
MacPorts Custom Views Plugin for Buildbot

Personal Details

●​ Name: Rajdeep Bharati

●​ Email: rajdeepbharati13@gmail.com

●​ GitHub: https://github.com/rajdeepbharati

●​ Blog: https://medium.com/@rajdeepbharati

●​ IRC: rajdeepbharati

●​ University: Jamia Hamdard, New Delhi

●​ Major: Computer Science & Engineering (2nd year)

●​ Location/Timezone: India (UTC + 5:30)

Abstract

MacPorts currently uses a legacy version of Buildbot (0.8) as its continuous integration

framework and hasn’t upgraded due to certain drawbacks in the Waterfall view of the newer

versions. However, the currently deployed version is outdated and fails in several aspects due to

the absence of some key features such as:

i.​ The ability to write custom JavaScript views (UI components).

ii.​ Triggering a build whenever a pull request is made. Currently, a build can be started only

when patches are committed to the master branch.

This has led to some major setbacks with respect to developer productivity. MacPorts also

needs some custom views in buildbot to be able to better analyze build history, commits, etc.

The legacy version doesn’t allow us to write such custom views. This project will involve

upgrading the Macports Buildbot infrastructure to the latest version, developing a plugin for

buildbot and writing custom views.

Goals

●​ Develop a plugin for Buildbot that would allow developers to write custom components

using modern frameworks like Vue/React, instead of AngularJS.

●​ Write custom components in Vue.js:

i.​ List of commits with links to builds

ii.​ Overview of each commit/forced build, and a tabular representation of build

status (fail, pass, etc) on different versions of ports.

iii.​ Overview of the history of builds of a particular port

mailto:rajdeepbharati13@gmail.com
https://github.com/rajdeepbharati
https://medium.com/@rajdeepbharati

iv.​ A view where the user would be able to filter the builds by portname,

maintainer, author, and branch.

●​ Migrate existing MacPorts Buildbot setup to version 2.1 and test new components.

●​ Convert the core plugin logic into an npm package.

●​ Set up “disposable builds”, i.e., builds on every pull request to start CI tests whenever a

PR is made to a repository.

●​ Configure buildmaster to send email notifications to the port maintainer(s),
committer(s), and author(s) about build status (started, failed, passed).

Wireframe of Views

View #1: List of commits

There will be a widget to let the user select a timestamp, and an option to display all the

commits before or after the selected date. I have implemented a basic prototype.

According to the timestamp, a table will be dynamically populated with builds in inverse

chronological order. By default, all the commits before the current date will be displayed (if the

user doesn’t select any timestamp):

Build status
(failure/success)

Timestamp Commit shortlog Committer Author
Link to
view #2

✅
2019-03-23

22:34:36
py-pyscard: update

to 1.9.8
user1 user2 commit A

❌
2019-03-04

02:15:00
samp: new port user3 user3 commit B

View #2: Overview of a particular commit/forced build

Complete info about the commit:

1.​ Committer name & timestamp

2.​ Author name & timestamp

3.​ Subject & full commit message

4.​ URL to commit on GitHub

5.​ Potential URLs to track tickets & PRs

https://github.com/rajdeepbharati/buildbot-vue-plugin

Summary of build/commit tests on each port:

MacOS version ➡️ 10.13 10.12 10.11 10.10 10.9 10.8

Port List ⬇️ OK OK OK OK OK OK

port A OK OK FAIL OK FAIL FAIL

port B FAIL FAIL FAIL SKIP SKIP SKIP

port C SKIP OK OK FAILDEP FAILDEP FAILDEP

View #3: Overview of history of builds of a particular port

Relevant details about the port:

1.​ Name

2.​ Current version

3.​ Latest version

4.​ Maintainers (thumbnails, with links to their GitHub profiles)

This would be followed by a widget similar to the one in View #1, and a table showing the

history of builds in the selected time frame:

Link to
view #2

Timestamp Version
MacOS version

10.13 10.12 10.11 10.10 10.9 10.8

commit A 0.9 OK OK OK OK FAILDEP SKIP

commit B 0.8 OK OK OK OK FAILDEP SKIP

force 0.8 OK

commit C 0.8 OK OK FAIL FAIL FAILDEP SKIP

commit D 0.7 OK OK OK OK OK SKIP

View #4: Filter builds by different parameters

This would contain all the builds sorted by date (using the date widget), with options to filter

builds using certain keywords such as portname, maintainer, author, and branch. There would

also be an option to show all failed/passed builds of a particular maintainer. This would be

configurable in the master.cfg, and new filters may be created as per the needs.

Implementation

●​ The custom views will be integrated to AngularJS with the help of a plugin based on this

boilerplate: https://github.com/uglycoyote/buildbot-react-plugin-boilerplate. A custom

directive is used to interconnect the frontend frameworks. It also enables us to get

buildbot data from the API and forward it to Vue as props.

●​ View #4 would be implemented using the buildbot class:

buildbot.changes.changes.Change

The portname would be extracted from the change.files parameter (which is a list of

files that are affected by a change) in the following manner:

The above method would return True when the portname matches, and the frontend

logic would render the builds related to the searched portname.

●​ The npm package would have an interface to take a component as input, run the logic

behind the scenes to connect the component with the AngularJS app. The python setup

(that is present in buildbot plugins) would be installed automatically during creation

from within the plugin (JavaScript code) using shelljs.

There would also be a command line application (project generator) similar to

create-react-app or vue-cli, which would create a new plugin app with all the

boilerplate code. It would contain sample components written in Vue and React.

Basic Usage:

$ bbview create my_view

The above command would generate a boilerplate view having the name my-view.

The developer would have to add my_view to the dict of plugins in master.cfg.

There would be a development mode (webpack --watch) and a production build.

