Unit III: Functions, Objects and Graphics Hours:15
Functions: Program Routines- Defining Functions- More on Functions: Calling
Value-Returning Functions- Calling Non-Value-Returning Functions- Parameter Passing -
Keyword Arguments in Python - Default Arguments in Python-Variable Scope- Software
Objects: What is an Object? Object References- Turtle Graphics — Turtle attributes.

Python Functions

It is a block of statements that return the specific task. The idea is to put some
commonly or repeatedly done tasks together and make a function so that instead of writing
the same code again and again for different inputs,

we can do the function calls to reuse code contained in it over and over again.

Some Benefits of Using Functions
e Increase Code Readability
e Increase Code Reusability

Python Function Declaration

The syntax to declare a function is:

Keyword Function name Parameter

t t t

[1T 1T 1
def function_name(parameters):

N Body of
Statement

H statement]

return expression

Function return

e Built-in library function: These are Standard functions in Python that are available to
use.
o User-defined function: We can create our own functions based on our requirements.

Creating a Function in Python

We can create a user-defined function in Python, using the def keyword. We can add any type
of functionalities and properties to it as we require.

Python3

A simple Python function
def fun():

print("Welcome to GFG")

https://www.geeksforgeeks.org/python-built-in-functions/

Calling a Python Function

After creating a function in Python we can call it by using the name of the function
followed by parenthesis containing parameters of that particular function.

Python3

A simple Python function

def fun():

print("Welcome to GFG")

Driver code to call a function

fun()

Output:
Welcome to GFG

Python Function with Parameters

If you have experience in C/C++ or Java then you must be thinking about the return
type of the function and data type of arguments.

Defining and calling a function with parameters

def function name(parameter: data type) -> return_type:
"""DOCStI'ing"""
body of the function

return expression

def add(numl: int, num2: int) -> int:

""" Add two numbers

num3 = numl + num?2

return num3
Driver code
numl, num2 =5, 15
ans = add(num1, num?2)

print(f"The addition of {num1} and {num2} results {ans}.")

Output:
The addition of 5 and 15 results 20.

Return Statement in Python Function

The function return statement is used to exit from a function and go back to the
function caller and return the specified value or data item to the caller.

The syntax for the return statement is:
return [expression_list]

The return statement can consist of a variable, an expression, or a constant which is
returned at the end of the function execution. If none of the above is present with the return
statement a None object is returned.

Example: Python Function Return Statement
def square value(num):

"""This function returns the square

value of the entered number"""
return num**2

print(square value(2))

print(square_value(-4))

Output:
4

16

Pass by Reference and Pass by Value

One important thing to note is, in Python every variable name is a reference. When
we pass a variable to a function, a new reference to the object is created. Parameter passing in
Python is the same as reference passing in Java.

Here x 1s a new reference to same list Ist
def myFun(x):

x[0] =20
Driver Code (Note that Ist is modified
after function call.
Ist=[10, 11, 12, 13, 14, 15]
myFun(Ist)

print(lst)

Output:
[20, 11, 12, 13, 14, 15]

Types of Python Function Arguments

Python supports various types of arguments that can be passed at the time of the function
call. In Python, we have the following 4 types of function arguments.

Default argument

Keyword arguments (named arguments)

Positional arguments

Arbitrary arguments (variable-length arguments *args and **kwargs)

Default Arguments

A default argumentis a parameter that assumes a default value if a value is not
provided in the function call for that argument. The following example illustrates Default
arguments.

Python3

Python program to demonstrate

default arguments

https://www.geeksforgeeks.org/default-arguments-in-python/

def myFun(x, y=50):

print("x: ", X)

print("y: ", y)

Driver code (We call myFun() with only

argument)

myFun(10)

Output:
x: 10
y: 50

Keyword Arguments

The idea is to allow the caller to specify the argument name with values so that the
caller does not need to remember the order of parameters.

