voting (AVERAGE), to 
generate consensus segmentations on the test data by combining the 
segmentations produced through different trained cross-validation models. We 
demonstrate that our best performing ensembling approach (256 channels 
AVERAGE) achieves a mean DSC of 0.770 and median 95% HD of 3.143 mm 
through independent external validation on the test set. Our DSC and 95% HD 
test results are within 0.01 and 0.06 mm of the top ranked model in the 
competition, respectively. Concordance of internal and external validation 
results suggests our models are robust and can generalize well to unseen 
PET/CT data. We advocate that ResUNet models coupled to label fusion 
ensembling approaches are promising candidates for PET/CT oropharyngeal 
primary tumors auto-segmentation. Future investigations should target the ideal 
combination of channel combinations and label fusion strategies to maximize 
segmentation performance.  

Keywords: PET, CT, Tumor Segmentation, Head and Neck Cancer, Oropharyngeal 
Cancer, Deep Learning, Auto-contouring.  
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1​ Introduction 

Oropharyngeal cancer (OPC) is a type of head and neck squamous cell carcinoma that 
affects a large number of individuals across the world [1]. Radiation therapy is an 
effective component of OPC treatment but is highly dependent on accurate 
segmentation of gross tumor volumes [2], i.e., visible gross disease that is informed 
by clinical examination and radiographic findings. Importantly, precise tumor 
delineation is crucial to ensure adequate radiation therapy dose to target volumes 
while minimizing dose to surrounding healthy tissues. The combination of computed 
tomography (CT) with positron emission tomography (PET) allows for sufficient 
anatomic detail in determining tumor location coupled to underlying physiologic 
information [3]. However, tumor segmentation in OPC has long been seen as an 
inefficient and potentially inconsistent process as multiple studies have demonstrated 
high human inter- and intra-observer segmentation variability [4, 5]. Therefore, 
developing automated tools, such as those based on deep learning [6–9], to reduce the 
variability in OPC PET/CT tumor segmentation while retaining reasonable 
performance is imperative for improving the radiation therapy workflow.  
 
The annual Medical Image Computing and Computer Assisted Intervention Society 
(MICCAI) Head and Neck Tumor Segmentation Challenge (HECKTOR) has 
provided an avenue to systematically evaluate different OPC primary tumor 
auto-segmentation methodologies through the release of high-quality, 
multi-institutional training and testing PET/CT data. We previously participated in the 
2020 HECKTOR challenge and achieved reasonable results using deep learning 
approaches [10]. Subsequently, we improve upon our previous approach through 
various architectural modifications, ensembling of independent models’ predictions, 
and additional provided training/testing data, that ultimately leads to improved 
segmentation performance. This work presents the results of our OPC primary tumor 
auto-segmentation model based on a ResUnet deep learning model applied to the 
2021 HECKTOR Challenge PET/CT training and testing data.  

2​ Methods 

We developed deep learning models (2.3) for auto-segmentation of primary tumors of 
OPC patients using co-registered 18F-FDG PET and CT imaging data (2.1). The 
ground truth manual segmentations of the tumors and the normalized imaging data 
(2.2) were used to train the models (2.4). The performance of the trained models for 
auto-segmentation were validated using a 10-fold cross-validation approach (2.5).     

 
2.1​ Imaging Data 

The data set used in this study, which was released through AIcrowd [11] for the 
HECKTOR Challenge at MICCAI 2021 [12–14], consists of co-registered 18F-FDG 
PET and CT scans for 325 OPC patients (224 patients used for training and 101 
patients used for testing, previously partitioned by the HECKTOR Challenge 
organizers). All imaging data in the training set (224 patients) was paired with ground 
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truth manual segmentations of the OPC primary tumors derived from clinical experts 
(HECKTOR Challenge organizers). All training and testing data were provided in 
Neuroimaging Informatics Technology Initiative (NIfTI) format.  

 
2.2​ Image Processing 

All images (i.e., PET, CT, and tumor segmentation masks) were cropped to fixed 
bounding box volumes, provided with the imaging data (2.1) by the HECKTOR 
Challenge organizers [11], of size 144x144x144 mm3 in the x, y and z dimensions. To 
mitigate the variable resolution of the PET and CT images, the cropped images were 
resampled to a fixed image resolution of 1 mm in the x, y, and z dimensions. We used 
spline interpolation of order 3 for resampling the PET/CT images and 
nearest-neighbor interpolation for resampling the segmentation masks. We based our 
cropping and resampling work on the code provided by the HECKTOR Challenge 
organizers (https://github.com/voreille/hecktor). The CT intensities were truncated in 
the range of [-200, 200] Hounsfield Units (HU) to increase soft tissue contrast and 
then were normalized to a [-1, 1] scale. The intensities of PET images were 
normalized with z-score normalization ([intensity-mean]/standard deviation). We used 
the Medical Open Network for AI (MONAI) [15] software transformation packages 
to rescale and normalize the intensities of the PET/CT images. Image processing steps 
used in this manuscript are displayed in Figure 1. 