●​ Disposable builds will be implemented using GitHubPullrequestPoller.

https://github.com/uglycoyote/buildbot-react-plugin-boilerplate
https://www.npmjs.com/package/shelljs
http://docs.buildbot.net/current/manual/configuration/changesources.html#chsrc-GitHubPullrequestPoller

This can be done by running the builds on virtual machines with different versions of

MacOS (10.14 down to 10.6) with the help of libvirt API. This will prevent malicious pull

requests from damaging the builders. This PoC will be referred to while setting up

MacOS QEMU/KVM workers on Ubuntu server.

An alternative without using VMs would be to start a build when a PR has been

approved by at least x developers (where x is chosen arbitrarily by MacPorts

maintainers).

There would also be another option for maintainers to run a build explicitly by

commenting in a GitHub PR.

In the above example, a pull request is only processed if it has been approved by at least

3 people.

Timeline

I will be needing a break of about 7 days in the month of May for my end semester exams,

which I would cover up by chipping in some extra hours daily after the exams.

http://docs.buildbot.net/current/manual/configuration/workers-libvirt.html
https://github.com/nextgis/buildbot

Legend: Importance & time devoted:

Time Frame Start Date End Date Task(s)

Initial Phase May 6 - Familiarize completely with
buildbot configuration and JSON
API.
- Study the current macports
buildbot infrastructure.
- Write a basic buildmaster config
file for MacPorts using the
buildbot 2.1 in Python 3.
- Learn about portfiles and create
a sample portfile for buildbot 2.1.

Community Bonding May 6 May 27

 May 6 May 13 Write the 4 main views (#1, #2,
#3, #4) and test them using a
“fake builder” (by fetching data
from the GitHub API).

 May 13 May 20 Break for end semester exams.

 May 20 May 27 Fix issues in collection class in
buildbot data to improve
compatibility with Vue. Finalize
the MacPorts master.cfg file.
Check the plugin for security
vulnerabilities and outdated
dependencies; refactor it
accordingly.

Phase 1 May 27 June 24

 May 27 June 3 Tweak the views #1, #2, #3, #4
and integrate it with the actual
buildbot setup and write
corresponding unit tests.

 June 3 June 10 Set up “disposable builds”. Add
GitHub authentication to allow
developers to log in directly to

https://github.com/macports/macports-infrastructure/tree/master/buildbot
https://github.com/macports/macports-infrastructure/tree/master/buildbot

the buildbot UI, without creating
a separate username &
password.

 June 10 June 17 Write documentation.

 June 17 June 24 Deploy the plugin to a production
environment

End Result A production-ready plugin with
the major functionality deployed.
It is provided to MacPorts
developers, who could identify
flaws, suggest potential
improvements.

Phase 2 June 24 July 22

 June 24 July 1 Receive feedback from users, fix
issues/bugs.

 July 1 July 8 Add feature to send email
notifications to port maintainers,
committers, authors about build
status (started, failed, passed).

 July 8 July 15 Optimize the algorithms to
render views.

 July 15 July 22 Create a npm package for the
custom views plugin. It will
contain the core logic of the
plugin, with examples of using it
with React and Vue, and
documentation.

End Result Improved performance and
quality of the views. A npm
package that can be used by
buildbot users who want to use
React/Vue to write components.

Phase 3 July 22 August 19

 July 22 July 29 Write waterfall view using Vue
components.

 July 29 August 5 Popup notification whenever a
new build is complete
(passes/fails).

 August 5 August 12 Document and test the new
Waterfall view. Merge features
with the buildbot repository.

 August 12 August 19 Fine tuning of the UI.

Stretch Goals

●​ Write a customized waterfall view for MacPorts, similar to the one in buildbot 0.8.

●​ Set up disposable builds in Virtual Machines, for building PRs.

●​ Create a docker container to deploy the plugin easily.

●​ Create a standalone frontend based on a build statistics web API (depends on statistics

collection project).

●​ Write a portfile for the buildbot views plugin.

Availability

I would be able to devote about 50 hours per week to the project. I would also write a weekly

blog post highlighting the progress made in my project. I am available full time during summers

since I do not have any other internship or job.

About Me

I have been using MacPorts ever since I switched to mac (about 2 years). The main reason why I

like it is due to its support for specifying variants during port installation. I have experience with

package management systems such as pip and npm. I have some experience with C and would

be happy to learn Tcl and start contributing to core MacPorts projects (my project is based on

web development and buildbot). I have experience working as a web developer at a startup:

https://www.fetchmewishes.com, where I developed a Django app, REST API, integrated

payment gateway, built a simple chatbot, and worked on InstaPy bot to increase Instagram

followers.

I also love using buildbot (even more than Travis CI) because it’s much more hackable and

written in Python.

Even after GSoC ends, I would certainly continue to contribute to buildbot and Macports.

https://www.fetchmewishes.com/
https://github.com/timgrossmann/InstaPy

I have been actively involved with open source projects such as coala, FOSSAsia, etc. Some of

my contributions are:

-​ https://github.com/coala/coala-bears/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbh

arati

-​ https://github.com/coala/coAST/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbharati

-​ https://github.com/fossasia/labyrinth/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbh

arati

I can assure you that if I get selected to work with MacPorts this summer, I will give my best to

make this project a success, and make the Macports developer workflow more convenient and

faster.

Looking forward to working with you.

Rajdeep Bharati

https://github.com/coala/coala-bears/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbharati
https://github.com/coala/coala-bears/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbharati
https://github.com/coala/coAST/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbharati
https://github.com/fossasia/labyrinth/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbharati
https://github.com/fossasia/labyrinth/pulls?utf8=%E2%9C%93&q=author%3Arajdeepbharati