Python3

Python program to demonstrate Keyword Arguments

def student(firstname, lastname):

print(firstname, lastname)

Keyword arguments

student(firstname='Geeks', lastname='Practice")

student(lastname="Practice’, firstname='Geeks')

Output:
Geeks Practice

Geeks Practice

Positional Arguments

We used the Position argument during the function call so that the first argument (or
value) is assigned to name and the second argument (or value) is assigned to age.

By changing the position, or if you forget the order of the positions, the values can be
used in the wrong places, as shown in the Case-2 example below, where 27 is assigned to the
name and Suraj is assigned to the age.

Python3

def nameAge(name, age):

print("Hi, I am", name)

print("My age is ", age)

You will get correct output because

argument is given in order

print("Case-1:")

nameAge("Suraj", 27)

You will get incorrect output because

argument is not in order

print("\nCase-2:")

nameAge(27, "Suraj")

Output:
Case-1:
Hi, I am Suraj
My age is 27

Case-2:
Hi, I am 27
My age is Suraj

https://www.geeksforgeeks.org/keyword-and-positional-argument-in-python/#:~:text=age%20is%20%2020-,Positional%2DOnly%20Arguments,-Position%2Donly%20arguments

Arbitrary Keyword Arguments

In Python Arbitrary Keyword Arguments, *args, and **kwargs can pass a variable
number of arguments to a function using special symbols. There are two special symbols:
e “*args in Python (Non-Keyword Arguments)
e ‘“**kwargs in Python (Keyword Arguments)
Example 1: Variable length non-keywords argument
Python3

Python program to illustrate
*args for variable number of arguments
def myFun(*argv):

for arg in argv:

print(arg)

myFun('Hello', "Welcome', 'to', 'GeeksforGeeks')

Output:
Hello

Welcome

to

GeeksforGeeks

Python Variable Scope

In Python, we can declare variables in three different scopes: local scope, global, and
nonlocal scope.

A variable scope specifies the region where we can access a variable. For example,

Based on the scope, we can classify Python variables into three types:

1. Local Variables
2. Global Variables

3. Nonlocal Variables

https://www.geeksforgeeks.org/args-kwargs-python/

Python Local Variables

When we declare variables inside a function, these variables will have a local scope
(within the function). We cannot access them outside the function.

These types of variables are called local variables. For example,

Python Global Variables

In Python, a variable declared outside of the function or in global scope is known as a
global variable. This means that a global variable can be accessed inside or outside of the
function.

Let's see an example of how a global variable is created in Python.

Python Nonlocal Variables

In Python, nonlocal variables are used in nested functions whose local scope is not
defined. This means that the variable can be neither in the local nor the global scope.

We use the nonlocal keyword to create nonlocal variables.For example,

1.

Output

object in Python

Objects are variables that contain data and functions that can be used to manipulate
the data.

The object's data can vary in type (string, integer, etc.) depending on how it’s been
defined.

An object is like a mini-program inside python, with its own set of rules and
behaviors.

Creating an Object of class

The object is essential to work with the class attributes.

Instantiate is a term used when we create the object of any class, and the instance is
also referred to as an object.

The object is created using the class name. The syntax is given below.
Syntax:

<object-name> = <class-name>(<arguments>)
2. class Person:
3 name = "John"
4 age =24
5 def display (self):
6. print("Age: %d \nName: %s"%(self.age,self.name))
7. # Creating a emp instance of Employee class
8. per = Person()
9

. per.display()

Output:

Age: 24
Name: John

Objects and References

If we execute these assignment statements,
a = "banana"
b ="banana"

we know that a and b will refer to a string with the letters "banana". But we don’t know yet
whether they point to the same string.

There are two possible ways the Python interpreter could arrange its internal states:

Variable Value
a —_
— “banana”
_—— “banana”
b

In one case, a and b refer to two different string objects that have the same value. In
the second case, they refer to the same object. Remember that an object is something a
variable can refer to.