 

Fig. 1. An illustration of the workflow used for image processing. (A) Overlays of the provided 
ground truth tumor segmentation masks (red outline) and the original CT (top) and PET 
(bottom) images. (B) Overlays of the provided ground truth tumor segmentation masks (red 
outline) and the processed CT (top) and PET (bottom) images. 

2.3​ Model Architecture  

A deep learning convolutional neural network model based on the ResUnet 
architecture included in the MONAI software package was used for the analysis. As 
shown in Figure 2, the network consisted of 4 convolution blocks in the encoding and 
decoding branches and a bottleneck convolution block between the two branches. All 
convolution layers used a kernel size of 3 except one convolution layer in the 

https://github.com/voreille/hecktor
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bottleneck, which used a kernel size of 1. The number of output channels for each 
convolution layer is given above each layer, as shown in Figure 2. Each convolution 
block in the encoding branch was composed of a two-strided convolution layer and a 
residual connection that contained a two-strided convolution layer and a one-strided 
convolution layer. In the bottleneck, the residual connection contained two one-strided 
convolution layers. In the decoding branch, each block contained a two strided 
convolution transpose layer, a one strided convolution layer and a residual connection. 
Batch normalization and parametric ReLU (PReLU) activation functions were used 
throughout the architecture. The PET/CT images acted as two channel inputs to the 
model, while a two-channel output provideed the tumor segmentation mask (i.e., 0 = 
background, 1 = tumor). The architecture shown in Figure 2 corresponds to a 
ResUnet with a maximum of 512 channels in the bottleneck layer (512 Model) where 
the number of channels in the convolution layers was (32, 64, 128, 256, and 512). We 
also implemented a model using a maximum of 256 channels in the bottleneck layer 
(256 Model), which has the same structure as the 512 Model, but the number of 
channels in the convolution layers was (16, 32, 64, 128, and 256).   

 

Fig. 2. Schematic of the ResUnet architecture used for the segmentation model. The number of 
channels (32, 64, 128, 256, and 512) is given above each block. The batch normalization and 
the parametric ReLU layers are annotated by (BN) and PReLU, respectively. The channels 
given in the figure are for the 512 model, while for the 256 model the channels are (16, 32, 64, 
128, and 256). 

2.4​ Model Implementation 

We used a 10-fold cross-validation approach where the 224 patients from the training 
data were randomly divided into ten non-overlapping sets. Each set (22 patients) was 
used for model validation while the remaining 202 patients in the remaining sets were 
used for training, i.e., each set was used once for testing and nine times for training. 
The processed PET, CT, and tumor masks (2.2) were randomly cropped to four 
random fixed-sized regions (patches) of size (96, 96, 96) per patch per patient. The 
random spatial cropping considered the patch center of mass as foreground (i.e., a 
tumor - positive) or background (i.e., non-tumor - negative) with a 50% probability 
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for both the positive and negative cases as shown in Figure 3A. We used a batch size 
of 2 patients’ images and, therefore, a total of 8 patches of images. The shape of the 
input tensor provided to the network (2.3) for a batch size of 2, patches per image of 
4, a two-channel input (PET/CT), and patch size of (96, 96, 96) is (8, 2, 96, 96, 96). 
The tumor mask was used as the ground truth target to train the segmentation model. 
The shape of the target tensor provided was (8, 1, 96, 96, 96). To minimize 
overfitting, in addition to the random spatial cropping to patch the images and masks, 
we implemented additional data augmentation to both image and mask patches which 
includes random horizonal flips of 50%, and random affine transformations with an 
axial rotation range of 12 degrees and scale range of 10%. We used Adam as the 
optimizer and Dice loss as the loss function. The model was trained for 700 iterations 
with a learning rate of 2×10-4 for the first 550 iterations and 1×10-4 for the remaining 
150 iterations. The image processing (2.2), data augmentation, network architecture, 
and loss function were used from the software packages provided by the MONAI 
framework [15]; code for these packages can be found at 
“https://github.com/Project-MONAI/”. 
 

 

Fig. 3. An illustration of the workflow of the training and inference phases of the segmentation 
model. (A) Data transformation and augmentation is used to produce input data to the model. 
An example of four patches of CT and PET images and the corresponding ground truth tumor 
segmentation with at 50% representation of the tumor in these patches used for training the 
segmentation model (four patches of images per patient - 96 x 96 x 96 voxels each). (B) 
Segmentation model prediction using sliding window inferences (96X96X96 voxels each) and 
combining the predicted masks from all patches to provide the final mask. 
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2.5​ Model Validation 

For each validation fold (i.e., 22 patients), we trained the 256 and 512 ResUnet 
models (2.3) on the remaining 202 patients. Therefore, we obtained 10 different 
models for the 256 and 512 networks each from 10-fold cross-validation. We applied 
an argmax function to the two-channel output of each model to generate the predicted 
tumor segmentation mask (i.e., 0 = background, 1 = tumor). We evaluated the 
performance of each separate model on the corresponding validation set using metrics 
of spatial overlap (Sørensen–Dice similarity coefficient [DSC] [16], recall, and 
precision) and surface distance (surface DSC [17], 95% Hausdorff distance [95% HD] 
[18]) between generated and ground truth segmentations. The surface distance metrics 
were calculated using the surface-distances Python package by DeepMind [17]. A 
tolerance of 3.0 mm was chosen for calculation of surface DSC based on previous 
investigations [19, 20] as a reasonable estimate of human inter-observer error.  

For the test set (101 patients), we implemented two different model ensembling 
approaches post-hoc (after training) to estimate the predicted tumor masks. In the first 
approach, we use used the Simultaneous Truth and Performance Level Estimation 
(STAPLE) algorithm [21] as a method to fuse labels generated by applying the 10 
models produced during the 10-fold cross-validation on the test data set, i.e., generate 
the consensus predicted masks from the different generated predicted masks 
(STAPLE approach). The STAPLE algorithm was derived from publicly available 
Python code (https://github.com/fepegar/staple). In the second approach, we 
implemented a simple threshold of agreement based on all cross-validation fold 
models at the voxel level (AVERAGE approach). The total number of cross-validation 
models used in thresholding could be modulated as a parameter for this approach. For 
our purposes, we selected a threshold of 5 cross-validation folds as a proxy for 
majority voting, i.e. at least 5 cross-validation models must consider a voxel to be a 
tumor (label = 1) for that final voxel label to be considered as a tumor (label =1). 
Majority voting in this context was chosen since it is common in other model 
ensembling approaches [22]. 

3​ Results 

The performances of the segmentation models are illustrated in Fig. 4, which shows 
Boxplots of the DSC, recall, precision, surface DSC, and 95% HD distributions 
obtained using the 10-fold cross-validation approach described in (2.5). The mean ± 
standard deviation values of the DSC, recall, precision, surface DSC, and 95% HD 
achieved by the 256 and 512 Models are 0.771 ± 0.039 and 0.768 ± 0.041, 0.807 ± 
0.042 and 0.793 ± 0.038, 0.788 ± 0.038 and 0.797 ± 0.038, 0.892 ± 0.042 and 0.890 ± 
0.044, and 6.976 ± 2.405 and 6.807 ± 2.357 respectively. The mean and median 
values of these metrics are summarized in Table 1. Notably, one case did not return a 
segmentation prediction (CHUS028) for either the 256 or 512 models, which led to 
the spurious prediction of surface distance metrics. Therefore, this case has been 
excluded in the analysis of surface DSC and 95% HD.  
 

https://github.com/fepegar/staple
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Fig. 4. Boxplots of the DSC, recall, precision, surface DSC, and 95% HD distributions for the 
10-fold cross-validation data sets (Set 1 to Set 10 – 22 patients each*) used for the 256 and 512 
ResUnet models. The lines inside the boxes refer to the median values. The stars refer to 
significant differences in the results by the two models (p-value < 0.05) using two-sided 
Wilcoxon signed-rank test. 1 One patient in Set 1 (CHUS028) did not return a segmentation 
prediction for either model and was thus excluded from the analysis of surface distance metrics 
(surface DSC, 95% HD). 



8 

Table 1. 256 and 512 ResUnet model performance metrics. 1 One case (CHUS028) in a 
cross-validation fold contained no segmentation prediction for either model and led to 

erroneous surface distance calculations; therefore, this case was excluded from the presented 
surface distance metric results.  

Model DSC Recall Precision Surface 
DSC1 

95% HD1 

(mm) 

256 (mean) 0.771 ± 
0.039 

0.807 ± 
0.042 

0.788 ± 
0.038 

0.892 ± 
0.042 

6.976 ± 2.405 

256 
(median) 

0.829 ± 
0.024 

0.873 ± 
0.039 

0.841 ± 
0.037 

0.970 ± 
0.016 

3.192 ± 0.816 

512 (mean) 0.768 ± 
0.041 

0.793 ± 
0.038 

0.797 ± 
0.038 

0.890 ± 
0.044 

6.807 ± 2.357 

512 
(median) 

0.828 ± 
0.024 

0.854 ± 
0.040 

0.849 ± 
0.038 

0.972 ± 
0.013 

2.919 ± 0.391 

 
To visually illustrate the internal validation performance of the segmentation model, 
samples of overlays of CT and PET images with the outlines of tumor masks using 
ground truth and model segmentations from the validation data sets are shown in Fig. 
5. The figure shows representative segmentation results for DSC values of 0.54, 0.77, 
and 0.96 which are below, comparable, and above the segmentation model’s mean 
DSC of 0.77, respectively.  
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Fig. 5. Illustrative examples overlaying the ground truth tumor segmentations (red) and 
predicted tumor segmentations (yellow) on the CT images (first and third columns) and PET 
images (second and forth columns) with different 3D volumetric DSC values (below, 
equivalent, and above the mean estimated DSC value of 0.77) given at the right top corners of 
the PET images in the second column. 

Finally, our models' external validation (test set) performances based on ensembling 
of cross-validation folds previously described are shown in Table 2. Mean DSC and 
median 95% HD for our best model (256 AVERAGE) was 0.770 and 3.143 mm, 
respectively (standard deviation or confidence intervals not provided by the 
HECKTOR 2021 submission portal). Our best model was ranked 8th place in the 
competition. Compared to the top ranked submission on the HECKTOR 2021 
submission portal (pengy), our DSC and 95% HD results are within 0.01 and 0.06 
mm, respectively. 

Table 2. Test set results for ensemble models. Metrics are reported from the HECKTOR 2021 
submission portal.  

Model Mean 
DSC 

Median 95% HD 
(mm) 

256 STAPLE  0.763 3.433 

512 STAPLE 0.759 3.291 

256 AVERAGE 0.770 3.143 
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512 AVERAGE 0.761 3.155 

4​ Discussion 

In this study, we have trained and evaluated OPC primary tumor segmentation models 
based on the 3D ResUnet deep learning architecture applied to large-scale and 
multi-institutional PET/CT data from the 2021 HECKTOR Challenge. Moreover, we 
investigate a variety of architectural modifications (512 vs. 256 channels in bottleneck 
layer) and ensembling techniques (STAPLE vs. AVERAGE) for test set predictions. 
Our approaches yield high and consistent segmentation performance in internal 
validation (cross-validation) and external validation (independent test set), thereby 
providing further empirical evidence for the feasibility of deep learning-based primary 
tumor segmentation for fully-automated OPC radiotherapy workflows. 
 
Through internal validation procedures on the training set (10-fold cross-validation), 
we attain mean DSC, recall, and precision values of 0.771, 0.807, and 0.788 for the 
256 model and 0.768, 0.793, and 0.797, for the 512 model, respectively. While the 
512 model offers a greater number of channels that could provide greater contextual 
information, maximum DSC performance is achieved with the 256 model. This may 
indicate the 256 model led to less over-fitting on the training data evaluation 
procedure. Interestingly, there was a tradeoff between recall and precision for the two 
models tested, with the 256 model offering higher recall at the cost of precision 
compared to the 512 model. Regardless, both these internal validation results improve 
upon our 3D models implemented in the 2020 HECKTOR Challenge, which only 
achieved a mean DSC of 0.69 [10]. These improved results potentially highlight the 
utility and importance of residual connections in a Unet architecture for this task. 
Moreover, image processing approaches that improve target class balance (i.e., tumor 
vs non-tumor) in the provided images significantly improve model sensitivity. Finally, 
we have further investigated the performance of our models using surface distance 
metrics, as these metrics have been suggested to be more closely linked to clinically 
meaningful endpoints [23, 24]. We observe minimal differences between the two 
models for the surface DSC, with both models showing strong performance. 
However, the 512 model has a slightly lower 95% HD, which may be favorable when 
more precise tumor boundary definitions are desired.  
 
When models were evaluated on the test data (external validation), we demonstrate 
high performance consistent with the internal validation results. Generally, the 
AVERAGE method outperformed the STAPLE method in terms of both DSC and HD. 
Typically, the AVERAGE method led to more conservative estimates than the 
STAPLE method, which could indicate ground truth segmentations in the test set 
tended to be more conservative when considering tumor boundaries. Interestingly, 
while a tradeoff between DSC and HD exists based on the channel number for the 
STAPLE method (256 = better DSC, 512 = better HD), this tradeoff is not present 
with the AVERAGE method, as the 256 model has better DSC and HD compared to 
the 512 model. Compared to our entry for the 2020 HECKTOR Challenge [10], our 
mean DSC test results were improved by a sizable degree from the original DSC of 



11 

0.637 (0.133 increase for our best model). Moreover, we also improve upon the 
performance of the winning submission in the 2020 HECKTOR Challenge [25], 
which achieved a DSC of 0.759 (0.011 increase for our best model). Our positive 
results may in part be due to the inclusion of ensembling coupled to our improved 
network modifications (as indicated in the internal validation). The utility of 
ensembling for PET/CT OPC tumor segmentation has been previously noted since the 
winning entry in the 2020 challenge used an ensembling approach based on 
leave-one-center-out cross-validation models to yield the best performing DSC results 
[25]. Therefore, our results further incentivize the ensembling of model predictions 
for OPC tumor segmentation data. While our results were not ranked particularly 
highly within the 2021 HECKTOR leaderboard (8th place), it is worth noting our best 
model, and most of the models within the top 10-15 entries, scored highly similarly 
for both DSC and 95% HD. This may indicate a theoretical upper limit on this 
segmentation task, regardless of model implementations.  
 
In recent years, there has been increasing evidence suggesting the utility of applying 
deep learning for fully-automated OPC tumor auto-segmentation in various imaging 
modalities [20, 26–28]. PET/CT has recently shown excellent performance when used 
as inputs to deep learning models, partly due to the large and highly curated datasets 
provided by the HECKTOR Challenge [12]. While direct comparison of performance 
metrics between segmentation studies is often ill-advised, the HECKTOR Challenge 
offers a systematic method for directly compare segmentation methods with each 
other. Moreover, since it has been suggested that the mean interobserver DSC for head 
and neck tumors in human experts is approximately 0.69 [29], our results indicate the 
potential for further testing to develop auto-segmentation workflows. However, it 
should be noted that before any definitive statements could be said about the clinical 
value of an auto-segmentation tool, the dosimetric impact and clinical acceptability of 
auto-segmeneted structures should be thoroughly evaluated through further studies 
[24].  
 
One limitation of our study is the reliance of our loss function purely on DSC as an 
optimization metric. We have chosen the DSC loss since it has provided excellent 
results in previous investigations and due to its widespread acceptance. However, 
other loss functions such, as cross entropy [10] and focal loss [25], can be combined 
with the DSC loss for model optimization which may require further investigation. 
Moreover, additional measures of spatial similarity, such as surface DSC and 95% 
HD, are relevant in auto-segmentation for radiotherapy applications [24], and 
therefore may be attractive candidates for use in model loss optimization [30]. The 
importance of additional measures of spatial similarity seems to have been noted by 
the HECKTOR Challenge organizers, as the 95% HD has now become a metric used 
in the leaderboard to rank contestant performance. An additional limitation of our 
study is we have only tested a few label fusion approaches as ensembling techniques 
for our models. For example, we have selected STAPLE as a label fusion method 
because of its general ubiquity and widely available implementations. However, 
STAPLE has been criticized in the past [31]; therefore, additional label fusion 
approaches may be necessary to test in this framework [32]. Moreover, for the 
AVERAGE ensembling method, the specific threshold in the number of 
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cross-validation models used to determine final label fusion can be seen as an 
additional parameter to tune. While we have chosen a 5-model threshold as a proxy 
for majority voting, alternative thresholding strategies can lead to more conservative 
or liberal estimates of tumor segmentation.  

5​ Conclusion 

This study presented the development and validation of deep learning models using a 
3D ResUnet architecture to segment OPC primary tumors in an end-to-end automated 
workflow based on PET/CT images. Using a combination of pre-processing steps, 
architectural design decisions, and model ensembling approaches, we achieve 
promising internal and external validation segmentation performance, with external 
validation mean DSC and median 95% HD of 0.770 and 3.143 mm, respectively, for 
our best model. Our method notably improves upon our previous iteration of our 
model submitted in the 2020 HECKTOR Challenge. Future studies should seek to 
further optimize these methods for improved OPC tumor segmentation performance 
in forthcoming iterations of the HECKTOR Challenge.  
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