Ex: a = "banana"

b = "banana"

print(a is b)
output: True

Ex: a=[81,82,83]
b =[81,82,83]
print(a is b)
print(a ==Db)
print(id(a))
print(id(b))
output:

True

False
1

2

Turtle Programming in Python

Turtle” is a Python feature like a drawing board, which lets us command a turtle to
draw all over it! We can use functions like turtle.forward(...) and turtle.right(...) which can
move the turtle around. Commonly used turtle methods are :

Method Parameter Description
Turtle() None Creates and returns a new turtle object
forward() amount Moves the turtle forward by the specified amount
backward() amount Moves the turtle backward by the specified amount
right() angle Turns the turtle clockwise
left() angle Turns the turtle counterclockwise
penup() None Picks up the turtle’s Pen
pendown() None Puts down the turtle’s Pen
up() None Picks up the turtle’s Pen
down() None Puts down the turtle’s Pen
color() Color name Changes the color of the turtle’s pen

fillcolor() Color name Changes the color of the turtle will use to fill a polygon

heading() None Returns the current heading
position() None Returns the current position
goto() X,y Move the turtle to position x,y

begin fill() None Remember the starting point for a filled polygon

Method Parameter
end fill() None
dot() None
stamp() None
shape() shapename
Plotting using Turtle

Description

Close the polygon and fill with the current fill color

Leave the dot at the current position

Leaves an impression of a turtle shape at the current location

Should be ‘arrow’, ‘classic’, ‘turtle’ or ‘circle’

To make use of the turtle methods and functionalities, we need to import turtle.

“turtle” comes packed with the standard Python package and need not be installed

externally.

The roadmap for executing a turtle program follows 4 steps:

b=

Import the turtle module
Create a turtle to control.
Draw around using the turtle methods.
Run turtle.done().

from turtle import *

or

import turtle

Shape 1: Square

Python

Python program to draw square

using Turtle Programming

import turtle

skk = turtle.Turtle()

for 1 in range(4):

skk.forward(50)

skk.right(90)

turtle.done()

Output:

Python3

Python program to draw star

using Turtle Programming

import turtle

star = turtle. Turtle()

star.right(75)

star.forward(100)

for 1 in range(4):

star.right(144)

star.forward(100)

turtle.done()

Output:

Shape 3: Hexagon
Python

Python program to draw hexagon

using Turtle Programming

import turtle

polygon = turtle. Turtle()

num_sides =6

side_length =70

angle = 360.0 / num_sides

for 1 in range(num_sides):

polygon.forward(side length)

polygon.right(angle)

turtle.done()

Output:

Changing the Screen Color

By default, the turtle screen is opened with the white background. However, we can
modify the background color of the screen using the following function.

Example -

1. import turtle
2. # Creating turtle screen

N w kAW

t = turtle. Turtle()
turtle.bgcolor("red")

turtle.mainloop()

Output:

§ Python Turtle Graphics — [m] X
i p

Turtle Attributes:

position() -provides a tuple of coordinates as the current position of the turtle.
heading() -returns the current heading angle of the turtle in degrees.

color() -returns a tuple of RGB values representing the turtle's current color.
pensize() -returns the current pen size of the turtle.

speed() -returns the current speed of the turtle.

	
	Creating a Function in Python
	Python3
	Calling a Python Function

	Python3
	Python Function with Parameters

	Return Statement in Python Function
	
	
	Pass by Reference and Pass by Value
	Types of Python Function Arguments
	
	Default Arguments

	Python3
	
	Keyword Arguments

	Python3
	Positional Arguments

	Python3
	Arbitrary Keyword Arguments

	Python3
	Python Variable Scope
	Python Local Variables
	Python Global Variables
	Python Nonlocal Variables

	object in Python
	Creating an Object of class

	Objects and References
	Turtle Programming in Python
	Python
	Python3
	Python
	Changing the Screen Color
	
	Turtle Attributes:

